JP2002246047A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JP2002246047A
JP2002246047A JP2001044676A JP2001044676A JP2002246047A JP 2002246047 A JP2002246047 A JP 2002246047A JP 2001044676 A JP2001044676 A JP 2001044676A JP 2001044676 A JP2001044676 A JP 2001044676A JP 2002246047 A JP2002246047 A JP 2002246047A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
exhaust gas
cell system
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001044676A
Other languages
Japanese (ja)
Other versions
JP3614110B2 (en
Inventor
Yasukazu Iwasaki
靖和 岩崎
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001044676A priority Critical patent/JP3614110B2/en
Priority to EP02000974A priority patent/EP1235291B1/en
Priority to DE60228152T priority patent/DE60228152D1/en
Priority to US10/067,812 priority patent/US7108932B2/en
Publication of JP2002246047A publication Critical patent/JP2002246047A/en
Application granted granted Critical
Publication of JP3614110B2 publication Critical patent/JP3614110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve responsiveness with respect to a change in load of a fuel cell system, using a liquid fuel superior in mountability on a moving body. SOLUTION: The fuel cell system comprises a reformer 7 for producing a fuel gas containing hydrogen from a hydrocarbon liquid fuel, such as a gasoline and a fuel cell 9 into which the fuel gas is supplied for generating power, where an exhaust gas circulation passage 10 for circulating part of an anode exhaust gas or a cathode exhaust gas from the fuel cell to the reformer side and a circulation blower 6 are provided, and a fuel carburetor 4 is provided for phase vaporizing the liquid fuel injected and supplied from the injector 3 in a high-temperature atmosphere with the circulated exhaust gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体燃料から生成
した水素を含む燃料ガスを用いて発電を行う燃料電池シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system for generating power using a fuel gas containing hydrogen generated from a liquid fuel.

【0002】[0002]

【従来の技術とその解決すべき課題】燃料電池は、水素
あるいは炭化水素系ガスを燃料とし、酸素あるいは酸を
含む空気を酸化剤として使用して電気化学的反応で発電
する電池である。炭化水素系ガスを燃料として用いる場
合には、一般的に炭化水素系燃料の一部あるいは全てを
次式(1),(2)に示したような反応を用いて水素に改質し
て燃料電池の燃料極へ供給する。
2. Description of the Related Art A fuel cell is a cell that generates power by an electrochemical reaction using hydrogen or a hydrocarbon gas as fuel and air containing oxygen or acid as an oxidant. When a hydrocarbon-based gas is used as a fuel, generally, a part or all of the hydrocarbon-based fuel is reformed into hydrogen using a reaction represented by the following formulas (1) and (2) to produce a fuel. Supply to the fuel electrode of the battery.

【0003】 CnH2n+2+nH2O→nCO+(n+2)H2 … (1) CO+H2O→CO2+H2 … (2) 反応式(1)にも示されるように炭化水素系ガスの改質に
は水が必要であり、一方燃料電池はその発電の過程でH2
Oを生成するためその排ガスには十分な水分が含まれて
いる。そこで、システム全体での燃料ガスまたは酸化ガ
スを有効に使うために、排ガスを還流する燃料電池シス
テムが検討されている。
C n H 2n + 2 + nH 2 O → nCO + (n + 2) H 2 (1) CO + H 2 O → CO 2 + H 2 (2) As shown in the reaction formula (1), In addition, water is required for reforming hydrocarbon-based gas, while fuel cells use H 2
The exhaust gas contains sufficient moisture to generate O. Therefore, in order to effectively use the fuel gas or the oxidizing gas in the entire system, a fuel cell system that recirculates the exhaust gas has been studied.

【0004】例えば特開平11-233129号公報に開示され
たものでは、固体電解質型燃料電池発電システムにおい
て、燃料電池のアノード排ガスの一部を供給燃料ガスと
混合し、再循環系統内に設けられた再生熱交換器内で凝
縮器通過後の低温の還流ガスとの熱交換によりいったん
冷却し、さらに凝縮器内でも冷却して排ガス中の余分な
水蒸気を凝縮分離してから燃料電池アノード入口に供給
することにより、燃料電池起電力の低下を防ぎ、システ
ム効率の向上を図っている。また、燃料ガスを循環する
ための循環ブロワを凝縮器通過後に設置し、循環ブロワ
の常温作動を可能にしている。
For example, in the system disclosed in JP-A-11-233129, in a solid oxide fuel cell power generation system, a part of the anode exhaust gas of a fuel cell is mixed with a supply fuel gas and provided in a recirculation system. Once cooled by heat exchange with the low-temperature reflux gas after passing through the condenser in the regenerative heat exchanger, it is also cooled in the condenser to condense and separate excess water vapor in the exhaust gas, and then to the fuel cell anode inlet. The supply prevents a decrease in the electromotive force of the fuel cell and improves the system efficiency. A circulation blower for circulating the fuel gas is installed after passing through the condenser, so that the circulation blower can be operated at normal temperature.

【0005】しかしながら、この燃料電池システムには
次のような課題がある。すなわち、移動体に燃料電池シ
ステムを適用しようとする場合、燃料電池システムの容
積はできる限り小さいことが重要であり、このことから
燃料源はガスよりも液体であることが望ましい。この
点、前記システムは液体に比べてエネルギー密度の小さ
いガスを燃料源として用いているので燃料貯蔵を含めた
燃料電池システムの容積は液体のシステムに比べて大き
くなり、そのままでは移動体への搭載に適さない。
However, this fuel cell system has the following problems. That is, when the fuel cell system is applied to a moving object, it is important that the volume of the fuel cell system is as small as possible. Therefore, it is desirable that the fuel source is liquid rather than gas. In this respect, since the above system uses a gas having a lower energy density as a fuel source than a liquid, the volume of the fuel cell system including the fuel storage becomes larger than that of the liquid system, and as it is mounted on a moving body as it is. Not suitable for

【0006】これに対して、例えば特開2000-100462号
公報に開示されているように、燃料電池の負荷に応じて
液体燃料を蒸発器へ送り、液体燃料を気化して改質器へ
供給する技術を併用することにより搭載性の問題を解決
することが可能である。しかしながら、このように蒸発
器内で燃料を液相気化しながら燃料電池または改質器へ
燃料ガスを供給する方式では、移動体のように燃料電池
の負荷変動が大きいシステムでは必ずしも充分な応答性
が得られない。また、システム停止時も、蒸発器内の液
体燃料の気化は止めることができず、システム停止後の
気化燃料の処置を検討する必要がある。さらに、蒸発器
内での燃料の液相気化によるコーキングも発生しやす
く、蒸発器の性能劣化やシステムの効率低下が問題とな
る。本発明はこのような従来の問題点を解消した燃料電
池システムを提供することを目的としている。
On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 2000-100462, for example, liquid fuel is sent to an evaporator according to the load of a fuel cell, and the liquid fuel is vaporized and supplied to a reformer. It is possible to solve the problem of mountability by using the techniques described above together. However, in the system in which the fuel gas is supplied to the fuel cell or the reformer while evaporating the fuel in the evaporator in the liquid phase, sufficient responsiveness is not necessarily obtained in a system having a large load fluctuation of the fuel cell such as a moving body. Can not be obtained. Further, even when the system is stopped, the vaporization of the liquid fuel in the evaporator cannot be stopped, and it is necessary to consider the treatment of the vaporized fuel after the system is stopped. Further, coking due to fuel vaporization in the evaporator is liable to occur, which causes a problem that the performance of the evaporator deteriorates and the efficiency of the system decreases. An object of the present invention is to provide a fuel cell system that solves such a conventional problem.

【0007】[0007]

【課題を解決するための手段】第1の発明は、液体燃料
から水素を含む燃料ガスを生成する燃料ガス生成部と、
前記燃料ガスの供給をうけて発電する燃料電池とを備え
た燃料電池システムにおいて、前記燃料電池の排ガスの
一部を前記燃料ガス生成部に還流させる排ガス循環装置
と、前記還流排ガスによる高温雰囲気中に液体燃料を供
給して気化させる燃料気化器とを設けた。
According to a first aspect of the present invention, there is provided a fuel gas generator for generating a fuel gas containing hydrogen from a liquid fuel;
A fuel cell system comprising: a fuel cell configured to generate power by receiving the fuel gas; an exhaust gas circulating device configured to recirculate a part of exhaust gas of the fuel cell to the fuel gas generating unit; And a fuel vaporizer for supplying and evaporating a liquid fuel.

【0008】第2の発明は、前記第1の発明の排ガス循
環装置として、燃料電池の排ガスを燃料ガス生成部に導
入する排ガス循環流路と、この排ガス循環流路の排ガス
を圧送する循環ブロワとを設けると共に、前記燃料気化
器に燃料を噴射供給する燃料噴射部を設け、前記燃料気
化器を、前記循環ブロワよりも上流側に設けた。
According to a second aspect of the present invention, there is provided the exhaust gas circulating apparatus according to the first aspect of the present invention, wherein an exhaust gas circulating flow path for introducing exhaust gas from a fuel cell into a fuel gas generating section, and a circulating blower for pressure-feeding the exhaust gas from the exhaust gas circulating flow path. And a fuel injection unit that injects and supplies fuel to the fuel carburetor, and the fuel carburetor is provided upstream of the circulation blower.

【0009】第3の発明は、前記各発明において、還流
排ガスによる高温雰囲気中に水を供給して気化させる水
供給装置を設けた。
According to a third aspect of the present invention, in each of the above-mentioned aspects, a water supply device for supplying water to a high temperature atmosphere by the recirculated exhaust gas to vaporize the water is provided.

【0010】第4の発明は、前記第3の発明の水供給装
置に、還流排ガス中に水を噴射供給する水噴射部を構成
した。
According to a fourth aspect of the present invention, the water supply device according to the third aspect of the invention has a water injection unit configured to inject and supply water into the recirculated exhaust gas.

【0011】第5の発明は、前記第4の発明において、
水の噴射供給部を、前記燃料噴射部と同一個所に設け
た。
According to a fifth aspect, in the fourth aspect,
A water injection supply unit was provided at the same location as the fuel injection unit.

【0012】第6の発明は、前記第5の発明の水の噴射
供給部を、前記燃料噴射部よりも上流側に設けた。
In a sixth aspect, the water injection supply section of the fifth aspect is provided upstream of the fuel injection section.

【0013】第7の発明は、前記第3〜第6の発明の水
供給装置を、還流排ガス中の水蒸気量を検出する水蒸気
流量検出装置を備えると共に、検出水蒸気量に応じて供
給水量を制御するように構成した。
According to a seventh aspect of the present invention, the water supply device according to the third to sixth aspects includes a steam flow rate detecting device for detecting the amount of steam in the recirculated exhaust gas, and controls the amount of supplied water in accordance with the detected amount of steam. It was configured to be.

【0014】第8の発明は、前記第1〜第7の発明の燃
料気化器を、還流排ガス中に残存する未反応の液体燃料
の蒸気量を検出する手段を備え、該検出燃料上記量に応
じて供給燃料量を制御するように構成した。
According to an eighth aspect, the fuel vaporizer according to the first to seventh aspects includes means for detecting the amount of unreacted liquid fuel remaining in the recirculated exhaust gas. The fuel supply amount is controlled accordingly.

【0015】第9の発明は、前記第1〜第8の発明にお
いて、燃料電池として固体酸化物燃料電池を備える。
According to a ninth aspect, in the first to eighth aspects, a solid oxide fuel cell is provided as the fuel cell.

【0016】第10の発明は、前記第9の発明におい
て、排ガスとして燃料電池のアノード排ガスを用いる。
In a tenth aspect based on the ninth aspect, an anode exhaust gas of a fuel cell is used as the exhaust gas.

【0017】第11の発明は、前記第9の発明におい
て、排ガスとして燃料電池のカソード排ガスを用いる第
12の発明は、前記第1〜第11の発明において、燃料
ガス生成部として改質器を備える。
According to an eleventh aspect, in the ninth aspect, the twelfth aspect uses the cathode exhaust gas of the fuel cell as the exhaust gas. Prepare.

【0018】[0018]

【作用・効果】前記第1の発明以下の各発明において、
燃料電池から排出されるアノード排ガスまたはカソード
排ガスは排ガス循環装置を介して燃料電池システムの燃
料ガス生成部、例えば燃料電池のアノード部あるいは改
質器等に還流する。一方、燃料気化器では前記還流排ガ
スによる高温雰囲気中に液体燃料を噴射供給する。これ
により燃料は速やかに気相気化して燃料電池または改質
器へと供給される。このようにして、液体燃料を気相気
化して供給するので、燃料電池の負荷の変化に対し良好
な応答性が得られる。
[Operation and Effect] In each of the inventions following the first invention,
The anode exhaust gas or the cathode exhaust gas discharged from the fuel cell is returned to the fuel gas generation section of the fuel cell system, for example, the anode section of the fuel cell or the reformer through the exhaust gas circulation device. On the other hand, the fuel vaporizer injects and supplies liquid fuel into a high-temperature atmosphere due to the recirculated exhaust gas. Thereby, the fuel is quickly vaporized and supplied to the fuel cell or the reformer. Since the liquid fuel is vaporized and supplied in this manner, good responsiveness to changes in the load of the fuel cell can be obtained.

【0019】一方、燃料気化器内で液体燃料は速やかに
気相気化するので、液体燃料が直接に気化器内壁などの
高温部分に触れるようなことことがなく、したがって液
体燃料によるコーキングを防止することができ、気化す
る部位の性能劣化を抑えることができる。また、システ
ム構成も簡易になり、コストを低減できる。
On the other hand, since the liquid fuel is rapidly vaporized in the fuel vaporizer, the liquid fuel does not directly touch a high-temperature portion such as the inner wall of the vaporizer, thereby preventing coking by the liquid fuel. Therefore, performance degradation of a portion to be vaporized can be suppressed. Further, the system configuration is simplified, and the cost can be reduced.

【0020】第2の発明によれば、排ガス循環装置に強
制循環の手段として循環ブロワを設けた場合、その上流
側にて燃料気化器による燃料気化が行われるので、循環
ブロワでの燃料ガスおよび排気の温度を低減して、その
耐熱仕様を低減でき、それだけ循環ブロワの信頼性向上
やコストの低減を図ることができる。
According to the second invention, when a circulation blower is provided as a means for forced circulation in the exhaust gas circulation device, fuel vaporization is performed by the fuel vaporizer on the upstream side, so that the fuel gas and the fuel gas in the circulation blower are increased. By reducing the temperature of the exhaust gas, its heat-resistant specification can be reduced, and the reliability and cost of the circulation blower can be improved accordingly.

【0021】第3の発明または第4の発明によれば、排
ガス中に水を供給して水蒸気を生成するようにしたの
で、循環するガス中の水蒸気量の制御を実施することが
可能となり、これにより改質器を用いた場合に改質器内
において還流排ガスに含まれる水蒸気相当以上の燃料ガ
スの改質反応も効率良くおこなうことが可能となる。ま
た、水の気化により、還流排ガスの温度が低下するの
で、循環ブロワを用いる場合にその耐久性や信頼性をさ
らに向上させることができる。なお水はコーキングの問
題を生じないので気相気化でなくてもよく、液体燃料が
蓄積されることがない程度に水を微粒化しうる機構を備
えればよい。例えば、アノードないしカソード排ガスの
温度に耐え、耐還元性を有する鉄球のような材料を気化
器内に内蔵した構造を適用することもできる。その一
方、排ガス中に水を噴霧して気相気化とした場合には、
燃料電池の負荷の変化に対する応答性を向上することが
できる。
According to the third or fourth aspect of the present invention, since water is supplied to the exhaust gas to generate steam, it is possible to control the amount of steam in the circulating gas. Thus, when the reformer is used, it is possible to efficiently perform a reforming reaction of a fuel gas equivalent to steam or more contained in the recirculated exhaust gas in the reformer. Further, since the temperature of the recirculated exhaust gas is reduced by the vaporization of water, the durability and reliability of the circulating blower can be further improved when a circulating blower is used. Since water does not cause a problem of coking, it does not need to be vapor-phase vaporized, and may be provided with a mechanism capable of atomizing water to such an extent that liquid fuel is not accumulated. For example, a structure in which a material such as an iron ball, which withstands the temperature of the anode or cathode exhaust gas and has resistance to reduction, is incorporated in the vaporizer can be applied. On the other hand, when water is sprayed into the exhaust gas and gas phase is vaporized,
Responsiveness to a change in the load of the fuel cell can be improved.

【0022】さらに、第5の発明のように、水の噴射供
給部を燃料気化器の燃料噴射部と一体とすることにより
構造を簡素化しコンパクトにすることができ、コストを
低減することができる。この構成において、水はガソリ
ン等の炭化水素系液体燃料に比べて潜熱が大きいため、
液体燃料よりも先に気化する方が安定して水を気化する
ことができ、したがって第6の発明のように水の噴射供
給部は燃料噴射部よりも上流側に設けることが望まし
い。
Further, as in the fifth aspect of the invention, by integrating the water injection supply section with the fuel injection section of the fuel carburetor, the structure can be simplified and made compact, and the cost can be reduced. . In this configuration, water has a greater latent heat than hydrocarbon-based liquid fuels such as gasoline,
Water can be vaporized more stably if vaporized before liquid fuel. Therefore, it is desirable that the water injection supply unit is provided upstream of the fuel injection unit as in the sixth invention.

【0023】さらに、第7の発明または第8の発明で
は、排ガス中の水蒸気量または燃料成分量に基づいて水
または液体燃料の供給量を制御するものとしたので、水
または燃料の供給量をシステム効率の点から最適の量に
調整することができる。また、むだな燃料供給を回避で
きるのでシステム停止後の気化燃料の残留量が少なく、
その処置が容易である。
Further, in the seventh or eighth invention, the supply amount of water or liquid fuel is controlled based on the amount of water vapor or the amount of fuel component in the exhaust gas. It can be adjusted to the optimal amount in terms of system efficiency. In addition, since unnecessary fuel supply can be avoided, the residual amount of vaporized fuel after the system stops is small,
The treatment is easy.

【0024】[0024]

【発明の実施の形態】以下、本発明のいくつかの実施形
態を図面に基づいて説明する。なお、以下の各実施形態
において互いに共通する部分には同一の符号を付して示
し、重複する説明は原則として省略することとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, parts common to each other will be denoted by the same reference numerals, and redundant description will be omitted in principle.

【0025】図1は本発明の第1の実施形態の燃料電池
システムの概略構成である。この実施形態による燃料電
池システムは、水素あるいは炭化水素を燃料として発電
する酸素イオン伝導タイプの固体酸化物燃料電池(SO
FC)において、例えばガソリンのような炭化水素系液
体燃料を燃料源として用い、燃料電池本体9で発電後の
燃料排ガスの一部を、燃料気化器4を経由して、燃料電
池アノード入口9aへ還流させるようにしたものであ
る。
FIG. 1 is a schematic configuration of a fuel cell system according to a first embodiment of the present invention. The fuel cell system according to this embodiment is an oxygen ion conduction type solid oxide fuel cell (SO 2) that generates power using hydrogen or hydrocarbons as fuel.
In FC), for example, a hydrocarbon-based liquid fuel such as gasoline is used as a fuel source, and a part of the fuel exhaust gas after power generation by the fuel cell main body 9 is passed through the fuel vaporizer 4 to the fuel cell anode inlet 9a. It is designed to be refluxed.

【0026】供給燃料は液体の状態で燃料タンク1に貯
蔵されており、燃料供給流路2からインジェクタ3へと供
給され、燃料気化器4内に噴射される。また、燃料気化
器4には燃料電池アノード出口9bからのアノード排ガ
スのうち、アノード排ガス循環流路10を介して還流さ
れるアノード排ガスが供給されており、燃料気化器4で
はインジェクタ3から噴射された供給燃料と循環アノー
ド排ガスが混合される。燃料噴霧は気相気化して混合燃
料ガスとなり、燃料ガス供給流路5、循環ブロワ6を介
して改質器7に供給される。
The supplied fuel is stored in a liquid state in a fuel tank 1, supplied from a fuel supply passage 2 to an injector 3, and injected into a fuel carburetor 4. Further, among the anode exhaust gas from the anode outlet 9b of the fuel cell, the anode exhaust gas that is recirculated through the anode exhaust gas circulation passage 10 is supplied to the fuel vaporizer 4, and the fuel vaporizer 4 injects the anode exhaust gas from the injector 3 in the fuel vaporizer 4. The supplied fuel and the circulating anode exhaust gas are mixed. The fuel spray is vaporized to be a mixed fuel gas, and is supplied to the reformer 7 via the fuel gas supply passage 5 and the circulation blower 6.

【0027】この燃料電池システムに用いた固体酸化物
燃料電池は一般にアノード排ガスの温度が800〜1000℃
と高温であるので液体燃料の気相気化は容易である。混
合燃料ガスは、気相気化によって循環アノード排ガスよ
りも温度が低くなっているため、循環ブロワ6に高温の
燃料や水蒸気が通過することはなく、循環ブロワ6の信
頼性向上も期待できる。
The solid oxide fuel cell used in this fuel cell system generally has an anode exhaust gas temperature of 800 to 1000 ° C.
And the high temperature, the gaseous phase vaporization of the liquid fuel is easy. Since the temperature of the mixed fuel gas is lower than that of the circulating anode exhaust gas due to vapor phase vaporization, high-temperature fuel and water vapor do not pass through the circulating blower 6, and improvement in the reliability of the circulating blower 6 can be expected.

【0028】水蒸気改質の場合、吸熱反応が行なわれる
ため、改質器7の温度は低下傾向となるが、カソード排
ガスとアノード排ガスを混合し燃焼させる燃焼器13の
熱を利用することで、改質反応を効率良く行なわせるこ
とができる。改質された燃料ガスは、燃料ガス供給流路
8を介して、燃料電池アノード入口9aに供給されて発
電に用いられ、未使用ガスと発電によって発生した水蒸
気がアノード排ガスとして燃料電池アノード出口9bか
ら排出される。
In the case of steam reforming, since the endothermic reaction is performed, the temperature of the reformer 7 tends to decrease. However, by utilizing the heat of the combustor 13 for mixing and burning the cathode exhaust gas and the anode exhaust gas, The reforming reaction can be performed efficiently. The reformed fuel gas is supplied to the fuel gas supply passage.
The fuel gas is supplied to the fuel cell anode inlet 9a through the fuel cell 8 and used for power generation. Unused gas and water vapor generated by the power generation are discharged from the fuel cell anode outlet 9b as anode exhaust gas.

【0029】供給空気は、ブロワまたはコンプレッサ等
からなる空気源17を介して空気流路16から供給さ
れ、空気予熱用交換器14において燃焼器13からの燃
焼排ガス15との熱交換により加熱され、燃料電池本体
9の燃料電池カソード入口9cに供給されて発電に用い
られ、未使用空気が燃料電池カソード出口9dより排出
される。燃料電池カソード出口9dより排出されたカソ
ード排ガスは、カソード排ガス流路12を経て燃焼器1
3に供給され、同時に燃料電池アノード出口9bからの
アノード排ガスのうち、還流させない分のアノード排ガ
スと共に燃焼され、排ガスとして排出される。
The supply air is supplied from an air flow path 16 via an air source 17 composed of a blower or a compressor, etc., and is heated by heat exchange with a combustion exhaust gas 15 from a combustor 13 in an air preheating exchanger 14. Fuel cell body
The fuel gas is supplied to the fuel cell cathode inlet 9c and used for power generation, and unused air is discharged from the fuel cell cathode outlet 9d. Cathode exhaust gas discharged from the fuel cell cathode outlet 9d passes through the cathode exhaust gas passage 12 to the combustor 1.
3 and, at the same time, is combusted with the non-refluxed portion of the anode exhaust gas from the anode outlet 9b of the fuel cell and discharged as exhaust gas.

【0030】図2に本発明の第2の実施形態を示す。こ
の実施形態では、前記第1の実施形態と同様に、液体の
状態で燃料タンク1に貯蔵されている供給燃料を、燃料
電池アノード出口9bからのアノード排ガスのうち、還
流されるアノード排ガス中にインジェクタ3からの燃料
噴霧を混合し、燃料電池に供給する。ただし、この実施
形態においては、燃料電池本体9が内部改質型であり、
燃料気化器4において混合された還流排ガスと供給燃料
の混合燃料ガスが、循環ブロワ6を経て、直接燃料電池
燃料ガス入口8aに供給される。内部改質型の燃料電池
の場合、改質反応により燃料電池の熱量が奪われるが、
空気排ガスと燃料排ガスの燃焼によって発生した燃焼器
13によって熱量を補うことができる。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, similarly to the first embodiment, the supply fuel stored in the fuel tank 1 in a liquid state is converted into the recirculated anode exhaust gas out of the anode exhaust gas from the fuel cell anode outlet 9b. The fuel spray from the injector 3 is mixed and supplied to the fuel cell. However, in this embodiment, the fuel cell main body 9 is an internal reforming type,
The mixed fuel gas of the recirculated exhaust gas and the supplied fuel mixed in the fuel vaporizer 4 is supplied directly to the fuel cell fuel gas inlet 8a via the circulation blower 6. In the case of an internal reforming type fuel cell, the heat of the fuel cell is deprived by the reforming reaction,
The amount of heat can be supplemented by the combustor 13 generated by the combustion of the air exhaust gas and the fuel exhaust gas.

【0031】図3に本発明の第3の実施形態を示す。こ
の実施形態では、第1の実施形態と同様の燃料電池シス
テムにおいて、燃料気化器4に水を噴射する構成を付加
し、さらにアノード排ガス循環流路10を経て燃料気化
器4に供給される循環アノード排ガスの水蒸気量(mo1/se
c)、および未使用燃料成分の残量を、例えば差圧式の水
蒸気流量計18または光学式湿度センサからなる燃料成
分計19等の検出装置により検出する構成を備える。
FIG. 3 shows a third embodiment of the present invention. In this embodiment, in the same fuel cell system as in the first embodiment, a configuration for injecting water into the fuel vaporizer 4 is added, and the circulation supplied to the fuel vaporizer 4 via the anode exhaust gas circulation flow path 10 is further added. The amount of water vapor in the anode exhaust gas (mo1 / se
c), and the remaining amount of the unused fuel component is detected by a detecting device such as a differential pressure type steam flow meter 18 or a fuel component meter 19 including an optical humidity sensor.

【0032】詳細には、水タンク20に貯蔵された水は
水供給流路21を介してインジェクタ22に供給され、
燃料気化器4内に噴射される。燃料気化器4には燃料電池
アノード出口9bからのアノード排ガスのうち、アノー
ド排ガス循環流路10を経て還流されるアノード排ガス
が供給され、燃料気化器4ではインジェクタ3から噴射
された燃料噴霧とインジェクタ22から噴射された水噴
霧(水蒸気)と循環アノード排ガスとが混合される。噴射
された水は気化する際に循環アノード排ガスの熱量をい
くらか奪うものの、燃料噴霧の気化を妨げるほどではな
い。
More specifically, the water stored in the water tank 20 is supplied to the injector 22 through the water supply flow path 21,
It is injected into the fuel carburetor 4. Among the anode exhaust gas from the anode outlet 9b of the fuel cell, the anode exhaust gas which is recirculated through the anode exhaust gas circulation passage 10 is supplied to the fuel vaporizer 4. The water spray (water vapor) injected from 22 and the circulating anode exhaust gas are mixed. The injected water deprives the heat of the circulating anode exhaust gas of some degree when it evaporates, but does not prevent the fuel spray from evaporating.

【0033】燃料気化器4内で混合された混合燃料ガス
は、燃料ガス供給流路5、循環ブロワ6を経て改質器7に
供給される。混合燃料ガスは、気相気化によって循環ア
ノード排ガスよりも温度が低くなっているため、循環ブ
ロワ6に高温の燃料や水蒸気が通過することはない。改
質された燃料ガスは、燃料ガス供給流路8を経て燃料電
池アノード入口9aに供給されて発電に用いられ、未使
用燃料ガスと発電によって発生した水蒸気はアノード排
ガスとして燃料電池アノード出口9bから排出される。
The mixed fuel gas mixed in the fuel vaporizer 4 is supplied to the reformer 7 through the fuel gas supply passage 5 and the circulation blower 6. Since the temperature of the mixed fuel gas is lower than that of the circulating exhaust gas due to vaporization, high-temperature fuel and water vapor do not pass through the circulating blower 6. The reformed fuel gas is supplied to the fuel cell anode inlet 9a through the fuel gas supply flow path 8 and used for power generation. Unused fuel gas and water vapor generated by the power generation are converted into anode exhaust gas from the fuel cell anode outlet 9b as anode exhaust gas. Is discharged.

【0034】ところで、燃料電池で用いる燃料の量は、
その発電の化学反応式から燃料電池の出力負荷に相当す
る使用量を一義的に算出することができる。しかし、実
際の燃料電池の運転では化学反応式から求められる燃料
量よりも多くの燃料を供給する必要がある。この結果、
一般に燃料電池アノード出口9bから排出されるアノー
ド排ガスには未使用の燃料成分が含まれる。そこで、こ
の実施形態では循環アノード排ガスに含まれる未使用燃
料量を燃料成分計19で計測し、燃料電池の負荷から求
めた必要な燃料供給量に対する不足分をインジェクタ3
で噴霧する制御を行なう。これにより、無駄な燃料を循
環させることなく、燃料の利用効率を向上させることが
できる。また、むだな燃料の循環による配管内のコーキ
ング等の不具合も解消される。また、ガソリン等の炭化
水素系液体燃料を改質するには、前述したように改質す
る燃料相当の水蒸気が必要となる。そこで、循環アノー
ド排ガス中に含まれる水蒸気量を水蒸気流量計18で計
測し、改質器7にて効率良く改質がなされるために必要
な水蒸気の不足分をインジェクタ22で噴霧する制御を
行なう。この制御により、効率的な燃料の水蒸気改質を
おこなうことができる。
By the way, the amount of fuel used in the fuel cell is
The usage amount corresponding to the output load of the fuel cell can be uniquely calculated from the chemical reaction formula of the power generation. However, in actual operation of the fuel cell, it is necessary to supply more fuel than the fuel amount obtained from the chemical reaction formula. As a result,
Generally, the anode exhaust gas discharged from the fuel cell anode outlet 9b contains unused fuel components. Therefore, in this embodiment, the amount of unused fuel contained in the circulating anode exhaust gas is measured by the fuel component meter 19, and the shortage with respect to the required fuel supply amount obtained from the load of the fuel cell is determined by the injector 3.
Is controlled by spraying. Thereby, the fuel use efficiency can be improved without circulating useless fuel. In addition, problems such as caulking in the piping due to unnecessary fuel circulation are eliminated. Further, in order to reform a hydrocarbon-based liquid fuel such as gasoline, steam equivalent to the fuel to be reformed is required as described above. Therefore, the amount of steam contained in the circulating anode exhaust gas is measured by the steam flow meter 18, and the shortage of steam required for efficient reforming in the reformer 7 is sprayed by the injector 22. . By this control, efficient steam reforming of the fuel can be performed.

【0035】このように燃料電池の負荷による燃料・水
の供給量の制御を行なうことにより、燃料電池システム
の効率を向上させることができる。図4に前記燃料・水
供給量制御の概略的な手順を流れ図として示す。これは
マイクロコンピュータおよびその周辺装置からなるコン
トローラ(図示せず)により周期的に実行される処理ス
テップを示している。以下、順を追って説明する。な
お、以下の説明および図中の符号「S」は処理ステップ
を表している。 S1:運転者によるアクセル操作量や移動速度から燃料
電池に対する要求負荷を求める。 S2,S5:燃料成分計19と水蒸気流量計18の信号
から、それぞれアノード排ガス中の残留燃料量と水蒸気
量を検出する。 S3,S6:前記要求負荷と検出残留燃料量とから、図
5に示したように予め設定されたマップを検索して燃料
供給量を求めると共に、要求負荷と検出水蒸気量とか
ら、図6に示したように予め設定されたマップを検索し
て水供給量を求める。 S4,S7:前記検索した燃料量および水供給量をそれ
ぞれインジェクタ3、インジェクタ22から噴射供給す
る。
As described above, the efficiency of the fuel cell system can be improved by controlling the amounts of fuel and water supplied by the load of the fuel cell. FIG. 4 is a flowchart showing a schematic procedure of the fuel / water supply amount control. This shows processing steps periodically executed by a controller (not shown) including a microcomputer and its peripheral devices. Hereinafter, description will be made in order. It should be noted that the symbol “S” in the following description and in the drawings represents a processing step. S1: A required load on the fuel cell is obtained from the accelerator operation amount and the moving speed by the driver. S2, S5: From the signals of the fuel component meter 19 and the steam flow meter 18, the amount of residual fuel and the amount of steam in the anode exhaust gas are detected, respectively. S3, S6: Based on the required load and the detected residual fuel amount, a preset map as shown in FIG. 5 is searched to find the fuel supply amount. As shown, a predetermined map is searched to determine the water supply amount. S4, S7: Inject and supply the fuel amount and the water supply amount searched from the injector 3 and the injector 22, respectively.

【0036】なお、この実施形態は、水噴射の構成を第
1の実施形態付加したものとしてあるが、これに限らず
水噴射の構成は第2の実施形態に適用することもでき
る。
In this embodiment, the configuration of the water injection is added to the first embodiment. However, the configuration of the water injection is not limited to this, and can be applied to the second embodiment.

【0037】図7に本発明の第4の実施形態を示す。こ
の実施形態は、水素あるいは炭化水素を燃料として発電
するプロトン伝導型の固体酸化物燃料電池において、カ
ソード側から排出される高温の排ガスを還流させるもの
である。すなわち、ガソリンのような炭化水素系液体燃
料を燃料源として使用し、燃料電池本体9で発電後のカ
ソード排ガスの一部を、燃料気化器4を経由して、燃料
電池アノード入口9aへ還流させる。また、第3の実施
形態と同様の水供給装置を備えている。
FIG. 7 shows a fourth embodiment of the present invention. In this embodiment, a high-temperature exhaust gas discharged from a cathode side is recirculated in a proton-conductive solid oxide fuel cell that generates power using hydrogen or hydrocarbons as fuel. That is, a hydrocarbon-based liquid fuel such as gasoline is used as a fuel source, and a part of the cathode exhaust gas generated by the fuel cell main body 9 is returned to the fuel cell anode inlet 9a via the fuel vaporizer 4. . Further, a water supply device similar to that of the third embodiment is provided.

【0038】詳細には、燃料気化器4には燃料電池カソ
ード出口9dからのカソード排ガスのうち、カソード排
ガス循環流路23を経て還流されるカソード排ガスが供
給されており、燃料気化器4ではインジェクタ3から噴
射された燃料とインジェクタ22から噴射された水(水
蒸気)と還流カソード排ガスとが混合される。このと
き、プロトン伝導型の固体酸化物燃料電池のカソード排
ガスは高温であり、液体燃料及び水の気相気化は容易で
あり、噴射された水は気化する際に循環カソード排ガス
の熱量をいくらか奪うものの、噴霧された供給燃料の気
化を妨げるほどではない。燃料気化器4内で混合された
混合燃料ガスは、燃料ガス供給流路5、循環ブロワ6を経
て改質器7に供給される。混合燃料ガスは、気相気化に
よって循環カソード排ガスよりも温度が低くなっている
ため、循環ブロワ6に高温の燃料や水蒸気が通過するこ
とはない。改質された燃料ガスは、燃料ガス供給流路8
を経て、燃料電池燃料極9aに供給されて発電に用いら
れ、アノード排ガスとして燃料電池燃料極出口9bから
排出される。
In detail, of the cathode exhaust gas from the cathode outlet 9d of the fuel cell, the cathode exhaust gas which is recirculated through the cathode exhaust gas circulation channel 23 is supplied to the fuel carburetor 4. 3, fuel (water vapor) injected from the injector 22, and the recirculated cathode exhaust gas are mixed. At this time, the cathode exhaust gas of the proton-conductive solid oxide fuel cell is at a high temperature, the gaseous vaporization of the liquid fuel and water is easy, and the injected water deprives the calorie of the circulating cathode exhaust gas during vaporization. However, it is not enough to prevent vaporization of the atomized supply fuel. The mixed fuel gas mixed in the fuel vaporizer 4 is supplied to the reformer 7 through the fuel gas supply channel 5 and the circulation blower 6. Since the temperature of the mixed fuel gas is lower than that of the circulating cathode exhaust gas due to gas phase vaporization, high-temperature fuel and water vapor do not pass through the circulating blower 6. The reformed fuel gas is supplied to the fuel gas supply passage 8
Is supplied to the fuel cell fuel electrode 9a and used for power generation, and is discharged from the fuel cell fuel electrode outlet 9b as anode exhaust gas.

【0039】空気源17からの供給空気は空気流路16
から供給され、空気予熱用交換器14において燃焼器1
3からの燃焼排ガス15との熱交換により加熱され、燃
料電池本体9の燃料電池カソード入口9cに供給されて
発電に用いられ、未使用空気は燃料電池カソード出口9
dより排出される。燃料電池カソード出口9dより排出
されたカソード排ガスの一部は、カソード排ガス循環流
路23を経て燃料気化器4へ供給されるが、残りはカソ
ード排ガス流路12を経て燃焼器13に供給され、同時
にアノード排ガス流路11を経て燃焼器13に供給され
るアノード排ガスと共に燃焼され、排ガスとして排出さ
れる。
The supply air from the air source 17 is supplied to the air passage 16
From the combustor 1 in the air preheating exchanger 14.
The fuel gas is heated by heat exchange with the combustion exhaust gas 15 from the fuel cell 3, and is supplied to the fuel cell cathode inlet 9c of the fuel cell body 9 and used for power generation.
It is discharged from d. A part of the cathode exhaust gas discharged from the fuel cell cathode outlet 9d is supplied to the fuel carburetor 4 via the cathode exhaust gas circulation channel 23, while the remainder is supplied to the combustor 13 via the cathode exhaust gas channel 12; At the same time, it is burned together with the anode exhaust gas supplied to the combustor 13 through the anode exhaust gas passage 11 and discharged as exhaust gas.

【0040】図8にこの実施形態における燃料・水供給
量制御の概略的な手順を流れ図として示す。この実施形
態の制御では、燃料供給量を運転負荷に基づいてオープ
ンループ制御する一方、水供給量は水蒸気流量計18か
らの信号に基づき最適量にフィードバックするようにし
ている。前記流れ図は図4と同様にマイクロコンピュー
タおよびその周辺装置からなるコントローラ(図示せ
ず)により周期的に実行される処理ステップを示してい
る。以下、順を追って説明する。 S1:運転者によるアクセル操作量や移動速度から燃料
電池に対する要求負荷を求める。 S2:水蒸気流量計18の信号からカソード排ガス中の
水蒸気量を検出する。 S3,S5:前記要求負荷から、図9に示したように予
め設定されたマップを参照して燃料供給量を求めると共
に、検出水蒸気量、図10に示したように予め設定され
たマップを参照して水供給量を求める。 S4,S6:前記検索した燃料量および水供給量をそれ
ぞれインジェクタ3、インジェクタ22から噴射供給す
る。
FIG. 8 is a flowchart showing a schematic procedure of controlling the fuel / water supply amount in this embodiment. In the control of this embodiment, the fuel supply amount is controlled in an open loop based on the operation load, while the water supply amount is fed back to an optimum amount based on a signal from the steam flow meter 18. The flow chart shows processing steps periodically executed by a controller (not shown) including a microcomputer and its peripheral devices as in FIG. Hereinafter, description will be made in order. S1: The required load on the fuel cell is determined from the accelerator operation amount and the moving speed by the driver. S2: The amount of water vapor in the cathode exhaust gas is detected from the signal of the water vapor flow meter 18. S3, S5: Based on the required load, the fuel supply amount is obtained by referring to a map set in advance as shown in FIG. 9, and the detected steam amount is referred to a map set in advance as shown in FIG. To determine the water supply. S4, S6: The fuel amount and the water supply amount thus found are injected and supplied from the injectors 3 and 22, respectively.

【0041】この実施形態は改質器を燃料電池外に設け
たシステムであるが、カソード排ガスを燃料気化器4を
介して燃料電池本体9に循環させる構成は、第2の実施
形態のように燃料電池の内部で改質を行う燃料電池シス
テムにも適用することができ、例えば運転温度の高い内
部改質型の燃料電池システムでは高温の排ガスが得られ
るので、カソード排気を還流させるプロトン伝導型燃料
電池では燃料や水を気化させるうえで有利となる。
This embodiment is a system in which the reformer is provided outside the fuel cell. The configuration in which the cathode exhaust gas is circulated to the fuel cell main body 9 via the fuel vaporizer 4 is the same as in the second embodiment. It can also be applied to a fuel cell system that performs reforming inside a fuel cell.For example, a high-temperature exhaust gas can be obtained in an internal reforming type fuel cell system with a high operating temperature. Fuel cells are advantageous in vaporizing fuel and water.

【0042】なお、前記改質器7としては、水蒸気改質
型(SR)または部分酸化改質型(ATR)の何れでも適用可能
である。また、前記実施形態において改質器7の温度低
下を補い、または供給空気を加熱するために燃焼器13
の熱を利用しているが、熱源はこれに限られるものでは
なく、改質器7の外部をバーナー等で加熱する方法や、
燃料電池の温度を維持するために別に設けた熱源を利用
する手法なども適用できる。
As the reformer 7, any of a steam reforming type (SR) and a partial oxidation reforming type (ATR) can be applied. Further, in the above-described embodiment, in order to compensate for the temperature drop of the reformer 7 or to heat the supplied air,
However, the heat source is not limited to this, and a method of heating the outside of the reformer 7 with a burner or the like,
A method of using a separately provided heat source to maintain the temperature of the fuel cell can also be applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による燃料電池システムの第1の実施形
態の概略構成図。
FIG. 1 is a schematic configuration diagram of a first embodiment of a fuel cell system according to the present invention.

【図2】本発明による燃料電池システムの第2の実施形
態の概略構成図。
FIG. 2 is a schematic configuration diagram of a second embodiment of a fuel cell system according to the present invention.

【図3】本発明による燃料電池システムの第3の実施形
態の概略構成図。
FIG. 3 is a schematic configuration diagram of a third embodiment of the fuel cell system according to the present invention.

【図4】前記第3の実施形態における制御ルーチンを示
す流れ図。
FIG. 4 is a flowchart showing a control routine according to the third embodiment.

【図5】前記第3の実施形態の制御に用いる燃料供給量
マップの説明図。
FIG. 5 is an explanatory diagram of a fuel supply amount map used for control in the third embodiment.

【図6】前記第3の実施形態の制御に用いる水供給量マ
ップの説明図。
FIG. 6 is an explanatory diagram of a water supply amount map used for control of the third embodiment.

【図7】本発明による燃料電池システムの第4の実施形
態の概略構成図。
FIG. 7 is a schematic configuration diagram of a fourth embodiment of the fuel cell system according to the present invention.

【図8】前記第4の実施形態における制御ルーチンを示
す流れ図。
FIG. 8 is a flowchart showing a control routine according to the fourth embodiment.

【図9】前記第4の実施形態の制御に用いる燃料供給量
マップの説明図。
FIG. 9 is an explanatory diagram of a fuel supply amount map used for control of the fourth embodiment.

【図10】前記第4の実施形態の制御に用いる水供給量
マップの説明図。
FIG. 10 is an explanatory diagram of a water supply amount map used for control of the fourth embodiment.

【符号の説明】[Explanation of symbols]

1 燃料タンク 2 燃料供給流路 3 燃料のインジェクタ 4 燃料気化器 5 6 循環ブロワ 7 改質器 8 燃料ガス供給流路 9 燃料電池本体 9a アノード入口 9b アノード出口 9c カソード入口 9d カソード出口 10 排ガス循環流路 12 カソード排ガス流路 13 燃焼器 14 空気予熱用熱交換器 15 排気流路 16 空気流路 17 空気源 18 水蒸気流量計 19 残量燃料成分計 20 水タンク 21 水供給流路 22 水のインジェクタ 23 カソード排ガス循環流路 Reference Signs List 1 fuel tank 2 fuel supply passage 3 fuel injector 4 fuel vaporizer 5 6 circulation blower 7 reformer 8 fuel gas supply passage 9 fuel cell body 9a anode inlet 9b anode outlet 9c cathode inlet 9d cathode outlet 10 exhaust gas circulation flow Road 12 Cathode exhaust gas flow path 13 Combustor 14 Heat exchanger for air preheating 15 Exhaust flow path 16 Air flow path 17 Air source 18 Steam flow meter 19 Remaining fuel component meter 20 Water tank 21 Water supply flow path 22 Water injector 23 Cathode exhaust gas circulation channel

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】液体燃料から水素を含む燃料ガスを生成す
る燃料ガス生成部と、前記燃料ガスの供給をうけて発電
する燃料電池とを備えた燃料電池システムにおいて、 前記燃料電池の排ガスの一部を前記燃料ガス生成部に還
流させる排ガス循環装置と、 前記還流排ガスによる高温雰囲気中に液体燃料を供給し
て気化させる燃料気化器とを設けた燃料電池システム。
1. A fuel cell system comprising: a fuel gas generation unit configured to generate a fuel gas containing hydrogen from a liquid fuel; and a fuel cell configured to generate power by receiving the fuel gas. A fuel cell system comprising: an exhaust gas circulating device for returning a fuel gas to a fuel gas generating unit; and a fuel vaporizer for supplying and vaporizing a liquid fuel in a high-temperature atmosphere by the recirculated exhaust gas.
【請求項2】請求項1に記載の燃料電池システムにおい
て、 前記排ガス循環装置として、燃料電池の排ガスを燃料ガ
ス生成部に導入する排ガス循環流路と、この排ガス循環
流路の排ガスを圧送する循環ブロワとを設けると共に、 前記燃料気化器に燃料を噴射供給する燃料噴射部を設
け、 前記燃料気化器を、前記循環ブロワよりも上流側に設け
た燃料電池システム。
2. The fuel cell system according to claim 1, wherein, as the exhaust gas circulating device, an exhaust gas circulating channel for introducing exhaust gas from a fuel cell into a fuel gas generating unit, and an exhaust gas in the exhaust gas circulating channel are pumped. A fuel cell system comprising: a circulation blower; a fuel injection unit for injecting and supplying fuel to the fuel carburetor; and the fuel carburetor provided upstream of the circulation blower.
【請求項3】請求項1または請求項2に記載の燃料電池シ
ステムにおいて、 前記還流排ガスによる高温雰囲気中に水を供給して気化
させる水供給装置を設けた燃料電池システム。
3. The fuel cell system according to claim 1, further comprising a water supply device that supplies water to a high-temperature atmosphere by the recirculated exhaust gas and vaporizes the water.
【請求項4】請求項3に記載の燃料電池システムにおい
て、 前記水供給装置に、還流排ガス中に水を噴射供給する水
噴射部を構成した燃料電池システム。
4. The fuel cell system according to claim 3, wherein the water supply device includes a water injection unit configured to inject water into the recirculated exhaust gas.
【請求項5】請求項4に記載の燃料電池システムにおい
て、 前記燃料気化器と前記水供給装置を同一個所に設けた燃
料電池システム。
5. The fuel cell system according to claim 4, wherein the fuel vaporizer and the water supply device are provided at the same location.
【請求項6】請求項5に記載の燃料電池システムにおい
て、 前記水の噴射供給部を、前記燃料噴射部よりも上流側に
設けた燃料電池システム。
6. The fuel cell system according to claim 5, wherein the water injection supply unit is provided upstream of the fuel injection unit.
【請求項7】請求項3〜請求項6に記載の燃料電池シス
テムにおいて、 還流排ガス中の水蒸気量を検出する水蒸気流量検出装置
を備えると共に、検出水蒸気量に応じて供給水量を制御
するように構成した燃料電池システム。
7. The fuel cell system according to claim 3, further comprising a steam flow rate detecting device for detecting a steam amount in the recirculated exhaust gas, and controlling a supply water amount according to the detected steam amount. The configured fuel cell system.
【請求項8】請求項1〜請求項7に記載の燃料電池システ
ムにおいて、 前記燃料気化器を、還流排ガス中に残存する未反応の液
体燃料の蒸気量を検出する手段を備え、該検出燃料量に
応じて供給燃料量を制御するように構成した燃料電池シ
ステム。
8. The fuel cell system according to claim 1, further comprising: means for detecting the amount of unreacted liquid fuel remaining in the recirculated exhaust gas by the fuel vaporizer. A fuel cell system configured to control a supplied fuel amount according to the amount.
【請求項9】請求項1〜請求項8に記載の燃料電池シス
テムにおいて、 燃料電池として固体酸化物燃料電池を備える燃料電池シ
ステム。
9. The fuel cell system according to claim 1, further comprising a solid oxide fuel cell as the fuel cell.
【請求項10】請求項9に記載の燃料電池システムにお
いて、 前記排ガスとして燃料電池のアノード排ガスを用いる燃
料電池システム。
10. The fuel cell system according to claim 9, wherein an anode exhaust gas of a fuel cell is used as the exhaust gas.
【請求項11】請求項9に記載の燃料電池システムにお
いて、 前記排ガスとして燃料電池のカソード排ガスを用いる燃
料電池システム。
11. The fuel cell system according to claim 9, wherein a cathode exhaust gas of a fuel cell is used as the exhaust gas.
【請求項12】請求項1〜請求項11に記載の燃料電池
システムにおいて、 前記燃料ガス生成部として改質器を備えた燃料電池シス
テム。
12. The fuel cell system according to claim 1, further comprising a reformer as the fuel gas generator.
JP2001044676A 2001-02-21 2001-02-21 Fuel cell system Expired - Lifetime JP3614110B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001044676A JP3614110B2 (en) 2001-02-21 2001-02-21 Fuel cell system
EP02000974A EP1235291B1 (en) 2001-02-21 2002-01-16 Fuel cell system
DE60228152T DE60228152D1 (en) 2001-02-21 2002-01-16 The fuel cell system
US10/067,812 US7108932B2 (en) 2001-02-21 2002-02-08 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001044676A JP3614110B2 (en) 2001-02-21 2001-02-21 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2002246047A true JP2002246047A (en) 2002-08-30
JP3614110B2 JP3614110B2 (en) 2005-01-26

Family

ID=18906626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044676A Expired - Lifetime JP3614110B2 (en) 2001-02-21 2001-02-21 Fuel cell system

Country Status (4)

Country Link
US (1) US7108932B2 (en)
EP (1) EP1235291B1 (en)
JP (1) JP3614110B2 (en)
DE (1) DE60228152D1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084332A1 (en) * 2003-03-17 2004-09-30 Matsushita Electric Industrial Co., Ltd. Fuel battery
JP2005005213A (en) * 2003-06-13 2005-01-06 Kyocera Corp Power generation/hot water supplying cogeneration system including solid electrolyte fuel cell
JP2005056735A (en) * 2003-08-06 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2005056666A (en) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2005056777A (en) * 2003-08-07 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2005056775A (en) * 2003-08-07 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2006092833A (en) * 2004-09-22 2006-04-06 Tokyo Gas Co Ltd Power generating device
JP2008021458A (en) * 2006-07-11 2008-01-31 Ngk Spark Plug Co Ltd Fuel cell and its control method
JP2008060065A (en) * 2006-09-01 2008-03-13 Doosan Heavy Industries & Construction Co Ltd Fuel cell power generation device applying method for recirculating exhaust gas from fuel electrode
WO2008131051A1 (en) * 2007-04-17 2008-10-30 Modine Manufacturing Company Fuel cell system with partial external reforming and direct internal reforming
JP2009298657A (en) * 2008-06-13 2009-12-24 Toyota Motor Corp Reforming system
JP2010521785A (en) * 2007-03-16 2010-06-24 エネルダイ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel cell system with recirculation line
JP2010157478A (en) * 2009-01-05 2010-07-15 Honda Motor Co Ltd Power generation device
JP2011527496A (en) * 2008-07-10 2011-10-27 ワルトシラ フィンランド オサケユキチュア Method and control arrangement for a fuel cell device
JP2012185910A (en) * 2011-03-03 2012-09-27 Nissan Motor Co Ltd Fuel cell system
JP2012216420A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Fuel cell system
WO2012157401A1 (en) 2011-05-19 2012-11-22 Honda Motor Co., Ltd. Fuel cell system
JP2012533162A (en) * 2009-07-16 2012-12-20 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハー Operation method of high temperature fuel cell
JP2013062247A (en) * 2011-09-12 2013-04-04 Robert Bosch Gmbh Fuel cell system with improved anode gas recirculation and method of operating fuel cell system
JP2013178928A (en) * 2012-02-28 2013-09-09 Denso Corp Fuel cell system
JP2014164809A (en) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd Fuel cell system, and control method thereof
JP2016091644A (en) * 2014-10-30 2016-05-23 三菱日立パワーシステムズ株式会社 Composite power generation system, and controller, method, and program for the same
WO2017222267A1 (en) * 2016-06-23 2017-12-28 주식회사 경동나비엔 Fuel cell system comprising heat exchanger using combustion exhaust gas
JP2018049703A (en) * 2016-09-20 2018-03-29 日産自動車株式会社 Fuel cell system and fuel state detecting method
KR20210110888A (en) * 2019-01-29 2021-09-09 블룸 에너지 코퍼레이션 Fuel cell system including water injector and method of operation thereof

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178783A (en) * 2001-10-02 2003-06-27 Ngk Insulators Ltd Fuel cell power generating equipment
US6755077B2 (en) * 2002-06-06 2004-06-29 General Motors Corporation Diagnostic system for identifying fuel injector failure in a fuel cell system
FR2842355B1 (en) * 2002-07-09 2008-04-04 Renault Sa ELECTRICITY GENERATING SYSTEM USING A FUEL CELL AND METHOD OF OPERATING A FUEL CELL
JP2004235027A (en) * 2003-01-30 2004-08-19 Nissan Motor Co Ltd Fuel cell system
US6924053B2 (en) * 2003-03-24 2005-08-02 Ion America Corporation Solid oxide regenerative fuel cell with selective anode tail gas circulation
JP2004342413A (en) * 2003-05-14 2004-12-02 Toshiba Corp Fuel cell system
US20050074646A1 (en) * 2003-10-01 2005-04-07 Kaushik Rajashekara Apparatus and method for solid oxide fuel cell and thermo photovoltaic converter based power generation system
US20050221137A1 (en) * 2004-03-31 2005-10-06 Todd Bandhauer Fuel humidifier and pre-heater for use in a fuel cell system
KR100589408B1 (en) 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Fuel cell system
DE102005010935A1 (en) * 2005-03-09 2006-09-14 Webasto Ag Reformer, fuel cell system and method of operating a fuel cell system
US8691462B2 (en) * 2005-05-09 2014-04-08 Modine Manufacturing Company High temperature fuel cell system with integrated heat exchanger network
DE102005038733A1 (en) * 2005-08-16 2007-02-22 Webasto Ag Fuel cell system and method of operating a reformer
JP2007194169A (en) * 2006-01-23 2007-08-02 Mitsubishi Electric Corp Fuel-cell power generation system
AT502130B1 (en) 2006-10-03 2008-02-15 Avl List Gmbh High temperature fuel cell e.g. solid oxide fuel cell, operating method for internal combustion engine, involves cooling mixture from exhaust gas and fuel using amount of air in exchanger, before entering mixture into compressor
US8245491B2 (en) 2006-11-15 2012-08-21 Modine Manufacturing Company Heat recovery system and method
US8173082B1 (en) 2007-05-14 2012-05-08 Gas Technology Institute JP-8 fuel processor system
US8057945B2 (en) * 2007-10-24 2011-11-15 Atomic Energy Council-Institute Of Nuclear Energy Research Solid oxide fuel cell with recycled core outlet products
DE102007051705A1 (en) * 2007-10-30 2009-05-07 J. Eberspächer GmbH & Co. KG The fuel cell system
JP5329306B2 (en) * 2009-06-03 2013-10-30 本田技研工業株式会社 Fuel cell system
US8628887B2 (en) 2009-07-15 2014-01-14 Cummins Power Generation Ip, Inc. Fuel cell with low water consumption
US20110171546A1 (en) * 2010-01-11 2011-07-14 Atomic Energy Council-Institute Of Nuclear Energy Research Solid Oxide Fuel Cell System
DE102011005693B4 (en) * 2011-03-17 2014-02-20 Eberspächer Climate Control Systems GmbH & Co. KG Fuel cell system and associated operating method
AT513912B1 (en) 2013-02-04 2016-08-15 Avl List Gmbh Power generation unit with a high-temperature fuel cell stack and an evaporation unit
AT513913B1 (en) 2013-02-04 2016-12-15 Avl List Gmbh Fuel cell system which is operable with hydrocarbons
DE102014200569A1 (en) * 2014-01-15 2015-07-16 Robert Bosch Gmbh fuel cell device
CN111937207B (en) * 2018-03-29 2021-10-08 日产自动车株式会社 Solid oxide fuel cell

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365006A (en) * 1981-03-26 1982-12-21 Energy Research Corporation Fuel cell system for mobile applications
JPS58133774A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant
JPS59105274A (en) 1982-12-07 1984-06-18 Toshiba Corp Fuel supply control equipment of fuel cell
JPS6051605A (en) 1983-08-30 1985-03-23 Ishikawajima Harima Heavy Ind Co Ltd Steam reforming process
US4588659A (en) * 1984-12-11 1986-05-13 Energy Research Corporation Fuel vaporizer
JPS61185872A (en) 1985-02-14 1986-08-19 Toshiba Corp Fuel cell device
US4585708A (en) * 1985-06-11 1986-04-29 Energy Research Corporation Fuel cell system with premixing of water miscible hydrocarbon fuel and water
JPH01241760A (en) * 1988-03-23 1989-09-26 Mitsubishi Electric Corp Molten carbonate type fuel cell power generation system
US4859545A (en) * 1988-05-05 1989-08-22 International Fuel Cells Corporation Cathode flow control for fuel cell power plant
US4983471A (en) 1989-12-28 1991-01-08 Westinghouse Electric Corp. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths
US6045933A (en) * 1995-10-11 2000-04-04 Honda Giken Kogyo Kabushiki Kaisha Method of supplying fuel gas to a fuel cell
US5747185A (en) * 1995-11-14 1998-05-05 Ztek Corporation High temperature electrochemical converter for hydrocarbon fuels
DE19701560C2 (en) * 1997-01-17 1998-12-24 Dbb Fuel Cell Engines Gmbh Fuel cell system
DE19706584C2 (en) * 1997-02-21 2002-09-26 Aeg Energietechnik Gmbh High temperature fuel cells with heating of the reaction gas
DE19707814C1 (en) * 1997-02-27 1998-08-20 Dbb Fuel Cell Engines Gmbh Fuel cell power plant
EP0977295A1 (en) * 1998-07-31 2000-02-02 Sulzer Hexis AG High temperature fuel cells installation
JP2000058091A (en) 1998-07-31 2000-02-25 Sulzer Hexis Ag Plant having high-temperature fuel cell
JP2000100462A (en) 1998-09-22 2000-04-07 Aisin Seiki Co Ltd Reforming device and fuel cell system
JP2000191304A (en) 1998-12-25 2000-07-11 Ishikawajima Harima Heavy Ind Co Ltd Liquid fuel evaporator and reformer for fuel cell using the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004084332A1 (en) * 2003-03-17 2004-09-30 Matsushita Electric Industrial Co., Ltd. Fuel battery
JP4508557B2 (en) * 2003-06-13 2010-07-21 京セラ株式会社 Power generation / hot water cogeneration system
JP2005005213A (en) * 2003-06-13 2005-01-06 Kyocera Corp Power generation/hot water supplying cogeneration system including solid electrolyte fuel cell
JP2005056666A (en) * 2003-08-04 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2005056735A (en) * 2003-08-06 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2005056777A (en) * 2003-08-07 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2005056775A (en) * 2003-08-07 2005-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system
JP2006092833A (en) * 2004-09-22 2006-04-06 Tokyo Gas Co Ltd Power generating device
JP2008021458A (en) * 2006-07-11 2008-01-31 Ngk Spark Plug Co Ltd Fuel cell and its control method
JP2008060065A (en) * 2006-09-01 2008-03-13 Doosan Heavy Industries & Construction Co Ltd Fuel cell power generation device applying method for recirculating exhaust gas from fuel electrode
JP2010521785A (en) * 2007-03-16 2010-06-24 エネルダイ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel cell system with recirculation line
WO2008131051A1 (en) * 2007-04-17 2008-10-30 Modine Manufacturing Company Fuel cell system with partial external reforming and direct internal reforming
US8409758B2 (en) 2007-04-17 2013-04-02 Modine Manufacturing Company Fuel cell system with partial external reforming and direct internal reforming
US8663851B2 (en) 2007-04-17 2014-03-04 Modine Manufacturing Company Fuel cell system with partial external reforming and direct internal reforming
JP2009298657A (en) * 2008-06-13 2009-12-24 Toyota Motor Corp Reforming system
JP2011527496A (en) * 2008-07-10 2011-10-27 ワルトシラ フィンランド オサケユキチュア Method and control arrangement for a fuel cell device
KR101553429B1 (en) 2008-07-10 2015-09-15 콘비온 오와이 A method and a control arrangement for a fuel cell device
JP2010157478A (en) * 2009-01-05 2010-07-15 Honda Motor Co Ltd Power generation device
JP2012533162A (en) * 2009-07-16 2012-12-20 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハー Operation method of high temperature fuel cell
JP2012185910A (en) * 2011-03-03 2012-09-27 Nissan Motor Co Ltd Fuel cell system
JP2012216420A (en) * 2011-03-31 2012-11-08 Osaka Gas Co Ltd Fuel cell system
US10938046B2 (en) 2011-05-19 2021-03-02 Honda Motor Co., Ltd. Fuel cell system
JP2012243564A (en) * 2011-05-19 2012-12-10 Honda Motor Co Ltd Fuel cell system
WO2012157401A1 (en) 2011-05-19 2012-11-22 Honda Motor Co., Ltd. Fuel cell system
JP2013062247A (en) * 2011-09-12 2013-04-04 Robert Bosch Gmbh Fuel cell system with improved anode gas recirculation and method of operating fuel cell system
JP2013178928A (en) * 2012-02-28 2013-09-09 Denso Corp Fuel cell system
JP2014164809A (en) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd Fuel cell system, and control method thereof
JP2016091644A (en) * 2014-10-30 2016-05-23 三菱日立パワーシステムズ株式会社 Composite power generation system, and controller, method, and program for the same
WO2017222267A1 (en) * 2016-06-23 2017-12-28 주식회사 경동나비엔 Fuel cell system comprising heat exchanger using combustion exhaust gas
JP2018049703A (en) * 2016-09-20 2018-03-29 日産自動車株式会社 Fuel cell system and fuel state detecting method
KR20210110888A (en) * 2019-01-29 2021-09-09 블룸 에너지 코퍼레이션 Fuel cell system including water injector and method of operation thereof
JP2022523314A (en) * 2019-01-29 2022-04-22 ブルーム エネルギー コーポレイション Fuel cell system including water injector and operating method
JP7266104B2 (en) 2019-01-29 2023-04-27 ブルーム エネルギー コーポレイション FUEL CELL SYSTEM INCLUDING WATER INJECTOR AND OPERATING METHOD
KR102555628B1 (en) * 2019-01-29 2023-07-14 블룸 에너지 코퍼레이션 Fuel cell system including water injector and method of operation thereof

Also Published As

Publication number Publication date
US7108932B2 (en) 2006-09-19
DE60228152D1 (en) 2008-09-25
JP3614110B2 (en) 2005-01-26
EP1235291A3 (en) 2004-05-19
US20020114988A1 (en) 2002-08-22
EP1235291B1 (en) 2008-08-13
EP1235291A2 (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP3614110B2 (en) Fuel cell system
JP4325181B2 (en) Fuel cell system
CA2594394C (en) Method of starting-up solid oxide fuel cell system
US6699609B2 (en) Fuel cell system
JP3921910B2 (en) Fuel cell system
JP2004018363A (en) Apparatus for fuel reforming
US6436561B1 (en) Methanol tailgas combustor control method
US20030093949A1 (en) Staged lean combustion for rapid start of a fuel processor
US6692853B2 (en) Recovery system of heat energy in a fuel cell system
EP1509475A1 (en) Combustor, fuel reforming device, fuel cell system and method for starting up the fuel reforming system
US20080141590A1 (en) Method and apparatus for vaporizing fuel for a catalytic hydrocarbon fuel reformer
JP2001143738A (en) Fuel injection unit for evaporator and fuel cell system
US20030129108A1 (en) Fuel processor thermal management system
US20040226218A1 (en) Fuel reforming apparatus and fuel cell system
JP5467496B2 (en) Fuel cell system and control method thereof
JP7176263B2 (en) FUEL CELL SYSTEM AND METHOD OF CONTROLLING FUEL CELL SYSTEM
JP2003077517A (en) Fuel cell system
JPH0828228B2 (en) Fuel cell generator
JP3918915B2 (en) Fuel heating device and fuel processing device using the same
KR20090028628A (en) Fuel cell system with reformer and afterburner
JP2002134140A (en) Fuel cell system
JP2615790B2 (en) Phosphoric acid fuel cell power generation system
JP2000173632A (en) Fuel cell power generation system
JP3671752B2 (en) Mobile fuel cell system
JP2000340245A (en) Fuel cell system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3614110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term