JP3918915B2 - Fuel heating device and fuel processing device using the same - Google Patents

Fuel heating device and fuel processing device using the same Download PDF

Info

Publication number
JP3918915B2
JP3918915B2 JP2001365519A JP2001365519A JP3918915B2 JP 3918915 B2 JP3918915 B2 JP 3918915B2 JP 2001365519 A JP2001365519 A JP 2001365519A JP 2001365519 A JP2001365519 A JP 2001365519A JP 3918915 B2 JP3918915 B2 JP 3918915B2
Authority
JP
Japan
Prior art keywords
fuel
combustion
heating
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001365519A
Other languages
Japanese (ja)
Other versions
JP2003166701A (en
Inventor
哲也 平田
俊郎 藤森
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP2001365519A priority Critical patent/JP3918915B2/en
Publication of JP2003166701A publication Critical patent/JP2003166701A/en
Application granted granted Critical
Publication of JP3918915B2 publication Critical patent/JP3918915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Spray-Type Burners (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料を加熱する燃料加熱装置とこれを用いて燃料を水素含有ガスに改質する燃料処理装置とその起動方法に関する。
【0002】
【従来の技術】
近年、燃料電池自動車の研究開発が活発に行われており、特に、燃料電池としては作動温度が比較的低い(100℃前後)固体高分子型燃料電池(PEFC)が有力である。また燃料としては、補給が容易でインフラ整備の必要性が少ないメタノールが有力視されている。この場合、メタノールを水素に改質する改質器が必須となる。
【0003】
【発明が解決しようとする課題】
メタノールを改質する改質器としては、例えば「メタノール改質器」(特開昭63−50302号)が開示されている。この改質器は、中空円筒形の反応管の内部に改質触媒を充填し、外部から燃焼排ガスで加熱し、内部を流れる原料ガスを改質するものである。
【0004】
しかし、特開昭63−50302号の「メタノール改質器」は、自動車用に搭載するには、(1)大型で重く、(2)起動に時間がかかり、(3)負荷変化への応答性が低く、(4)発生した水素含有ガス中のCO濃度が高く、燃料電池の電極を劣化させる、等の問題点があった。
【0005】
また、高いメタノール転化率を維持しつつCOガスの生成を低くできる手段として、例えば、「水素含有ガスの製造方法」(特開平6−256001号、特開平6−279001号)が開示されている。この方法は、メタノール、酸素、水を加熱した触媒に接触させて反応させるものであり、燃料の一部を燃焼させる部分酸化を利用している。
【0006】
しかし、特開平6−256001号及び特開平6−279001号の「水素含有ガスの製造方法」は、(5)触媒の予熱に時間がかかり、(6)CO濃度を従来のリン酸型燃料電池には適用可能な程度(約1%前後)まで下げることができるが、車載用に適した固体高分子型燃料電池(PEFC)に適用するには依然としてCO濃度が高い問題点があった。
【0007】
更に、CO濃度が極めて低い水素含有ガスを生成することができる「燃料改質装置」(特開平8−157201号)が開示されている。この装置は、改質器、選択酸化部、部分酸化部、及び制御装置を備え、選択酸化部で一酸化炭素のみを酸化し、部分酸化部で残存の一酸化炭素を酸化することで、CO濃度が極めて低い(数ppm)水素含有ガスを生成し、PEFCへの適用を可能にしている。
【0008】
しかし、特開平8−157201号の「燃料改質装置」は、改質器が特開昭63−50302号と同様の間接加熱型であるため、起動に時間がかかり、負荷変化への応答性が低い問題点があった。
【0009】
すなわち、従来の改質器はコンパクト化しにくく、負荷応答性が低く、反応器の予熱・起動に時間がかかり車両搭載用の燃料電池用としては不十分である問題点があった。
【0010】
上述した問題点を解決するため、本発明の出願人等は、先に、「燃料電池用改質器とその起動方法」を創案し、出願した(特開2001−226106)。この発明は、図6に示すように、水蒸気を含む原料ガスを部分酸化させその発熱で原料ガスを水素含有ガスに改質する燃焼・改質触媒1が充填された部分酸化改質器2と、該部分酸化改質器の上流側と下流側に空気を供給する上流側空気ライン4及び下流側空気ライン6と、部分酸化改質器内の温度を検出して上流側空気ライン4及び下流側空気ライン6の空気流量を制御する流量制御器8とを備え、改質器内の上流側温度が触媒の耐熱温度を超えないように上流側空気ラインの空気流量を制御し、かつ改質器内の下流側温度が所定の温度範囲になるように下流側空気ラインの空気流量を制御するものである。
【0011】
この発明により、燃焼・改質触媒1が充填された部分酸化改質器に空気ライン4、6から空気を供給するので、触媒の作用により水蒸気を含む原料ガスの一部が直ちに部分酸化し、その発熱で燃焼・改質触媒を直接加熱するので、間接加熱式のように大型の熱交換器が不要となり、短時間に加熱でき、燃料電池の急速な負荷変化に容易に追従できるようになった。
【0012】
しかし、特開2001−226106の場合でも、燃料として液体燃料(例えばメタノール)を用いる場合、燃料の加熱に熱交換器・蒸発器を用い、加熱・蒸発させるため、装置が大きくなり、かつ起動に時間がかかっていた。また、部分酸化改質器内でも部分酸化により加熱するため、原料ガスの供給温度は反応温度より低くする必要があり、改質反応が入口付近では十分に進行せず、触媒が十分に利用できていなかった。
【0013】
また、これらの問題点を解決するために、特開平7−215702号、特開2001−153313等は提案されている。
【0014】
特開平7−215702号の「燃料改質装置」は、燃料噴射ノズルからの燃料を完全燃焼させる工程と、燃料気化用コイルからの燃料を部分酸化反応させる工程とを備え、装置の前段部において、バーナとして理論空燃比で完全燃焼させ、この熱で触媒床と反応ガスの加熱を行い、触媒床においては、部分酸化によりCOが発生し、このCOと完全燃焼により生成した水蒸気により水素へのシフト反応が行われるものである。
【0015】
しかし、この装置では、前段部において完全燃焼させるため、空燃比を非常に大きく(14.5以上に)設定するため、下流部に大量の酸素が残留し、これを部分酸化により完全に消費する必要がある。また、その結果大量のCOが発生するため、CO濃度を従来のリン酸型燃料電池には適用可能な程度(約1%前後)まで下げることが困難である。またこのCOと燃焼により生成した水蒸気のみを反応させるため、改質反応の制御が困難である等の問題点があった。
【0016】
また、特開2001−153313の「部分酸化バーナ」は、燃焼空間壁の内壁にセラミック部材を設け、燃焼空間の下流側に、液体燃料を気化させる機構を備える熱交換器を配設し、熱交換器で気化した燃料ガスを燃焼空間で燃焼させるものである。
【0017】
この装置は、低い空気比でも火炎を安定化させることができるが、セラミック部材や熱交換器が十分加熱されるまで、安定燃焼が困難であり、その結果起動時間がかかる。また、排ガス温度を低減するために熱交換器を用いるため、装置構造が複雑かつ大型となり、かつその温度制御が困難である問題点があった。
【0018】
本発明は上述した種々の問題点を解決するために創案されたものである。すなわち、本発明の目的は、燃料として液体燃料を用いる場合でも、短時間で起動でき、かつ容易に小型化ができる燃料加熱装置とこれを用いた燃料処理装置とその起動方法を提供することにある。
【0019】
【課題を解決するための手段】
本発明によれば、燃料を燃空比1以上で燃焼させる燃焼室を有し該燃焼室において燃焼後に酸素を含まない還元状態となる高温ガスを発生させる過濃燃焼バーナと、該過濃燃焼バーナで発生した高温ガスが流入する空間内で燃料と水の混合原料を前記高温ガスの熱で直接加熱により蒸発させて所望の温度に加熱する蒸発加熱装置とを備え、前記燃焼室は、燃焼室を構成するライナーを囲むジャケットを有し、混合原料は該ジャケット内に噴霧され、ライナーに設けられた細孔から燃焼室内部に浸み出し、これにより燃焼室を浸み出し冷却する、ことを特徴とする燃料加熱装置が提供される。
【0020】
上記本発明の構成によれば、過濃燃焼バーナで燃料を燃空比1以上で燃焼させて燃焼後に酸素を含まない還元状態となる高温ガスを発生させるので、燃料として液体燃料を用いる場合でも、短時間で着火し、例えば1000℃以上の高温ガスを短時間(数秒程度)で発生することができる。また、蒸発加熱装置により、過濃燃焼バーナで発生した高温ガスが流入する空間内で燃料と水の混合原料を高温ガスの熱で直接加熱により蒸発させて所望の温度に加熱するので、温度制御が容易にできる。さらにその熱で下流側に位置する改質触媒を直接加熱することができるので、間接加熱式のように大型の熱交換器が不要となるため容易に小型化ができる。また、着火、燃焼、加熱を短時間にできるので、燃料電池の起動が短時間でできる。また、ライナーに設けられた細孔から燃焼室内部に浸み出し、これにより燃焼室を浸み出し冷却するので、燃焼室の熱容量を小さくして、起動時間を短縮することができ、かつジャケットの過熱を防止することができる。
【0021】
本発明の好ましい実施形態によれば、前記過濃燃焼バーナは、燃料を燃空比1以上で燃焼させる燃焼室と、該燃焼室内に燃料を噴射する燃料噴射器と、燃料を着火するイグナイタとを備え、前記蒸発加熱装置は、燃焼室の下流側に連結された蒸発加熱室と、燃焼室または蒸発加熱室に混合原料を噴霧する原料噴霧器とを備える。
【0022】
この構成により、燃料噴射器で燃焼室内に燃料を噴射し、イグナイタで燃料を着火するだけで、短時間に例えば1000℃以上の高温ガスを発生することができる。また、原料噴霧器により燃焼室または蒸発加熱室に混合原料を噴霧するだけで、燃料と水の混合原料を蒸発させて加熱することができ、かつその流量で温度制御が容易にできる。
【0024】
前記蒸発加熱室は、燃焼室の下流側に混合原料と燃焼ガスの混合を促進するベンチュリーミキサー部を有する。この構成により、簡単な構造で、燃料と水の混合原料と高温ガスとを効果的に混合することができる。
【0025】
また、本発明によれば、燃料を燃空比1以上で燃焼させて燃焼後に酸素を含まない還元状態となる高温ガスを発生させる過濃燃焼バーナと、該過濃燃焼バーナで発生した高温ガスが流入する空間内で燃料と水の混合原料を前記高温ガスの熱で直接加熱により蒸発させて所望の温度に加熱する蒸発加熱装置とを有する燃料加熱装置と、該燃料加熱装置の下流側に設けられ、改質触媒が充填され、混合原料を水素含有ガスに改質する改質器と、前記改質器内の下流側の改質触媒を間接加熱する熱交換器と、前記過濃燃焼バーナ内で発生した高温ガスの一部を該熱交換器に供給する高温ガスラインと、を備え、下流側の改質触媒を高温ガスで間接加熱し、改質器の入口ガス温度が触媒の耐熱温度を超えないように前記蒸発加熱室において混合原料の温度を制御する、ことを特徴とする燃料処理装置が提供される。
【0026】
この構成により、燃料加熱装置で短時間に混合原料を蒸発・加熱し、触媒の耐熱温度を超えない温度(例えば350℃以下)で改質器に供給して、改質反応を入口付近でも十分に進行させ、触媒を十分に利用することができる。また、下流側の改質触媒を高温ガスで間接加熱するので、下流側の改質触媒の改質反応(吸熱反応)による温度低下を抑制し、改質器における改質率を高めることができる。
【0027】
また、本発明の好ましい実施形態によれば、前記熱交換器において熱交換が行われた前記高温ガスを前記燃料加熱装置に戻す戻りラインを備える。
【0032】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
【0033】
図1は、本発明による燃料加熱装置とこれを用いた燃料処理装置のシステム構成図である。この図に示すように、この燃料処理装置は、燃料加熱装置10、改質器16、及びCO除去器18からなり、固体高分子型燃料電池20(PEFC)に水素含有ガスを供給して発電するようになっている。
【0034】
燃料加熱装置10は、酸素を含まない高温ガスを発生させ、発生した高温ガスにより燃料と水の混合原料を蒸発させて所望の温度まで加熱する。改質器16は、発生した原料ガスを水素を含む改質ガス(水素含有ガス)に改質し、このガスをCO選択除去装置に供給してCO濃度を低減して燃料電池に供給する。燃料電池(PEFC)は、供給された改質ガスと空気により電気化学的に発電する。可燃性ガスを含む燃料電池のアノード排ガスは、起動時には燃料加熱装置10へ戻して可燃成分を燃焼させ、定常時にはN2、CO2の発生を抑えるために別の燃焼器で燃焼するのがよい。この燃焼熱は、燃料、改質器の間接加熱等に用いることができる。上述したシステムにより、電動機等に電気を供給することができる。
【0035】
図1において、本発明の燃料加熱装置10は、過濃燃焼バーナ12と蒸発加熱装置14を備える。過濃燃焼バーナ12は、燃料を燃空比1以上で燃焼させて燃焼後に酸素を含まない還元状態となる高温ガスを発生させる燃焼器(プリバーナ)である。また、蒸発加熱装置14は、過濃燃焼バーナで12発生した高温ガスが流入する空間内で燃料と水の混合原料を高温ガスの熱で直接加熱により蒸発させて所望の温度に加熱する装置である。過濃燃焼バーナ12は、起動用に燃焼負荷の大きいものを備えるのが好ましいが、起動用と定常運転用に2台を設置してもよい。
【0036】
図2は、本発明の燃料加熱装置の一例を示す構成図である。この図に示すように、過濃燃焼バーナ12は、燃焼室12a、燃焼室12a内に燃料を噴射する燃料噴射器12b及び燃料を着火するイグナイタ12cを備える。燃焼室12aでは燃料を燃空比1以上で燃焼させ、高温(例えば1000℃以上)の燃焼ガスを発生する。
【0037】
過濃燃焼バーナ12の燃料は、好ましくは改質原料と同じメタノール、メタン、ガソリン(ナフサ)、その他の炭化水素化合物である。またこの燃料と水を混合した混合原料をそのまま燃焼させてもよい。燃空比1以上の燃焼とは、燃料と空気の当量比が1以上であることを意味し、燃焼後の高温ガスが酸素を含まない還元状態となるものをいう。
【0038】
蒸発加熱装置14は、燃焼室12aの下流側に連結された蒸発加熱室14aと、燃焼室12aまたは蒸発加熱室14aに混合原料を噴霧する原料噴霧器14bとを備える。
【0039】
混合原料は、メタノール、メタン、ガソリン(ナフサ)、その他の炭化水素化合物と水との混合体である。水の混合比率は、改質器16に供給される混合ガス中の水蒸気と炭化水素化合物の比率(S/C)が改質に適した値(例えば、S/C=1.5前後)に設定する。この混合原料は、図1に示すように、下流側に設けられた熱交換器19a,19bにより予熱して供給するのがよい。
【0040】
本発明の燃料加熱装置10は、更に、可燃性ガスを含む燃料電池のアノード排ガスを燃焼室12aに再循環させるためのアノード排ガス供給口10aと、燃焼室12aで発生した高温(例えば800〜900℃前後)の燃焼ガスを注気し戻す注気口10bと戻り口10cを有する。
【0041】
図2の例において、燃焼室12aは、燃焼室を構成するライナー15とこれを囲むジャケットを有し、混合原料がジャケット内に噴霧され、ライナー15に設けられた細孔から燃焼室内部に浸み出し、燃焼室を浸み出し冷却するようになっている。
【0042】
また図2において、蒸発加熱室14aは、燃焼室の下流側に流路を狭めたベンチュリーミキサー部14cを有し、混合原料と燃焼ガスの混合を促進するようになっている。
【0043】
図3は、本発明の燃料加熱装置の別の構成図である。この例では、図2のジャケットとベンチュリーミキサー部が省略され、ライナー15に設けられた細孔から空気が内部に浸み出し、ライナー15を浸み出し冷却するようになっている。
【0044】
図4は、本発明の燃料加熱装置の更に別の構成図である。この例では、図2のジャケットの代わりにライナー15の周りに別室を設け、図2と同様に、混合原料がライナー15を囲む別室内に噴霧され、ライナーに設けられた細孔から燃焼室内部に浸み出し、燃焼室を浸み出し冷却するようになっている。また同様に燃焼室の下流側に流路を狭めたベンチュリーミキサー部14cを有し、混合原料と燃焼ガスの混合を促進するようになっている。
【0045】
図5は、本発明の燃料加熱装置の更に別の構成図である。この例では、燃焼室及び蒸発加熱室が耐熱性に優れたセラミックスからなり、冷却なしでそのまま使用するようになっている。
【0046】
図1において、改質器16には、水蒸気を含む原料ガスを水素含有ガスに改質する改質触媒11が充填されている。改質触媒11には、例えば、銅−亜鉛系、貴金属系、ニッケル、ニッケル合金、その他の改質触媒を用いることができる。
【0047】
また、本発明の燃料処理装置では、改質器16内の下流側の改質触媒11を間接加熱する熱交換器13aと、過濃燃焼バーナ12内で発生した高温ガスの一部を熱交換器13aに供給する高温ガスライン13bと、熱交換器13aにおいて熱交換が行われた高温ガスを燃料加熱装置10に戻す戻りラインとを備え、下流側の改質触媒11を800〜900℃前後の高温ガスで間接加熱するようになっている。この間接加熱は、改質器内の下流側温度が触媒の耐熱温度(例えば350℃)を超えないように、高温ガスの流量をオリフィス等で調節するのがよい。
【0048】
上述した燃料処理装置を用いた本発明の起動方法は、過濃燃焼ステップ(A)、蒸発加熱テップ(B)及び改質テップ(C)からなる。過濃燃焼ステップ(A)では燃料を燃空比1以上で燃焼させて酸素を含まない燃焼後に酸素を含まない還元状態となる高温ガスを発生させる。蒸発加熱テップ(B)では、過濃燃焼ステップで発生した高温ガスが流入する空間内で燃料と水の混合原料を高温ガスで直接加熱により蒸発させて所望の温度に加熱する。この温度は、改質器の入口ガス温度が触媒の耐熱温度を超えないように制御する。更に改質テップ(C)では、加熱された混合原料を水素含有ガスに改質する。
【0049】
上述した本発明の構成によれば、過濃燃焼バーナ12で燃料を燃空比1以上で燃焼させて酸素を含まない燃焼後に酸素を含まない還元状態となる高温ガスを発生させるので、燃料として液体燃料(例えばメタノール)を用いる場合でも、短時間で着火し、高温ガスを短時間(数秒程度)で発生することができる。この高温ガスは、メタノールと水の混合燃料を使用し、改質に適したS/C=1.5とした場合、燃空比1で約1670K、燃空比1.1で約1470Kであり、約1200℃以上の高温を混合燃料を直接燃焼させた場合でも得られることが試算により確認された。
【0050】
また、蒸発加熱装置14により、過濃燃焼バーナで発生した高温ガスが流入する空間内で燃料と水の混合原料を高温ガスの熱で直接加熱により蒸発させて所望の温度に加熱するので、温度制御が容易にできる。さらにその熱で下流側に位置する例えば改質触媒を直接加熱することができるので、間接加熱式のように大型の熱交換器が不要となり、容易に小型化ができる。また、着火、燃焼、加熱を短時間にできるので、燃料電池の起動が短時間でできる。
【0051】
また、燃料噴射器12bで燃焼室12a内に燃料を噴射し、イグナイタ12cで燃料を着火するだけで、短時間に例えば1000℃以上の高温ガスを発生することができる。また、原料噴霧器14bにより燃焼室12aまたは蒸発加熱室14aに混合原料を噴霧するだけで、燃料と水の混合原料を蒸発させて加熱することができ、かつその流量で温度制御が容易にできる。
【0052】
また、燃料加熱装置で短時間に混合原料を蒸発・加熱し、触媒の耐熱温度を超えない温度(例えば350℃以下)で改質器16に供給して、改質反応を入口付近でも十分に進行させ、触媒を十分に利用することができる。
【0053】
また、改質器16内の下流側の改質触媒を間接加熱する熱交換器と、過濃燃焼バーナ12内で発生した高温ガスの一部を該熱交換器に供給する高温ガスラインとを備え、下流側の改質触媒を高温ガスで間接加熱する構成により、下流側の改質触媒の改質反応(吸熱反応)による温度低下を抑制し、改質器における改質率を高めることができる。
【0054】
また、本発明の起動方法により、過濃燃焼ステップ(A)で燃料を燃空比1以上で燃焼させて燃焼後に酸素を含まない還元状態となる高温ガスを発生させるので、燃料として液体燃料(例えばメタノール)を用いる場合でも、短時間で着火し、例えば1000℃以上の高温ガスを短時間(数秒程度)で発生することができる。
【0055】
また、蒸発加熱テップ(B)において、過濃燃焼ステップで発生した高温ガスが流入する空間内で燃料と水の混合原料を高温ガスで直接加熱により蒸発させて所望の温度に加熱するので、温度制御が容易にできる。さらに改質テップ(C)において、混合ガスの保有する熱で下流側に位置する改質触媒を直接加熱することができるので、間接加熱式のように大型の熱交換器が不要となり、容易に小型化ができる。また、着火、燃焼、加熱を短時間にできるので、燃料電池の起動が短時間でできる。
【0056】
更に、改質器の入口ガス温度が触媒の耐熱温度を超えないように前記蒸発加熱室において混合原料の温度を制御するので、触媒の加熱を防止して触媒寿命を延ばし、高温におけるCOの発生を抑制することができる。
【0057】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0058】
【発明の効果】
上述したように、本発明の燃料加熱装置とこれを用いた燃料処理装置とその起動方法は、燃料として液体燃料(例えばメタノール)を用いる場合でも、短時間で起動でき、かつ容易に小型化ができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】 本発明による燃料加熱装置とこれを用いた燃料処理装置のシステム構成図である。
【図2】 本発明の燃料加熱装置の構成図である。
【図3】 本発明の燃料加熱装置の別の構成図である。
【図4】 本発明の燃料加熱装置の更に別の構成図である。
【図5】 本発明の燃料加熱装置の更に別の構成図である。
【図6】 従来の燃料処理装置の構成図である。
【符号の説明】
1 燃焼・改質触媒、2 部分酸化改質器、4 上流側空気ライン、6 下流側空気ライン、8 流量制御器、10 燃料加熱装置、10a アノード排ガス供給口、10b 注気口、10c 戻り口、11 改質触媒、12 過濃燃焼バーナ、12a 燃焼室、12b 燃料噴射器、12c イグナイタ、13a 熱交換器、13b 高温ガスライン、14 蒸発加熱装置、14a 蒸発加熱室、14b 原料噴霧器、14c ベンチュリーミキサー部、15 ライナー、16 改質器、18 CO除去器、19a,19b 熱交換器、20 燃料電池(PEFC)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel heating device that heats fuel, a fuel processing device that uses this to reform a fuel into a hydrogen-containing gas, and a startup method thereof.
[0002]
[Prior art]
In recent years, research and development of fuel cell vehicles have been actively conducted, and in particular, a polymer electrolyte fuel cell (PEFC) having a relatively low operating temperature (around 100 ° C.) is prominent as a fuel cell. As fuel, methanol is considered promising as it is easy to replenish and requires little infrastructure. In this case, a reformer that reforms methanol into hydrogen is essential.
[0003]
[Problems to be solved by the invention]
As a reformer for reforming methanol, for example, a “methanol reformer” (Japanese Patent Laid-Open No. 63-50302) is disclosed. In this reformer, the inside of a hollow cylindrical reaction tube is filled with a reforming catalyst, heated by combustion exhaust gas from the outside, and reforms the raw material gas flowing inside.
[0004]
However, the “methanol reformer” disclosed in Japanese Patent Application Laid-Open No. 63-50302 is (1) large and heavy, (2) takes time to start, and (3) response to load changes when mounted on an automobile. (4) The CO concentration in the generated hydrogen-containing gas is high, and the electrodes of the fuel cell are deteriorated.
[0005]
Further, as means for reducing the production of CO gas while maintaining a high methanol conversion rate, for example, “a method for producing a hydrogen-containing gas” (JP-A-6-256001, JP-A-6-279001) is disclosed. . In this method, methanol, oxygen, and water are brought into contact with a heated catalyst to be reacted, and partial oxidation in which a part of fuel is burned is used.
[0006]
However, the “method for producing a hydrogen-containing gas” disclosed in JP-A-6-256001 and JP-A-6-279001 requires (5) preheating of the catalyst and (6) a conventional phosphoric acid fuel cell with a CO concentration of However, there is still a problem in that the CO concentration is still high when applied to a polymer electrolyte fuel cell (PEFC) suitable for in-vehicle use.
[0007]
Furthermore, a “fuel reformer” (Japanese Patent Laid-Open No. 8-157201) capable of generating a hydrogen-containing gas having a very low CO concentration is disclosed. This apparatus includes a reformer, a selective oxidation unit, a partial oxidation unit, and a control unit. The selective oxidation unit oxidizes only carbon monoxide, and the partial oxidation unit oxidizes the remaining carbon monoxide, thereby producing CO. It produces a hydrogen-containing gas with a very low concentration (several ppm), making it applicable to PEFC.
[0008]
However, the "fuel reformer" disclosed in Japanese Patent Application Laid-Open No. 8-157201 requires an indirect heating similar to that disclosed in Japanese Patent Application Laid-Open No. 63-50302. There was a low problem.
[0009]
That is, the conventional reformer is difficult to downsize, has low load response, takes time to preheat and start up the reactor, and is insufficient for a fuel cell for vehicle mounting.
[0010]
In order to solve the above-described problems, the applicants of the present invention have previously created and filed an application for “reformer for fuel cell and its starting method” (Japanese Patent Laid-Open No. 2001-226106). As shown in FIG. 6, the present invention includes a partial oxidation reformer 2 filled with a combustion / reforming catalyst 1 that partially oxidizes a raw material gas containing water vapor and reforms the raw material gas into a hydrogen-containing gas by its heat generation. The upstream air line 4 and the downstream air line 6 for supplying air to the upstream and downstream sides of the partial oxidation reformer, and the temperature in the partial oxidation reformer to detect the upstream air line 4 and downstream And a flow rate controller 8 for controlling the air flow rate of the side air line 6, and controls the air flow rate of the upstream side air line so that the upstream side temperature in the reformer does not exceed the heat resistance temperature of the catalyst, and reforming. The air flow rate in the downstream air line is controlled so that the downstream temperature in the chamber falls within a predetermined temperature range.
[0011]
According to the present invention, since air is supplied from the air lines 4 and 6 to the partial oxidation reformer 2 filled with the combustion / reforming catalyst 1, a part of the raw material gas containing water vapor is immediately partially oxidized by the action of the catalyst. Because the heat generation directly heats the combustion / reforming catalyst, there is no need for a large heat exchanger like the indirect heating type, so it can be heated in a short time and can easily follow the rapid load change of the fuel cell. became.
[0012]
However, even in the case of Japanese Patent Application Laid-Open No. 2001-226106, when a liquid fuel (for example, methanol) is used as a fuel, a heat exchanger / evaporator is used for heating the fuel to heat / evaporate. It took time. In addition, since the partial oxidation reformer is heated by partial oxidation, the supply temperature of the raw material gas needs to be lower than the reaction temperature, and the reforming reaction does not proceed sufficiently near the inlet, so that the catalyst can be fully utilized. It wasn't.
[0013]
In order to solve these problems, Japanese Patent Laid-Open Nos. 7-215702 and 2001-153313 have been proposed.
[0014]
Japanese Patent Laid-Open No. 7-215702 “Fuel reformer” includes a step of completely burning fuel from a fuel injection nozzle and a step of partial oxidation reaction of fuel from a fuel vaporizing coil. The burner burns completely at the stoichiometric air-fuel ratio, and this heat heats the catalyst bed and the reaction gas. In the catalyst bed, CO is generated by partial oxidation, and this CO and water vapor generated by the complete combustion generate hydrogen. A shift reaction is performed.
[0015]
However, in this apparatus, since the front stage part is completely burned, the air-fuel ratio is set very large (14.5 or more), so a large amount of oxygen remains in the downstream part and is completely consumed by partial oxidation. There is a need. As a result, a large amount of CO is generated, and it is difficult to reduce the CO concentration to a level applicable to a conventional phosphoric acid fuel cell (about 1%). Moreover, since only this CO and the water vapor | steam produced | generated by combustion are made to react, there existed problems, such as control of a reforming reaction being difficult.
[0016]
Japanese Patent Laid-Open No. 2001-153313 discloses a “partial oxidation burner” in which a ceramic member is provided on the inner wall of a combustion space wall, and a heat exchanger provided with a mechanism for vaporizing liquid fuel is disposed on the downstream side of the combustion space. The fuel gas vaporized by the exchanger is burned in the combustion space.
[0017]
Although this apparatus can stabilize the flame even at a low air ratio, stable combustion is difficult until the ceramic member and the heat exchanger are sufficiently heated, and as a result, startup time is required. Further, since a heat exchanger is used to reduce the exhaust gas temperature, there is a problem that the device structure becomes complicated and large, and the temperature control is difficult.
[0018]
The present invention has been made to solve the various problems described above. That is, an object of the present invention is to provide a fuel heating device that can be started in a short time and can be easily downsized even when liquid fuel is used as the fuel, a fuel processing device using the same, and a starting method thereof. is there.
[0019]
[Means for Solving the Problems]
According to the present invention, a rich combustion burner that has a combustion chamber that burns fuel at a fuel-air ratio of 1 or more and generates a high-temperature gas in a reduced state that does not contain oxygen after combustion in the combustion chamber, and the rich combustion An evaporative heating device that evaporates the mixed raw material of fuel and water by direct heating with the heat of the high-temperature gas and heats it to a desired temperature in a space into which the high-temperature gas generated by the burner flows, and the combustion chamber is a combustion chamber Having a jacket surrounding the liner constituting the chamber, and the mixed raw material is sprayed in the jacket and oozes into the combustion chamber from the pores provided in the liner, thereby oozing and cooling the combustion chamber. A fuel heating device is provided.
[0020]
According to the above-described configuration of the present invention, the fuel is burned at a fuel-air ratio of 1 or more by the rich combustion burner to generate a high-temperature gas that does not contain oxygen after combustion, so even when liquid fuel is used as the fuel It can be ignited in a short time, and a high temperature gas of, for example, 1000 ° C. or more can be generated in a short time (about several seconds). In addition, the evaporative heating device evaporates the fuel and water mixed material directly by the heat of the high-temperature gas and heats it to the desired temperature in the space where the high-temperature gas generated by the rich combustion burner flows. Can be easily done. Furthermore, since the reforming catalyst located on the downstream side can be directly heated by the heat, a large heat exchanger is not required as in the indirect heating type, and the size can be easily reduced. Further, since ignition, combustion, and heating can be performed in a short time, the fuel cell can be started up in a short time. Also, it oozes into the combustion chamber from the pores provided in the liner, thereby leaching and cooling the combustion chamber, so that the heat capacity of the combustion chamber can be reduced, the start-up time can be shortened, and the jacket Can be prevented from overheating.
[0021]
According to a preferred embodiment of the present invention, the overburning burner comprises a combustion chamber for burning fuel at a fuel-air ratio of 1 or more, a fuel injector for injecting fuel into the combustion chamber, and an igniter for igniting fuel. The evaporative heating apparatus includes an evaporative heating chamber connected to the downstream side of the combustion chamber, and a raw material sprayer that sprays the mixed raw material into the combustion chamber or the evaporative heating chamber.
[0022]
With this configuration, it is possible to generate high-temperature gas of, for example, 1000 ° C. or more in a short time by simply injecting fuel into the combustion chamber with the fuel injector and igniting the fuel with the igniter. In addition, by simply spraying the mixed raw material into the combustion chamber or the evaporation heating chamber with the raw material sprayer, the mixed raw material of fuel and water can be evaporated and heated, and the temperature can be easily controlled by the flow rate.
[0024]
The evaporative heating chamber has a venturi mixer section that promotes mixing of the mixed raw material and the combustion gas on the downstream side of the combustion chamber. With this configuration, it is possible to effectively mix the mixed raw material of fuel and water and the high temperature gas with a simple structure.
[0025]
In addition, according to the present invention, a rich combustion burner that burns fuel at a fuel-air ratio of 1 or more and generates a high-temperature gas that is in a reduced state that does not contain oxygen after combustion, and a high-temperature gas generated by the rich combustion burner. A fuel heating device having an evaporation heating device that evaporates the mixed raw material of fuel and water by direct heating with the heat of the high-temperature gas and heats it to a desired temperature in the space into which the gas flows, and on the downstream side of the fuel heating device A reformer that is provided and filled with a reforming catalyst and reforms the mixed raw material into a hydrogen-containing gas; a heat exchanger that indirectly heats the reforming catalyst downstream in the reformer; and the overrich combustion A high-temperature gas line for supplying a part of the high-temperature gas generated in the burner to the heat exchanger , indirectly heating the reforming catalyst on the downstream side with the high-temperature gas, and the inlet gas temperature of the reformer is In order to avoid exceeding the heat-resistant temperature, Controlling the degree, the fuel processing apparatus is provided, characterized in that.
[0026]
With this configuration, the mixed raw material is evaporated and heated in a short time with the fuel heating device, and supplied to the reformer at a temperature that does not exceed the heat resistance temperature of the catalyst (for example, 350 ° C. or less), so that the reforming reaction is sufficient even near the inlet. The catalyst can be fully utilized. In addition, since the downstream reforming catalyst is indirectly heated with a high-temperature gas, temperature reduction due to the reforming reaction (endothermic reaction) of the downstream reforming catalyst can be suppressed, and the reforming rate in the reformer can be increased. .
[0027]
In addition, according to a preferred embodiment of the present invention, there is provided a return line that returns the high-temperature gas that has undergone heat exchange in the heat exchanger to the fuel heating device.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.
[0033]
FIG. 1 is a system configuration diagram of a fuel heating apparatus according to the present invention and a fuel processing apparatus using the same. As shown in this figure, this fuel processing device comprises a fuel heating device 10, a reformer 16, and a CO remover 18, and supplies hydrogen-containing gas to a polymer electrolyte fuel cell 20 (PEFC) for power generation. It is supposed to be.
[0034]
The fuel heating device 10 generates a high-temperature gas that does not contain oxygen, evaporates the mixed raw material of fuel and water with the generated high-temperature gas, and heats it to a desired temperature. The reformer 16 reforms the generated raw material gas into a reformed gas containing hydrogen (hydrogen-containing gas), supplies this gas to the CO selective removal device, reduces the CO concentration, and supplies it to the fuel cell. A fuel cell (PEFC) generates electricity electrochemically with supplied reformed gas and air. The anode exhaust gas of the fuel cell containing the combustible gas is preferably returned to the fuel heating device 10 at the time of start-up and combusted combustible components are combusted in a separate combustor in order to suppress the generation of N2 and CO2 at the steady state. This combustion heat can be used for indirect heating of the fuel and the reformer. Electricity can be supplied to an electric motor or the like by the above-described system.
[0035]
In FIG. 1, the fuel heating device 10 of the present invention includes a rich combustion burner 12 and an evaporation heating device 14. Rich combustion burner 12 is a combustor for generating hot gas fuel is burned at fuel-air ratio of 1 or more the reduced state without oxygen after combustion (Puribana). The evaporative heating device 14 is a device for evaporating the mixed raw material of fuel and water by direct heating with the heat of the high-temperature gas in a space into which the high-temperature gas 12 generated by the rich combustion burner flows and heating it to a desired temperature. is there. The overburning burner 12 is preferably provided with a large combustion load for startup, but two units may be installed for startup and steady operation.
[0036]
FIG. 2 is a configuration diagram showing an example of the fuel heating apparatus of the present invention. As shown in the figure, the rich combustion burner 12 includes a combustion chamber 12a, a fuel injector 12b that injects fuel into the combustion chamber 12a, and an igniter 12c that ignites the fuel. In the combustion chamber 12a, fuel is burned at a fuel-air ratio of 1 or more, and high-temperature (for example, 1000 ° C. or more) combustion gas is generated.
[0037]
The fuel of the rich burner 12 is preferably the same methanol, methane, gasoline (naphtha), or other hydrocarbon compounds as the reforming raw material. Further, the mixed raw material obtained by mixing the fuel and water may be burned as it is. Combustion with a fuel-air ratio of 1 or more means that the equivalent ratio of fuel and air is 1 or more, and the high-temperature gas after combustion is in a reduced state containing no oxygen.
[0038]
The evaporative heating device 14 includes an evaporative heating chamber 14a connected to the downstream side of the combustion chamber 12a, and a raw material sprayer 14b for spraying the mixed raw material to the combustion chamber 12a or the evaporative heating chamber 14a.
[0039]
The mixed raw material is a mixture of methanol, methane, gasoline (naphtha), other hydrocarbon compounds, and water. The mixing ratio of water is such that the ratio (S / C) of water vapor to hydrocarbon compound in the mixed gas supplied to the reformer 16 is suitable for reforming (for example, around S / C = 1.5). Set. As shown in FIG. 1, this mixed raw material is preferably supplied with preheating by heat exchangers 19a and 19b provided on the downstream side.
[0040]
The fuel heating device 10 of the present invention further includes an anode exhaust gas supply port 10a for recirculating anode exhaust gas of a fuel cell containing a combustible gas to the combustion chamber 12a, and a high temperature (for example, 800 to 900) generated in the combustion chamber 12a. An air inlet 10b and a return port 10c for injecting combustion gas at around (° C.) are provided.
[0041]
In the example of FIG. 2, the combustion chamber 12 a has a liner 15 that constitutes the combustion chamber and a jacket that surrounds the liner 15, and the mixed raw material is sprayed into the jacket and is immersed in the combustion chamber from the pores provided in the liner 15. It exudes and cools the combustion chamber.
[0042]
In FIG. 2, the evaporative heating chamber 14a has a venturi mixer section 14c having a narrow channel on the downstream side of the combustion chamber, and promotes mixing of the mixed raw material and the combustion gas.
[0043]
FIG. 3 is another configuration diagram of the fuel heating apparatus of the present invention. In this example, the jacket and the venturi mixer portion of FIG. 2 are omitted, and air oozes out from the pores provided in the liner 15 to ooze the liner 15 and cool it.
[0044]
FIG. 4 is still another configuration diagram of the fuel heating apparatus of the present invention. In this example, a separate chamber is provided around the liner 15 instead of the jacket of FIG. 2, and the mixed raw material is sprayed into a separate chamber surrounding the liner 15 as in FIG. Soaks in the combustion chamber and cools it. Similarly, it has a Venturi mixer section 14c with a narrowed flow path downstream of the combustion chamber to promote mixing of the mixed raw material and the combustion gas.
[0045]
FIG. 5 is still another configuration diagram of the fuel heating apparatus of the present invention. In this example, the combustion chamber and the evaporation heating chamber are made of ceramics having excellent heat resistance and are used as they are without cooling.
[0046]
In FIG. 1, a reformer 16 is filled with a reforming catalyst 11 that reforms a raw material gas containing water vapor into a hydrogen-containing gas. For the reforming catalyst 11, for example, copper-zinc-based, noble metal-based, nickel, nickel alloy, and other reforming catalysts can be used.
[0047]
In the fuel processor of the present invention, the heat exchanger 13a that indirectly heats the reforming catalyst 11 on the downstream side in the reformer 16 and a part of the high-temperature gas generated in the overburning burner 12 are heat-exchanged. A high-temperature gas line 13b supplied to the reactor 13a, and a return line for returning the high-temperature gas heat-exchanged in the heat exchanger 13a to the fuel heating device 10, and the downstream reforming catalyst 11 is set to around 800 to 900 ° C. Indirect heating with high-temperature gas. In this indirect heating, it is preferable to adjust the flow rate of the high temperature gas with an orifice or the like so that the downstream temperature in the reformer does not exceed the heat resistance temperature of the catalyst (for example, 350 ° C.).
[0048]
The start-up method of the present invention using the above-described fuel processing apparatus includes a rich combustion step (A), an evaporation heating step (B), and a reforming step (C). In the rich combustion step (A), the fuel is burned at a fuel-air ratio of 1 or more to generate a high-temperature gas that is in a reduced state containing no oxygen after combustion containing no oxygen . In the evaporation heating step (B), a mixed raw material of fuel and water is evaporated by direct heating with a high-temperature gas in a space into which the high-temperature gas generated in the rich combustion step flows and heated to a desired temperature. This temperature is controlled so that the inlet gas temperature of the reformer does not exceed the heat resistance temperature of the catalyst. Further, in the reforming step (C), the heated mixed raw material is reformed into a hydrogen-containing gas.
[0049]
According to the above-described configuration of the present invention, the fuel is burned with the rich burner 12 at a fuel-air ratio of 1 or more to generate a high-temperature gas that is in a reduced state that does not contain oxygen after combustion that does not contain oxygen. Even when liquid fuel (for example, methanol) is used, it can be ignited in a short time and a high-temperature gas can be generated in a short time (about several seconds). This high-temperature gas uses a mixed fuel of methanol and water, and when S / C = 1.5 suitable for reforming, the fuel-air ratio 1 is about 1670K, and the fuel-air ratio 1.1 is about 1470K. It was confirmed by trial calculation that a high temperature of about 1200 ° C. or higher can be obtained even when the mixed fuel is directly burned.
[0050]
Further, the evaporative heating device 14 evaporates the mixed raw material of fuel and water by direct heating with the heat of the high-temperature gas and heats it to a desired temperature in the space into which the high-temperature gas generated by the rich combustion burner flows. Easy to control. Further, for example, the reforming catalyst located on the downstream side can be directly heated by the heat, so that a large heat exchanger is not required as in the indirect heating type, and the size can be easily reduced. Further, since ignition, combustion, and heating can be performed in a short time, the fuel cell can be started up in a short time.
[0051]
Also, a high-temperature gas of, for example, 1000 ° C. or more can be generated in a short time by simply injecting fuel into the combustion chamber 12a with the fuel injector 12b and igniting the fuel with the igniter 12c. In addition, by simply spraying the mixed raw material into the combustion chamber 12a or the evaporative heating chamber 14a by the raw material sprayer 14b, the mixed raw material of fuel and water can be evaporated and heated, and temperature control can be facilitated by the flow rate.
[0052]
Further, the mixed raw material is evaporated and heated in a short time by the fuel heating device, and is supplied to the reformer 16 at a temperature not exceeding the heat resistance temperature of the catalyst (for example, 350 ° C. or less), so that the reforming reaction is sufficiently performed even near the inlet. It is possible to proceed and fully utilize the catalyst.
[0053]
Further, a heat exchanger for indirectly heating the reforming catalyst on the downstream side in the reformer 16 and a high-temperature gas line for supplying a part of the high-temperature gas generated in the rich combustion burner 12 to the heat exchanger. The downstream reforming catalyst is indirectly heated with a high-temperature gas to suppress a temperature drop due to the reforming reaction (endothermic reaction) of the downstream reforming catalyst and increase the reforming rate in the reformer. it can.
[0054]
Further, the start-up method of the present invention generates a high-temperature gas that is burned at a fuel-air ratio of 1 or more in the rich combustion step (A) and enters a reduced state that does not contain oxygen after combustion. For example, even when methanol is used, ignition can be performed in a short time, and a high-temperature gas of, for example, 1000 ° C. or more can be generated in a short time (about several seconds).
[0055]
Further, in the evaporation heating step (B) , the mixed raw material of fuel and water is evaporated by direct heating with the high-temperature gas and heated to a desired temperature in the space where the high-temperature gas generated in the rich combustion step flows. Easy to control. Furthermore, in the reforming step (C), the reforming catalyst located on the downstream side can be directly heated by the heat possessed by the mixed gas, so that a large heat exchanger as in the indirect heating type is not required and can be easily performed. Miniaturization is possible. Further, since ignition, combustion, and heating can be performed in a short time, the fuel cell can be started up in a short time.
[0056]
Furthermore, the temperature of the mixed raw material is controlled in the evaporative heating chamber so that the reformer inlet gas temperature does not exceed the heat-resistant temperature of the catalyst, thereby preventing the catalyst from being heated and extending the life of the catalyst and generating CO at a high temperature. Can be suppressed.
[0057]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0058]
【The invention's effect】
As described above, the fuel heating device of the present invention, the fuel processing device using the fuel heating device, and the starting method thereof can be started up in a short time even when liquid fuel (for example, methanol) is used as the fuel, and can be easily downsized. It has excellent effects such as being able to.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a fuel heating apparatus according to the present invention and a fuel processing apparatus using the same.
FIG. 2 is a configuration diagram of a fuel heating device of the present invention.
FIG. 3 is another configuration diagram of the fuel heating device of the present invention.
FIG. 4 is still another configuration diagram of the fuel heating apparatus of the present invention.
FIG. 5 is still another configuration diagram of the fuel heating apparatus of the present invention.
FIG. 6 is a configuration diagram of a conventional fuel processing apparatus.
[Explanation of symbols]
1 Combustion / reforming catalyst, 2 partial oxidation reformer, 4 upstream air line, 6 downstream air line, 8 flow controller, 10 fuel heating device, 10a anode exhaust gas supply port, 10b air inlet, 10c return port 11 reforming catalyst, 12 over-burning burner, 12a combustion chamber, 12b fuel injector, 12c igniter, 13a heat exchanger, 13b high-temperature gas line, 14 evaporative heating device, 14a evaporative heating chamber, 14b raw material sprayer, 14c venturi Mixer section, 15 liner, 16 reformer, 18 CO remover, 19a, 19b heat exchanger, 20 fuel cell (PEFC)

Claims (5)

燃料を燃空比1以上で燃焼させる燃焼室を有し該燃焼室において燃焼後に酸素を含まない還元状態となる高温ガスを発生させる過濃燃焼バーナと、
該過濃燃焼バーナで発生した高温ガスが流入する空間内で燃料と水の混合原料を前記高温ガスの熱で直接加熱により蒸発させて所望の温度に加熱する蒸発加熱装置とを備え、
前記燃焼室は、燃焼室を構成するライナーを囲むジャケットを有し、混合原料は該ジャケット内に噴霧され、ライナーに設けられた細孔から燃焼室内部に浸み出し、これにより燃焼室を浸み出し冷却する、ことを特徴とする燃料加熱装置。
A rich combustion burner that has a combustion chamber that burns fuel at a fuel-air ratio of 1 or more and generates a high-temperature gas that is in a reduced state that does not contain oxygen after combustion in the combustion chamber ;
An evaporative heating device that evaporates the mixed raw material of fuel and water by direct heating with the heat of the high-temperature gas and heats it to a desired temperature in a space into which the high-temperature gas generated in the rich combustion burner flows,
The combustion chamber has a jacket surrounding the liner constituting the combustion chamber, and the mixed raw material is sprayed into the jacket and oozes out from the pores provided in the liner into the combustion chamber, thereby immersing the combustion chamber. A fuel heating apparatus characterized by being cooled by cooling .
前記過濃燃焼バーナは、該燃焼室内に燃料を噴射する燃料噴射器と、燃料を着火するイグナイタとを備え、前記蒸発加熱装置は、燃焼室の下流側に連結された蒸発加熱室と、燃焼室または蒸発加熱室に混合原料を噴霧する原料噴霧器とを備える、ことを特徴とする請求項1に記載の燃料加熱装置。  The rich combustion burner includes a fuel injector that injects fuel into the combustion chamber and an igniter that ignites the fuel, and the evaporation heating device includes an evaporation heating chamber connected to the downstream side of the combustion chamber, a combustion chamber The fuel heating apparatus according to claim 1, further comprising: a raw material sprayer that sprays the mixed raw material into the chamber or the evaporation heating chamber. 前記蒸発加熱室は、燃焼室の下流側に混合原料と燃焼ガスの混合を促進するベンチュリーミキサー部を有する、ことを特徴とする請求項2に記載の燃料加熱装置。  The fuel heating apparatus according to claim 2, wherein the evaporation heating chamber has a venturi mixer section that promotes mixing of the mixed raw material and the combustion gas on the downstream side of the combustion chamber. 燃料を燃空比1以上で燃焼させて燃焼後に酸素を含まない還元状態となる高温ガスを発生させる過濃燃焼バーナと、該過濃燃焼バーナで発生した高温ガスが流入する空間内で燃料と水の混合原料を前記高温ガスの熱で直接加熱により蒸発させて所望の温度に加熱する蒸発加熱装置とを有する燃料加熱装置と、
該燃料加熱装置の下流側に設けられ、改質触媒が充填され、混合原料を水素含有ガスに改質する改質器と、
前記改質器内の下流側の改質触媒を間接加熱する熱交換器と、
前記過濃燃焼バーナ内で発生した高温ガスの一部を該熱交換器に供給する高温ガスラインと、を備え、
下流側の改質触媒を高温ガスで間接加熱し、
改質器の入口ガス温度が触媒の耐熱温度を超えないように前記蒸発加熱室において混合原料の温度を制御する、ことを特徴とする燃料処理装置。
A rich combustion burner that burns fuel at a fuel-air ratio of 1 or more to generate a hot gas that is in a reduced state that does not contain oxygen after combustion, and a fuel in a space into which the hot gas generated by the rich combustion burner flows A fuel heating device having an evaporation heating device for evaporating a mixed raw material of water by direct heating with the heat of the high-temperature gas and heating it to a desired temperature;
A reformer that is provided downstream of the fuel heating device, is filled with a reforming catalyst, and reforms the mixed raw material into a hydrogen-containing gas;
A heat exchanger for indirectly heating the reforming catalyst on the downstream side in the reformer;
A hot gas line for supplying a part of the hot gas generated in the rich burner to the heat exchanger ,
Indirect heating of the downstream reforming catalyst with hot gas,
A fuel processing apparatus, wherein the temperature of the mixed raw material is controlled in the evaporative heating chamber so that an inlet gas temperature of the reformer does not exceed a heat resistant temperature of the catalyst.
前記熱交換器において熱交換が行われた前記高温ガスを前記燃焼加熱装置に戻す戻りラインを備えることを特徴とする請求項に記載の燃料処理装置。The fuel processing apparatus according to claim 4 , further comprising a return line that returns the high-temperature gas that has undergone heat exchange in the heat exchanger to the combustion heating apparatus.
JP2001365519A 2001-11-30 2001-11-30 Fuel heating device and fuel processing device using the same Expired - Fee Related JP3918915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365519A JP3918915B2 (en) 2001-11-30 2001-11-30 Fuel heating device and fuel processing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365519A JP3918915B2 (en) 2001-11-30 2001-11-30 Fuel heating device and fuel processing device using the same

Publications (2)

Publication Number Publication Date
JP2003166701A JP2003166701A (en) 2003-06-13
JP3918915B2 true JP3918915B2 (en) 2007-05-23

Family

ID=19175532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365519A Expired - Fee Related JP3918915B2 (en) 2001-11-30 2001-11-30 Fuel heating device and fuel processing device using the same

Country Status (1)

Country Link
JP (1) JP3918915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075316A (en) * 2014-06-25 2014-10-01 湖南三一路面机械有限公司 Combustor and bituminous mixing plant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560495B1 (en) 2004-01-28 2006-03-14 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having thereof
KR101060065B1 (en) 2008-12-04 2011-08-29 두산중공업 주식회사 Stack Direct Catalytic Combustion Device for MCFC
KR20120067814A (en) * 2010-12-16 2012-06-26 주식회사 효성 Reformer burner for a fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075316A (en) * 2014-06-25 2014-10-01 湖南三一路面机械有限公司 Combustor and bituminous mixing plant

Also Published As

Publication number Publication date
JP2003166701A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
KR100599885B1 (en) Combustor, fuel reforming device, fuel cell system and method for starting up the fuel reforming system
EP1840997B1 (en) Method of starting solid oxide fuel cell system
US8557460B2 (en) Hydrogen system and method for starting up a hydrogen system
US7008707B2 (en) Direct water vaporization for fuel processor startup and transients
US20050028445A1 (en) Method and system for catalytic gasification of liquid fuels
JP2004018363A (en) Apparatus for fuel reforming
JP2009504558A (en) Fuel cell system and method for operating reformer
KR20040032784A (en) Hydrogen generator and electric generator using the same
JP4000588B2 (en) Fuel processing apparatus and starting method thereof
JP4728475B2 (en) Fuel cell system
JP3918915B2 (en) Fuel heating device and fuel processing device using the same
JP3398862B2 (en) How to warm up the fuel evaporator
CN101573289A (en) Reformer, and method for reacting fuel and oxidant to gaseous reformate
JP2004149407A (en) Hydrogen generating apparatus and power generating apparatus using the same
JP4098332B2 (en) Reformer and fuel cell system
JP4622066B2 (en) Hydrogen generator
JP4000860B2 (en) Fuel processing apparatus and starting method thereof
JP2005041732A (en) Fuel reformer
JP2003077517A (en) Fuel cell system
JP2005050563A (en) Fuel reforming system
CN115000473A (en) Universal liquid fuel reformer system
JP2004035308A (en) Partial oxidation reforming apparatus
JP2001052730A (en) Fuel cell power generating device
JP2002093451A (en) Vaporization method for water-insoluble liquid fuel used for fuel cell system
JP2003238108A (en) Fuel reforming apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees