JPS6326962A - Stop and storing method for fuel cell - Google Patents

Stop and storing method for fuel cell

Info

Publication number
JPS6326962A
JPS6326962A JP60184979A JP18497985A JPS6326962A JP S6326962 A JPS6326962 A JP S6326962A JP 60184979 A JP60184979 A JP 60184979A JP 18497985 A JP18497985 A JP 18497985A JP S6326962 A JPS6326962 A JP S6326962A
Authority
JP
Japan
Prior art keywords
air
line
fuel
cell
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60184979A
Other languages
Japanese (ja)
Other versions
JPH0433112B2 (en
Inventor
Takahiro Ishibashi
石橋 高弘
Masaaki Maekawa
前川 雅明
Hitoshi Kato
均 加藤
Masahiro Ide
井出 正裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Sanyo Electric Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Sanyo Electric Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Sanyo Electric Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP60184979A priority Critical patent/JPS6326962A/en
Publication of JPS6326962A publication Critical patent/JPS6326962A/en
Publication of JPH0433112B2 publication Critical patent/JPH0433112B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make it possible to stop and store a fuel cell without any trouble on site where commercial power supply or nitrogen supply source are not available by closing supply and exhaust valves of a fuel line, reaction air line, and cooling air line when the temperature of a cell fell to a specified value, and sealing the fresh air in each line, then storing the cell in this state. CONSTITUTION:When operation is stopped, supply of methanol to a reformer 2 is stopped, and fuel gas supply and exhaust valves 3, 3' are closed. At the same time, an external exhaust valve 9 is opened, and the fresh air taken from an air introducing valve 8 is passed in a cooling line through an open passage to cool a cell 1, and also passed in a reaction air line to perge wet air within the cell. By the outside air flowing in a fuel line, a reaction air line, and the cooling line through open passages, the temperature of a cell falls, and when it fell to a specified value (about 120 deg.C), a blower 5 is stopped, and supply and exhaust valves 11, 3', 4, 4', and 7, 7' in each line are closed, and the outside air is sealed in each line within the cell.

Description

【発明の詳細な説明】 本発明は、燐酸電解質を用いる燃料電池特に可搬用小型
電池の停止保存方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for shutting down and storing a fuel cell, particularly a small portable battery, using a phosphoric acid electrolyte.

燃料電池の運転停止に際し、従来は外気の強制流通によ
り電池温度を下げてから、電池及び経路内の各反応ガス
を窒素ガスで置換するため窒素パージを行なうと共に電
気ヒータにより110℃〜120°C程度に保温し、保
存状態に入っていた。このように保存時窒素パージ及び
保温を行なう目的は、電池の安全性確保と電解質の変質
防止のためである。
When shutting down a fuel cell, conventionally, the cell temperature is lowered by forced circulation of outside air, and then a nitrogen purge is performed to replace the cell and each reaction gas in the path with nitrogen gas, and an electric heater is used to lower the cell temperature to 110°C to 120°C. It was kept warm and preserved. The purpose of nitrogen purging and heat retention during storage is to ensure the safety of the battery and to prevent deterioration of the electrolyte.

しかしながら、可搬用電池(数KW〜数10KW出力)
の使用場所は、商用′Wt、/lX及び窒素ガスがない
場であり、従来のような窒素パージを行ないつつ電気で
保温することは不可能となる。
However, portable batteries (several KW to several tens of KW output)
The place where this is used is where commercial 'Wt, /lX and nitrogen gas are not available, and it is impossible to keep it warm by electricity while performing the conventional nitrogen purge.

この発明は、燃料電池の保存時、電気による保温及び窒
素ガスによるパージを行なうことなく、保存・を可能と
する方法を提供するものである。
The present invention provides a method that allows fuel cells to be stored without having to be kept warm by electricity or purged with nitrogen gas.

この発明は、電池停止に際し、反応空気系及び冷却空気
系に外部新鮮空気を7.を通しつつ、燃料ガスの供給を
遮断した状態で、放電反応により燃料ガス中の水素分圧
を低下させて後負荷を遮断し、ついで燃料系にも外部新
鮮空気を流通させ、電池が所定温度に低下した時点で、
燃料系・反応空気系及び冷却空気系の各給排バルブを閉
じて電池内の前記各県に新鮮空気を封入し、この状態で
保存を行なうものである。
This invention provides external fresh air to the reaction air system and cooling air system when the battery is stopped. With the supply of fuel gas cut off, the hydrogen partial pressure in the fuel gas is lowered by a discharge reaction to cut off the afterload, and fresh air is then passed through the fuel system, allowing the battery to reach a predetermined temperature. When it drops to
The supply/exhaust valves of the fuel system, reaction air system, and cooling air system are closed to fill each prefecture in the battery with fresh air, and the battery is stored in this state.

この発明では燃料ガスの供給遮断後、その燃料成分(H
2)を低下きせるまで放電して後負荷を遮断し、この燃
料系にも反応空気系及び冷却系と同様に外部新鮮空気を
流通させて後電池内の各県に外部新鮮空気を封入するも
ので、従来のような窒素ガスバージを行なう必要がない
と共に、電池が外気温まで低下しても、限られた封入空
気中の水分が電解液に吸収されるだけで、電池に大きな
支障をきたすことなく、窒素パージや電気ヒータによる
保温も不用となり、商用電源や窒素源のない所でも可搬
用燃料電池の保存が可能となる。
In this invention, after cutting off the supply of fuel gas, the fuel component (H
2) The afterload is cut off by discharging the battery until it drops, and external fresh air is circulated through this fuel system in the same way as the reaction air system and cooling system, and external fresh air is sealed in each prefecture in the rear battery. This eliminates the need to perform a nitrogen gas purge as in the past, and even if the temperature of the battery drops to the outside temperature, only a limited amount of moisture in the enclosed air will be absorbed by the electrolyte, causing major damage to the battery. This eliminates the need for nitrogen purge or heat insulation using electric heaters, making it possible to store portable fuel cells even in locations without commercial power or nitrogen sources.

本発明の実施例を第1図につい工説明する。An embodiment of the present invention will be explained with reference to FIG.

電池(1)に供給きれる燃料ガスは、リホーマ=(2)
でメタノールを改質した水素リッチガス(8280%、
CO220%)を用い、酸化剤としての反応空気との間
で電池反応にあうかり、電力を発生する。この際燃料ガ
ス及び反応空気の供給・琲気各弁(3)(3’)及び(
4)(4’)は開いている。
The fuel gas that can be supplied to the battery (1) is reformed = (2)
Hydrogen-rich gas (8280%,
Using CO2 (20%), a battery reaction occurs with reaction air as an oxidizing agent to generate electricity. At this time, the fuel gas and reaction air supply and aeration valves (3) (3') and (
4) (4') is open.

電池(1)の作動温度は180℃〜190℃で、反応熱
により昇温する電池を作動温度に維持するため、ブロワ
(5)で循環する空気により冷却きれる。電池(1)を
冷却した高温排ガスの一部は、反応空気として電池(1
)に供給きれ、その排ガスは燃料ガスの排ガスと共にリ
ホーマ−(2)のバーナー熱源として利用される。
The operating temperature of the battery (1) is 180° C. to 190° C., and in order to maintain the battery at the operating temperature, the temperature of which rises due to reaction heat, can be cooled down by air circulated by a blower (5). A part of the high-temperature exhaust gas that cooled the battery (1) is transferred to the battery (1) as reaction air.
), and the exhaust gas is used as a burner heat source for the reformer (2) together with the exhaust gas of the fuel gas.

冷却空気の循環経路(6)(6’)には、供給・排気6
弁(7)(7’)の他に外気導入弁く8)及び外部排出
弁(9)を有し、電池運転中外部排出弁(9)は閉じて
いるが、外気導入弁(8)を開いて、この弁(8)より
導入される低温の新鮮空気により、反応空気として排出
きれる空気を補うと共に、電池を循環する冷却空気の温
度を下げる。
The cooling air circulation path (6) (6') includes a supply/exhaust 6
In addition to the valves (7) and (7'), it has an outside air intake valve (8) and an external exhaust valve (9).The external exhaust valve (9) is closed during battery operation, but when the outside air intake valve (8) is closed. When opened, the low-temperature fresh air introduced through this valve (8) supplements the air that can be exhausted as reaction air and lowers the temperature of the cooling air circulating through the battery.

次に電池の運転停止及び保存法について説明する。Next, methods for stopping and preserving the battery will be explained.

運転停止に際し、リホーマ−(2)へのメタノール供給
を停止すると共に、燃料ガスの供給・排気6弁(3)(
3’)が閉じられる。同時に外部排出弁(9)を開いて
、外気導入弁く8)より取入れた外部新鮮空気が、オー
ブン経路で冷却系に流通して電池(1)を冷却すると共
に、反応空気系にも流通して電池内の湿った空気を系外
に送り出す、弁く3)(3′)間に封入された燃料ガス
中の水素分圧は、反応空気との反応により低下し、これ
が所定値に低下したことを電池T圧により検出して負荷
(10〉を遮断する。ついで分岐弁(11)及び排気弁
(3′)を開いて、燃料系にも外部空気を流通させ、水
素分圧の低い燃料ガスを直かに系外に排出する。
When the operation is stopped, the methanol supply to the reformer (2) is stopped, and the six fuel gas supply/exhaust valves (3) (
3') is closed. At the same time, the external exhaust valve (9) is opened, and the external fresh air taken in from the outside air intake valve (8) flows through the oven path to the cooling system to cool the battery (1), and also flows to the reaction air system. The hydrogen partial pressure in the fuel gas sealed between valve 3) (3'), which sends the moist air inside the battery out of the system, decreases due to the reaction with the reaction air, and this drops to a predetermined value. This is detected by the battery T pressure and the load (10) is cut off.Then, the branch valve (11) and the exhaust valve (3') are opened to allow external air to flow through the fuel system as well, allowing fuel with low hydrogen partial pressure to flow through the fuel system. Exhaust the gas directly out of the system.

かくして燃料系、反応空気系及び冷却系にオーブン経路
で流通ずる外気により電池温度が低下し5.ある一定値
(約120℃)まで降下した時点で、ブロワ(5)を停
止すると共に、前記各県の供給・排気6弁(11ン(3
′)、(4>(4’)及び(7)(7’)を閉じること
により、電池(1)内の各県に外部空気を封入する。
Thus, the outside air flowing through the oven path through the fuel system, reaction air system, and cooling system lowers the cell temperature.5. When the temperature drops to a certain level (approximately 120°C), the blower (5) is stopped and the six supply/exhaust valves (11 valves (3
'), (4>(4') and (7) By closing (7'), external air is sealed in each prefecture in the battery (1).

この状態で保存が行なわれるが、電池温度は外気温まで
序々に降下し、電解質の燐酸が吸湿性のため燃料系と反
応空気系では封入空気中の水分を吸収して燐酸濃度が低
下するけれども、封入空気量が少ないので濃度低下もし
くは電解質の増量はわずかである。
Storage is carried out in this state, but the battery temperature gradually drops to the outside temperature, and since the phosphoric acid in the electrolyte is hygroscopic, the fuel system and reaction air system absorb moisture from the enclosed air and the phosphoric acid concentration decreases. Since the amount of air enclosed is small, there is only a slight decrease in concentration or increase in the amount of electrolyte.

尚前述のように放電による封入燃料ガス中の水素分圧の
低下は、燃料極(N)と空気極(P)との間に差圧をも
たらす、又、保存中の電池温度降下は電解質の増量及び
場合により氷結をもたらす。これらに耐えうるよう、第
2図に示すように、電解質マトリックス(M)は強度の
大きいカーボンマトリックス層(mI)(ml)をSi
Cマトリックス層(m2)の両面に配置して三層構成と
した1図中(12〉はカーボンプレートで、燃料ガス及
び反応空気の各流通溝(13)及び(14)を有する。
As mentioned above, the decrease in the partial pressure of hydrogen in the enclosed fuel gas due to discharge causes a pressure difference between the fuel electrode (N) and the air electrode (P), and the drop in battery temperature during storage causes the electrolyte to drop. Resulting in bulk increase and possibly freezing. In order to withstand these conditions, as shown in Figure 2, the electrolyte matrix (M) is made of a strong carbon matrix layer (mI) (ml) made of Si.
A carbon plate (12>) is arranged on both sides of the C matrix layer (m2) to form a three-layer structure, and has flow grooves (13) and (14) for the fuel gas and reaction air.

前記電池停止過程における負荷遮断後のブロワく5)の
運転は、電池スタートアップ用に備えている補助蓄電池
を用いて行なう。
The blower 5) is operated after the load is cut off in the battery stop process using an auxiliary storage battery provided for battery startup.

本発明゛によれば、を池の停止に際し、外部空気をオー
ブン経路で反応空気系及び冷却空気系に流通しつつ、燃
料ガス系の水素分圧を低下させて後負荷を遮断し、燃料
ガス系にも外部空気を流通し、電池温度が所定値に降下
した時点で、電池内の各県に外部空気を封入して保存状
態とするもので、従来のように電池保存時窒素ガスを各
系内に連続供給すること及び、温度保持用ヒータへの継
続通電を行なうことを不必要とし、商用電源や窒・電源
のない所でも電池に支障をきたすこ、となく、停止保存
が可能となるなど、可搬用燃料電池に極めて有効である
According to the present invention, when the oven is stopped, the hydrogen partial pressure in the fuel gas system is reduced to cut off the afterload while the external air is flowing through the oven path to the reaction air system and the cooling air system. External air is also circulated through the system, and when the battery temperature drops to a predetermined value, external air is sealed in each part of the battery to preserve it. It eliminates the need for continuous supply into the system and continuous energization of temperature-maintaining heaters, making it possible to stop and store the battery without causing any trouble to the battery even in places where there is no commercial power supply or nitrogen/power supply. It is extremely effective for portable fuel cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1′CIAは本発明法を説明するための燃料電池シス
テム図、第2図は本発明法による単位セルの概要断面図
である。 1・・・電池、2・・・リホーマ−13,3’・・・燃
料ガスの給・排各弁、4,4′・・・反応空気の給・排
各弁、5,5′・・・冷却空気の給・排各弁、6,6′
・・・冷却空気の循環経路(運転時)、8・・・外気導
入弁、9・・・外部排出弁、11・・・分岐弁。 N・・・燃料極、P・・・空気極、M・・・マトリック
ス(三層構成)。
1'CIA is a fuel cell system diagram for explaining the method of the present invention, and FIG. 2 is a schematic sectional view of a unit cell according to the method of the present invention. 1...Battery, 2...Reformer 13, 3'...Fuel gas supply/discharge valves, 4,4'...Reaction air supply/discharge valves, 5,5'...・Cooling air supply/discharge valves, 6, 6'
. . . Cooling air circulation path (during operation), 8. Outside air intake valve, 9. External discharge valve, 11. Branch valve. N: fuel electrode, P: air electrode, M: matrix (three-layer structure).

Claims (2)

【特許請求の範囲】[Claims] (1)電池の停止に際し、反応空気系及び冷却空気系に
オーブン経路で外部空気を流通しつつ、燃料ガスの供給
を遮断した状態で、放電により前記燃料ガス中の水素分
圧を低下させて後負荷を遮断し、ついで燃料系にも前記
外部空気を流通させ、電池が所定温度に低下した時点で
燃料系、反応空気系及び冷却空気系の各給排バルブを閉
じて電池内の前記各系に外部空気を封入し、この状態で
保存を行なうことを特徴とする燃料電池の停止保存法。
(1) When the battery is stopped, the hydrogen partial pressure in the fuel gas is lowered by discharging while the supply of fuel gas is cut off while external air is passed through the reaction air system and the cooling air system through the oven path. After the afterload is cut off, the external air is also allowed to flow through the fuel system, and when the temperature of the battery drops to a predetermined temperature, the supply and exhaust valves of the fuel system, reaction air system, and cooling air system are closed to release each of the above-mentioned air inside the battery. A fuel cell shutdown preservation method characterized by sealing external air into the system and preserving it in this state.
(2)前記電池の燃料極と空気極との間に介在する電解
質マトリックスが、SiCマトリックス層の両面に強度
の大きいカーボンマトリックス層を配置した三層構成で
あることを特徴とする特許請求の範囲第1項記載の燃料
電池の停止保存法。
(2) Claims characterized in that the electrolyte matrix interposed between the fuel electrode and the air electrode of the battery has a three-layer structure in which strong carbon matrix layers are arranged on both sides of a SiC matrix layer. 1. A method for shutting down and preserving a fuel cell as described in paragraph 1.
JP60184979A 1985-08-22 1985-08-22 Stop and storing method for fuel cell Granted JPS6326962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60184979A JPS6326962A (en) 1985-08-22 1985-08-22 Stop and storing method for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60184979A JPS6326962A (en) 1985-08-22 1985-08-22 Stop and storing method for fuel cell

Publications (2)

Publication Number Publication Date
JPS6326962A true JPS6326962A (en) 1988-02-04
JPH0433112B2 JPH0433112B2 (en) 1992-06-02

Family

ID=16162677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60184979A Granted JPS6326962A (en) 1985-08-22 1985-08-22 Stop and storing method for fuel cell

Country Status (1)

Country Link
JP (1) JPS6326962A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324564A (en) * 2001-04-26 2002-11-08 Equos Research Co Ltd Fuel cell device and control method therefor
JP2003157875A (en) * 2001-11-21 2003-05-30 Nissan Motor Co Ltd Fuel cell system
JP2004206898A (en) * 2002-12-24 2004-07-22 Equos Research Co Ltd Fuel cell system
JP2005183197A (en) * 2003-12-19 2005-07-07 Honda Motor Co Ltd Stopping method of fuel cell
JP2005302609A (en) * 2004-04-14 2005-10-27 Honda Motor Co Ltd Fuel cell system
JP2005317430A (en) * 2004-04-30 2005-11-10 Seiko Instruments Inc Cooling system and electronic equipment
JP2006134807A (en) * 2004-11-09 2006-05-25 Honda Motor Co Ltd Fuel cell system
JP2006202520A (en) * 2005-01-18 2006-08-03 Honda Motor Co Ltd Shutdown method of fuel cell system, and fuel cell system
JP2009087954A (en) * 1997-12-22 2009-04-23 Equos Research Co Ltd Fuel cell system
US7687169B2 (en) 2003-10-06 2010-03-30 Honda Motor Co., Ltd. Stop method for fuel cell system
JP2010080176A (en) * 2008-09-25 2010-04-08 Casio Computer Co Ltd Reactive equipment, and controlling portion thereof
US7867661B2 (en) 2005-07-28 2011-01-11 Honda Motor Co., Ltd. Fuel cell system and method
US7883811B2 (en) 2002-09-18 2011-02-08 Honda Giken Koygo Kabushiki Kaisha Control apparatus for fuel cell stack
US7943261B2 (en) 2002-10-31 2011-05-17 Panasonic Corporation Method of operating fuel cell system and fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5810753B2 (en) * 2011-08-31 2015-11-11 スズキ株式会社 Fuel cell vehicle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087954A (en) * 1997-12-22 2009-04-23 Equos Research Co Ltd Fuel cell system
JP2002324564A (en) * 2001-04-26 2002-11-08 Equos Research Co Ltd Fuel cell device and control method therefor
JP4742444B2 (en) * 2001-04-26 2011-08-10 株式会社エクォス・リサーチ Fuel cell device
JP2003157875A (en) * 2001-11-21 2003-05-30 Nissan Motor Co Ltd Fuel cell system
US7883811B2 (en) 2002-09-18 2011-02-08 Honda Giken Koygo Kabushiki Kaisha Control apparatus for fuel cell stack
US7943261B2 (en) 2002-10-31 2011-05-17 Panasonic Corporation Method of operating fuel cell system and fuel cell system
JP2004206898A (en) * 2002-12-24 2004-07-22 Equos Research Co Ltd Fuel cell system
JP4599796B2 (en) * 2002-12-24 2010-12-15 株式会社エクォス・リサーチ Fuel cell system
US7687169B2 (en) 2003-10-06 2010-03-30 Honda Motor Co., Ltd. Stop method for fuel cell system
US7875399B2 (en) 2003-10-06 2011-01-25 Honda Motor Co., Ltd. Stop method for fuel cell system
JP4633354B2 (en) * 2003-12-19 2011-02-16 本田技研工業株式会社 How to stop the fuel cell
JP2005183197A (en) * 2003-12-19 2005-07-07 Honda Motor Co Ltd Stopping method of fuel cell
JP4681250B2 (en) * 2004-04-14 2011-05-11 本田技研工業株式会社 Fuel cell system
JP2005302609A (en) * 2004-04-14 2005-10-27 Honda Motor Co Ltd Fuel cell system
JP2005317430A (en) * 2004-04-30 2005-11-10 Seiko Instruments Inc Cooling system and electronic equipment
US7846596B2 (en) 2004-11-09 2010-12-07 Honda Motor Co., Ltd. Fuel cell system and method of discharging a reaction gas from the fuel cell system
JP4699010B2 (en) * 2004-11-09 2011-06-08 本田技研工業株式会社 Fuel cell system
JP2006134807A (en) * 2004-11-09 2006-05-25 Honda Motor Co Ltd Fuel cell system
JP2006202520A (en) * 2005-01-18 2006-08-03 Honda Motor Co Ltd Shutdown method of fuel cell system, and fuel cell system
US7867661B2 (en) 2005-07-28 2011-01-11 Honda Motor Co., Ltd. Fuel cell system and method
JP2010080176A (en) * 2008-09-25 2010-04-08 Casio Computer Co Ltd Reactive equipment, and controlling portion thereof

Also Published As

Publication number Publication date
JPH0433112B2 (en) 1992-06-02

Similar Documents

Publication Publication Date Title
JPS6235485A (en) Stoppage and preservation of fuel battery
JPS6326962A (en) Stop and storing method for fuel cell
JP5325929B2 (en) Method for improving the cold start capability of an electrochemical fuel cell
JP2924009B2 (en) How to stop fuel cell power generation
JP2003151601A (en) Fuel cell system and its stop method
US20050130002A1 (en) Fuel cell system
JP2002373691A (en) On-vehicle fuel cell system
JPH07272737A (en) Stop device for fuel cell
JP2705241B2 (en) Shutdown method of phosphoric acid fuel cell
CN114171759A (en) Low-temperature purging system and method for fuel cell stack
JP2004014213A (en) Fuel cell system
US20050019633A1 (en) Fuel cell system
EP1860715A1 (en) Heat-retention and heating of reaction gas in fuel cell system
US7049018B2 (en) Method of operating a fuel cell system under freezing conditions
CN113594504B (en) Method for storing and quickly starting fuel cell stack under low-temperature condition
JPH0244654A (en) Gas replacement method for fuel cell
JP2002134138A (en) Fuel cell system
JPH11154529A (en) Stopping method of phosphoric acid type fuel cell and phosphoric acid type fuel cell
JP2004234892A (en) Fuel cell system
JPS6112347B2 (en)
JP4031537B2 (en) Polymer electrolyte fuel cell system
JPS5973858A (en) Operation method of fuel cell power generating system
JPH09147892A (en) Fuel cell unit and its operating method
CN110911715A (en) Cold start method for fuel cell stack
JPS6217961A (en) Air cooled-type fuel cell