JP2002243638A - Inline particle water-measuring system - Google Patents

Inline particle water-measuring system

Info

Publication number
JP2002243638A
JP2002243638A JP2001038409A JP2001038409A JP2002243638A JP 2002243638 A JP2002243638 A JP 2002243638A JP 2001038409 A JP2001038409 A JP 2001038409A JP 2001038409 A JP2001038409 A JP 2001038409A JP 2002243638 A JP2002243638 A JP 2002243638A
Authority
JP
Japan
Prior art keywords
moisture
displacement
average
output value
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001038409A
Other languages
Japanese (ja)
Other versions
JP3527476B2 (en
Inventor
Naoto Yoshikawa
直人 吉川
Masayoshi Ueda
優美 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Original Assignee
SOLT INDUSTRY CT OF JAPAN
Salt Industry Center of Japan.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLT INDUSTRY CT OF JAPAN, Salt Industry Center of Japan. filed Critical SOLT INDUSTRY CT OF JAPAN
Priority to JP2001038409A priority Critical patent/JP3527476B2/en
Publication of JP2002243638A publication Critical patent/JP2002243638A/en
Application granted granted Critical
Publication of JP3527476B2 publication Critical patent/JP3527476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To automatically, rapidly, accurately, and continuously measure water in a particle that travels by a belt conveyor located, in the manufacturing line of particles. SOLUTION: The surface of a particle layer B (crystal salt layer), traveling on the belt conveyor A, is smoothed by a straightening vane C. A voltage signal corresponding to the water and particle diameter of a particle is obtained by an infrared reflection type moisture meter E. The displacement in the surface of the particle layer B1, whose surface has been smoothed is measured speedily in ms order for each minute length for obtaining as a voltage signal. The moisture output value of the infrared reflection type moisture meter E and the displacement output value of an optical displacement meter F are read speedily by a data collection device G. An average moisture output value and the absolute value (displacement difference) of the displacement output value difference between minute lengths are successively calculated by an operation processing device H, and are averaged to calculate average displacement difference. Using the average moisture output value and the average displacement difference, the water in the particle is calculated from the relation among the water in the particles, the average moisture output value, and the average displacement difference being created in advance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉粒体の水分を製
造ラインであるベルトコンベア上において、自動で、迅
速に、しかも精度よく連続測定でき、さらに水分測定時
に粉粒体の比表面積あるいは粒径に応じた検量線を用い
ることなく、単一の検量線により種々の比表面積あるい
は粒径を持つ粉粒体の水分測定に対応できるインライン
測定システムであり、粉粒体製造工業における製品のリ
アルタイムな水分管理および制御に好適なシステムであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a method for automatically, quickly and accurately measuring the water content of a granular material on a belt conveyor as a production line. This is an in-line measurement system that can respond to moisture measurement of powders with various specific surface areas or particle diameters by using a single calibration curve without using a calibration curve corresponding to the particle size. It is a system suitable for real-time moisture management and control.

【0002】[0002]

【従来の技術】粉粒体製造工業において、製品である粉
粒体の水分は品質を決定する重要な因子の一つであるた
め、その管理は重要である。また、粉粒体を使用するユ
ーザーの水分に対する要望は多種多様であり、製造者は
これを満足する粉粒体を製品として提供する必要があ
る。
2. Description of the Related Art In the powder and granule manufacturing industry, the water content of a powder, which is a product, is one of the important factors for determining the quality, and therefore its management is important. In addition, there is a wide variety of demands for moisture from users who use the granules, and it is necessary for manufacturers to provide granules satisfying the requirements as products.

【0003】現在、粉粒体の水分管理に使用されている
センサーの一つに赤外反射式水分計がある。しかし、赤
外反射式水分計により測定された水分は粉粒体の比表面
積あるいは粒径の影響を受けるため、比表面積あるいは
粒径の異なる試料ごとに検量線を変更することが必要で
あった。なお、赤外反射式水分計は粉粒体表面の液厚に
応じて水分出力値を出力するため、粒径が大きくなると
比表面積が小さくなるので粉粒体の表面の液厚が大きく
なり、同じ水分%の小粒径の粉粒体と比較して水分出力
値は大きくなる。また、試料の比表面積に即した検量線
を用いた場合においても比表面積の小さな変動により、
測定される水分値は変動し十分な測定精度を得られない
のが現状である。
At present, an infrared reflection type moisture meter is one of the sensors used for moisture control of powders. However, since the moisture measured by the infrared reflection moisture meter is affected by the specific surface area or particle size of the powder, it was necessary to change the calibration curve for each sample having a different specific surface area or particle size. . In addition, since the infrared reflection type moisture meter outputs a moisture output value according to the liquid thickness of the surface of the granular material, the specific surface area decreases as the particle size increases, so the liquid thickness on the surface of the granular material increases, The water output value is larger than that of a powder having the same water content and a small particle diameter. In addition, even when using a calibration curve in accordance with the specific surface area of the sample, small fluctuations in the specific surface area
At present, the measured moisture value fluctuates and sufficient measurement accuracy cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、粉粒体の水
分を製造ラインであるベルトコンベア上において、自動
で、迅速に、精度よく連続測定でき、さらに水分測定時
に粉粒体の比表面積あるいは粒径に応じた検量線を用い
ることなく単一の検量線により種々の比表面積あるいは
粒径を持つ粉粒体の水分測定に対応できるインライン測
定システムを提供することを課題とする。
SUMMARY OF THE INVENTION According to the present invention, the water content of a granular material can be automatically, quickly and accurately continuously measured on a belt conveyor as a production line. Another object of the present invention is to provide an in-line measurement system capable of responding to moisture measurement of powders having various specific surface areas or particle diameters by using a single calibration curve without using a calibration curve corresponding to a particle size.

【0005】[0005]

【課題を解決するための手段】前述のとおり、赤外反射
式水分計により出力される水分出力値は、粉粒体の比表
面積の減少あるいは粒径の増加に伴い増加する。このた
め、種々の比表面積を持つ粉粒体の水分を正確に測定す
るためには、水分出力値を比表面積で補正する必要があ
り、赤外反射式水分計と比表面積を測定できる機器を組
み合わせて水分を測定することが必要である。
As described above, the moisture output value outputted by the infrared reflection moisture meter increases as the specific surface area of the granular material decreases or as the particle size increases. For this reason, in order to accurately measure the water content of powders having various specific surface areas, it is necessary to correct the water output value with the specific surface area, and an infrared reflection type moisture meter and a device that can measure the specific surface area are required. It is necessary to measure moisture in combination.

【0006】本発明の発明者は、表面を平滑にした粉粒
体層において、粉粒体の比表面積の減少あるいは粒径の
増加に伴い平滑にした表面の粗さが増加することに着目
し、粉粒体層の表面の変位を連続的に測定することによ
り、比表面積が測定できるのではないかと考えた。
[0006] The inventor of the present invention has noticed that in a granular material layer having a smooth surface, the roughness of the smooth surface increases as the specific surface area of the granular material decreases or the particle size increases. It was thought that the specific surface area could be measured by continuously measuring the displacement of the surface of the granular material layer.

【0007】赤外反射式水分計は、インライン測定機器
として一般に製造ラインであるベルトコンベア上部に設
置されている場合が多く、粉粒体はベルトコンベア上を
一定速度で移動する。このため、赤外反射式水分計の前
後に粉粒体層の表面の変位を測定する光学式変位計を設
置することが水分計の比表面積補正に有効であると考え
た。また、微小な粉粒体層の表面の変位の変化を微小長
さごとに正確に測定するための機器としてスポット径が
粉粒体の粒径に近く、取り込み速度が速い光学式変位計
を適用することとした。さらに、ベルトコンベア自体の
変動による粉粒体層の表面の変位変動への影響を小さく
するため、数千点の微小長さごとの変位を測定し、微小
長さ間の変位の差を算出して、これらの絶対値を平均し
た平均変位差と粉粒体の比表面積の逆数との間に良好な
相関関係があることを見出した。
The infrared reflection type moisture meter is often installed as an in-line measuring device above a belt conveyor, which is generally a production line, and the granular material moves at a constant speed on the belt conveyor. For this reason, it was considered effective to correct the specific surface area of the moisture meter by installing an optical displacement meter that measures the displacement of the surface of the granular material layer before and after the infrared reflection moisture meter. In addition, an optical displacement meter with a spot diameter close to the particle size and a high loading speed is used as an instrument to accurately measure the change in displacement of the surface of the fine particle layer for each minute length. It was decided to. Furthermore, in order to reduce the effect of the fluctuation of the belt conveyor itself on the fluctuation of the surface of the powder and granular material layer, the displacement at every minute length of several thousand points is measured, and the difference of the displacement between the minute lengths is calculated. It has been found that there is a good correlation between the average displacement difference obtained by averaging these absolute values and the reciprocal of the specific surface area of the granular material.

【0008】以上の検討をもとに、赤外反射式水分計と
光学式変位計を組み合わせて粉粒体の水分を単一の検量
線によりインライン測定できる本発明を完成するに至っ
た。すなわち、本発明の課題を解決する手段は以下のと
おりである。
[0008] Based on the above examination, the present invention has been completed in which the moisture of the granular material can be measured in-line by a single calibration curve by combining an infrared reflection moisture meter and an optical displacement meter. That is, means for solving the problems of the present invention are as follows.

【0009】請求項1のインライン粉粒体水分測定シス
テムは、ベルトコンベア上を移動する粉粒体の水分をイ
ンラインで自動測定するインライン粉粒体水分測定シス
テムであって、移動する粉粒体層の表面を平滑にするた
めの均し手段と、前記平滑にされた移動する粉粒体層に
ついて、粉粒体の水分および比表面積あるいは粒径に応
じた出力値を出力する赤外反射式水分計と、前記平滑に
された移動する粉粒体層の表面の変位を微小長さごとに
高速で測定し該変位に応じた出力値を出力する光学式変
位計と、前記赤外反射式水分計と前記光学式変位計から
出力されたそれぞれの出力値を高速で取り込むデータ収
集装置と、前記赤外反射式水分計の出力値を平均するこ
とにより平均水分出力値を算出し、前記光学式変位計の
微小長さごとの出力値から微小長さ間の変位出力値差の
絶対値である変位差を順次算出し、さらに平均すること
により粉粒体の比表面積と高い相関関係にある平均変位
差を算出し、算出した平均水分出力値と平均変位差を用
いて、予め作成しておいた粉粒体の水分と平均水分出力
値および平均変位差との関係式から粉粒体の水分を演算
する演算処理装置と、から構成されたことを特徴とす
る。
The in-line particulate moisture measurement system according to claim 1 is an in-line particulate moisture measurement system for automatically measuring the moisture of a particulate moving on a belt conveyor in-line. Leveling means for smoothing the surface of the particles, and infrared reflection type moisture for outputting an output value corresponding to the moisture and specific surface area or particle size of the smoothed moving granular material layer. An optical displacement meter that measures the displacement of the surface of the smoothed moving granular material layer at a high speed for each minute length and outputs an output value according to the displacement; A data collection device that captures each output value output from the optical displacement meter at a high speed and an average moisture output value by averaging the output values of the infrared reflection moisture meter, and calculating the optical moisture value. Displacement meter for each minute length The displacement difference, which is the absolute value of the displacement output value difference between minute lengths, is sequentially calculated from the values, and the average displacement difference having a high correlation with the specific surface area of the granular material is calculated by further averaging, and the calculated average Using the moisture output value and the average displacement difference, an arithmetic processing unit that computes the moisture of the granule from the relational expression between the moisture of the granule and the average moisture output value and the average displacement difference created in advance. It is characterized by comprising.

【0010】請求項2のインライン粉粒体水分測定シス
テムは、請求項1の構成を備え、前記平均水分出力値と
前記平均変位差とから前記粉粒体の水分を算出する演算
式が以下のように表すことができることを特徴とする。 W=a0 +a1 ・WM /(AVE(dLn ))^a2 W:粉粒体の水分 WM :平均水分出力値 AVE(dLn ):平均変位差 a0 ,a1 ,a2 :粉粒体の形状、使用する水分計およ
び変位計、ベルトコンベア速度、変位データ取り込み速
度により決定される係数
[0010] An inline powder moisture measuring system according to a second aspect has the configuration of the first aspect, and an arithmetic expression for calculating the moisture of the powder from the average moisture output value and the average displacement difference is as follows. It can be expressed as follows. W = a 0 + a 1 · W M / (AVE (dL n )) ^ a 2 W: Moisture of the granular material W M : average moisture output value AVE (dL n ): average displacement difference a 0 , a 1 , a 2 : Coefficient determined by the shape of powder and granules, moisture meter and displacement meter used, belt conveyor speed, displacement data acquisition speed

【0011】請求項3のインライン粉粒体水分測定シス
テムは、請求項1の構成を備え、前記平均変位差から粉
粒体の比表面積を算出する演算式が以下のように表すこ
とができることを特徴とする。 S=1/(b0 +b1 ・AVE(dLn )) S:粉粒体の比表面積 AVE(dLn ):平均変位差 b0 ,b1 :粉粒体の形状、使用する変位計、ベルトコ
ンベア速度、変位データ取り込み速度により決定される
係数
[0013] A third aspect of the present invention provides the in-line particulate moisture measurement system, wherein the arithmetic expression for calculating the specific surface area of the granular material from the average displacement difference can be expressed as follows. Features. S = 1 / (b 0 + b 1 AVE (dL n )) S: Specific surface area of powder and granular material AVE (dL n ): average displacement difference b 0 , b 1 : shape of powder and particle, displacement meter used, Coefficient determined by belt conveyor speed, displacement data capture speed

【0012】[0012]

【発明の実施の形態】以下に、本発明のインライン粉粒
体水分測定システムを製塩工場における塩製品の測定に
適用した実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the in-line water content measurement system of the present invention is applied to the measurement of salt products in a salt factory will be described below.

【0013】(1)測定システム概要 図1は本発明の実施例のインライン粉粒体水分測定シス
テムの概要を示す図である。本システムは、ベルトコン
ベアA上を移動する粉粒体(結晶塩)の水分をインライ
ンで自動測定するシステムであり、移動する粉粒体層B
の表面を平滑にするための均し手段としての整流板C、
表面を平滑にした粉粒体層B1の水分と比表面積あるい
は粒径に応じた電圧信号を出力する赤外反射式水分計
E、表面を平滑にした粉粒体層B1の表面の変位を微小
長さごとにms(ミリ秒)オーダーの高速で測定し、電
圧信号として出力する光学式変位計F、赤外反射式水分
計Eと光学式変位計Fから出力された水分出力値と変位
出力値を高速で取り込むデータ収集装置G、水分出力値
を平均することにより平均水分出力値を算出し、一方、
微小長さごとの変位出力値の変化から微小長さ間の変位
出力値差の絶対値である変位差を順次算出し、さらに平
均することにより粉粒体の比表面積と高い相関関係にあ
る平均変位差を算出し、算出した平均水分出力値と平均
変位差を用いて、予め作成しておいた粉粒体の水分と平
均水分出力値および平均変位差との関係式から粉粒体の
水分を演算するための演算処理装置Hから構成される。
(1) Outline of Measuring System FIG. 1 is a diagram showing an outline of an in-line granular material moisture measuring system according to an embodiment of the present invention. This system is a system for automatically measuring in-line the water content of the granular material (crystal salt) moving on the belt conveyor A, and the moving granular material layer B
Rectifying plate C as a leveling means for smoothing the surface of
Infrared reflection type moisture meter E that outputs a voltage signal according to the moisture and specific surface area or particle size of the powder layer B1 whose surface is smoothed, and the displacement of the surface of the powder layer B1 whose surface is smooth is minute. The optical displacement meter F, which measures at a high speed of the order of ms (milliseconds) for each length and outputs it as a voltage signal, the moisture output value output from the infrared reflection moisture meter E and the moisture output value output from the optical displacement meter F and displacement output The data collection device G, which takes in the values at high speed, calculates the average moisture output value by averaging the moisture output values,
The displacement difference, which is the absolute value of the displacement output value difference between minute lengths, is sequentially calculated from the change in the displacement output value for each minute length, and further averaged to obtain an average having a high correlation with the specific surface area of the granular material. The displacement difference is calculated, and using the calculated average moisture output value and the average displacement difference, the water content of the granular material is calculated from the relational expression between the moisture of the granule and the average moisture output value and the average displacement difference prepared in advance. Is configured by an arithmetic processing unit H for calculating.

【0014】なお、光学式変位計Fは、例えばレーザー
式変位センサを用いたものであり、レーザー光を被測定
物に照射してその反射光のスポット位置を光位置検出素
子(PSD)で検出し、三角測量を応用して被測定物の
表面の変位を検出するものである。
The optical displacement meter F uses, for example, a laser displacement sensor, and irradiates a laser beam to an object to be measured and detects a spot position of the reflected light with a light position detecting element (PSD). Then, the displacement of the surface of the measured object is detected by applying triangulation.

【0015】図2にインライン自動測定フローチャート
を示す。測定開始を選択すると水分測定が開始される。
この時、水分出力値、変位出力値のデータ収集装置Gへ
の取り込みは待機状態になる。ベルトコンベアA上に粉
粒体層Bが存在し、整流板Cにより表面を平滑にした粉
粒体層B1の変位出力値がほぼ一定になったことを変位
計Fが検知し、赤外反射式水分計Eからの水分出力値と
光学式変位計Fからの変位出力値のデータ収集装置Gへ
の取り込みが始まる。
FIG. 2 shows a flowchart of the in-line automatic measurement. When measurement start is selected, moisture measurement is started.
At this time, the capturing of the moisture output value and the displacement output value into the data collection device G is in a standby state. The displacement meter F detects that the granular material layer B exists on the belt conveyor A, and the displacement output value of the granular material layer B1 whose surface is smoothed by the rectifying plate C becomes substantially constant, and the infrared reflection is performed. The capture of the moisture output value from the moisture analyzer E and the displacement output value from the optical displacement meter F into the data collection device G starts.

【0016】任意の点数(本実施例では6000点)の
取り込みが終了すると取り込まれた水分出力値の平均値
である平均水分出力値と変位出力値の変動から平均変位
差が算出され、これらの値から水分値が演算される。演
算が終了した後、データ収集装置Gのデータ取り込みは
待機状態になり、表面を平滑にした粉粒体層B1が存在
すると水分出力値、変位出力値の取り込みを再び開始す
る。このため、ベルトコンベアA上に表面を平滑にした
粉粒体層B1が存在する限り連続して水分値が自動測定
される。
When the capturing of an arbitrary number of points (6000 points in this embodiment) is completed, the average displacement difference is calculated from the average moisture output value, which is the average value of the captured moisture output values, and the variation of the displacement output value. The moisture value is calculated from the value. After the calculation is completed, the data acquisition of the data collection device G is in a standby state, and the acquisition of the moisture output value and the displacement output value is started again when the granular material layer B1 having a smooth surface is present. Therefore, the moisture value is automatically measured continuously as long as the granular material layer B1 having a smooth surface is present on the belt conveyor A.

【0017】本実施例における水分出力値、変位出力値
の取り込み速度は1msであり、6000点のデータを
取り込むための測定時間は6秒であり、演算時間を含め
ても1点あたりの測定時間は10秒程度となり、リアル
タイムなインライン自動測定が実現できる。
In this embodiment, the capture speed of the moisture output value and the displacement output value is 1 ms, the measurement time for capturing the data of 6000 points is 6 seconds, and the measurement time per point including the calculation time. Is about 10 seconds, and real-time automatic in-line measurement can be realized.

【0018】(2)粉粒体層変位測定例 図3に本実施例のシステムを用いて1msのデータ取り
込み速度で測定した表面を平滑にした粉粒体層B1の変
位測定例として比表面積が異なる3種類の粉粒体につい
て測定した変位出力値(電圧)の経時変化を示す。ま
た、粉粒体が存在しないときのベルトコンベアA自体の
変位出力値の経時変化もあわせて示す。同図よりベルト
コンベアAの変位変動と比較して表面を平滑にした粉粒
体層B1が存在するときの変位変動は大きかった。ま
た、粉粒体の比表面積の減少に伴い変位変動は増加し
た。
(2) Example of Measurement of Displacement of Granular Material Layer FIG. 3 shows an example of measuring the displacement of the granular material layer B1 having a smooth surface measured using the system of this embodiment at a data acquisition speed of 1 ms. The change with time of the displacement output value (voltage) measured for three different types of powders is shown. In addition, the change with time of the displacement output value of the belt conveyor A itself when no powder or granules exist is also shown. As shown in the figure, the displacement fluctuation when the powder layer B1 having a smooth surface is present is larger than the displacement fluctuation of the belt conveyor A. In addition, the displacement fluctuation increased with the decrease in the specific surface area of the granular material.

【0019】図4に変位差(電圧換算値)の算出例を示
す。変位差dLn はある時点で測定した変位出力値Ln
と1ms後に測定した変位出力値Ln+1 との差の絶対値
と定義し、以下の(1)式を用いて算出した。 dLn =ABS(Ln −Ln+1 ) ……(1) 同図より粉粒体の比表面積の減少に伴い変位差は増加す
る傾向が見られ、光学式変位計による比表面積測定の可
能性が示唆された。
FIG. 4 shows an example of calculating the displacement difference (voltage conversion value). Displacement difference dL n displacement output values measured at some point is L n
And the absolute value of the difference between the displacement output value Ln + 1 measured after 1 ms and was calculated using the following equation (1). dL n = ABS (L n −L n + 1 ) (1) From the figure, it can be seen that the displacement difference tends to increase as the specific surface area of the granular material decreases. The possibility was suggested.

【0020】(3)平均変位差と比表面積との関係 図5に測定した変位出力値(本実施例では6000点)
から算出した変位差(本実施例では5999点)を平均
した平均変位差(電圧換算値)と粉粒体の比表面積の逆
数との関係を示す。これらの間には(2)式に示す相関
係数0.981の良好な直線関係が見られ、平均変位差
から比表面積を推定することが可能となった。 1/S=b0 +b1 ・AVE(dLn ) ……(2) S:粉粒体の比表面積 AVE(dLn ):平均変位差 b0 ,b1 :粉粒体の形状、使用する変位計、ベルトコ
ンベア速度、変位データ取り込み速度により決定される
係数
(3) Relationship between average displacement difference and specific surface area Displacement output value measured in FIG. 5 (6000 points in this embodiment)
The relationship between the average displacement difference (voltage conversion value) obtained by averaging the displacement difference (5999 points in the present embodiment) calculated from the above and the reciprocal of the specific surface area of the granular material is shown. A good linear relationship with a correlation coefficient of 0.981 shown in equation (2) was found between them, and it became possible to estimate the specific surface area from the average displacement difference. 1 / S = b 0 + b 1 AVE (dL n ) (2) S: specific surface area of powder and granular material AVE (dL n ): average displacement difference b 0 , b 1 : shape of powder and particle, used Coefficient determined by displacement meter, belt conveyor speed, displacement data acquisition speed

【0021】図6に比表面積の分析値と(2)式による
予測値との関係を示す。比表面積予測誤差はほぼ±5cm
2/g の範囲に入っており、平均予測誤差は2.22cm2/
g であった。このように、請求項3に対応して平均変位
差から粉粒体の比表面積を求めることができる。
FIG. 6 shows the relationship between the analytical value of the specific surface area and the predicted value according to the equation (2). Specific surface area prediction error is approximately ± 5cm
And within the range of 2 / g, the average prediction error 2.22 cm 2 /
g. As described above, the specific surface area of the granular material can be obtained from the average displacement difference according to the third aspect.

【0022】(4)平均水分出力値と水分との関係 図7に赤外反射式水分計で測定した平均水分出力値と水
分分析値との関係を示す。これらの相関係数は0.15
3であり、水分出力値が比表面積による影響を受けるた
め、これらの間には相関関係は見られなかった。
(4) Relationship between Average Moisture Output Value and Moisture FIG. 7 shows the relationship between the average moisture output value measured by an infrared reflection moisture meter and the moisture analysis value. These correlation coefficients are 0.15
3, since the water output value was affected by the specific surface area, there was no correlation between them.

【0023】(5)平均水分出力値の平均変位差による
補正 水分出力値は、粉粒体の比表面積の減少に伴い増加す
る。そこで、比表面積に反比例する平均変位差を用いて
平均水分出力値補正について種々検討した結果、平均水
分出力値を平均変位差の0.62乗で除した平均水分出
力補正値と水分の間に良好な相関関係にあることを見出
した。本実施例における平均水分出力値は上記に示した
変位差の0.62乗で補正する方法が最適であったが、
使用する水分計、変位計、測定条件により最適値の0.
62は変化することが考えられるため、実態に即した値
を定めることが必要である。
(5) Correction of the average moisture output value by the average displacement difference The moisture output value increases as the specific surface area of the granular material decreases. Therefore, as a result of various studies on the average moisture output value correction using the average displacement difference that is inversely proportional to the specific surface area, the average moisture output correction value obtained by dividing the average moisture output value by the 0.62 power of the average displacement difference and the moisture were obtained. It was found that there was a good correlation. The method of correcting the average moisture output value in the present embodiment by the 0.62 power of the displacement difference shown above was optimal,
The optimum value depends on the moisture meter, displacement meter and measurement conditions used.
Since it is considered that 62 changes, it is necessary to determine a value according to the actual situation.

【0024】図8に水分分析値と平均水分出力補正値と
の関係を示す。これらの間には(3)式に示す相関係数
0.73の直線関係が見られ、補正を行わなかった場合
と比較して相関性は大幅に向上した。 WA =a0 +a1 ・WM /(AVE(dLn ))0.62 ……(3) WA :水分分析値 WM :平均水分出力値 AVE(dLn ):平均変位差 a0 ,a1 :粉粒体の形状、使用する水分計および変位
計、ベルトコンベア速度、変位データ取り込み速度によ
り決定される係数
FIG. 8 shows the relationship between the moisture analysis value and the average moisture output correction value. A linear relationship with a correlation coefficient of 0.73 shown in equation (3) was observed between them, and the correlation was significantly improved as compared with the case where no correction was performed. W A = a 0 + a 1 · W M / (AVE (dL n)) 0.62 ...... (3) W A: Moisture analysis W M: average moisture output value AVE (dL n): average displacement difference a 0, a 1 : Coefficient determined by the shape of powder and granules, moisture meter and displacement meter to be used, belt conveyor speed, displacement data acquisition speed

【0025】そこで、請求項2に対応して、上式(3)
の水分分析値WA を粉粒体の水分Wに置き換えた次式
(4)により粉粒体の水分を測定するようにした。 W=a0 +a1 ・WM /(AVE(dLn ))0.62 ……(4) これにより、粉粒体の比表面積あるいは粒径に応じた検
量線を用いることなく単一の検量線により種々の比表面
積あるいは粒径を持つ粉粒体の水分測定に対応できるイ
ンライン測定システムとすることができた。
Therefore, according to claim 2, the above equation (3)
And to measure the moisture content of the granular material by the following equation moisture analysis W A was replaced with the water W of the particulate material (4). W = a 0 + a 1 · W M / (AVE (dL n )) 0.62 (4) As a result, a single calibration curve can be obtained without using a calibration curve corresponding to the specific surface area or the particle size of the granular material. An in-line measurement system capable of measuring the water content of powders having various specific surface areas or particle sizes was obtained.

【0026】(6)水分分析値と測定値との関係 図9に水分分析値と本システムを用いて測定した測定値
との関係を示す。水分測定誤差はほぼ±1%以内に入っ
ており、平均誤差は0.053%と良好な測定が可能で
あった。
(6) Relationship between Water Analysis Value and Measured Value FIG. 9 shows the relationship between the water analysis value and the measured value measured using this system. The moisture measurement error was within about ± 1%, and the average error was 0.053%, indicating that good measurement was possible.

【0027】[0027]

【発明の効果】本発明のインライン粉粒体水分測定シス
テムは、粉粒体の粒径を製造ラインであるベルトコンベ
ア上において、自動で、迅速に、精度よく連続測定で
き、さらに水分測定時に粉粒体の比表面積あるいは粒径
に応じた検量線を用いることなく単一の検量線により種
々の比表面積あるいは粒径を持つ粉粒体の水分測定に対
応できるインライン測定システムであるため、粉粒体製
造工業における水分のリアルタイムな管理および制御が
可能となり、工程管理の省力化、工程制御精度の向上に
大きく貢献できる。
According to the in-line water content measurement system of the present invention, the particle size of the powder can be automatically, quickly and accurately continuously measured on a belt conveyor as a production line. This is an inline measurement system that can support moisture measurement of powders with various specific surface areas or particle diameters using a single calibration curve without using a calibration curve corresponding to the specific surface area or particle diameter of the granules. Real-time management and control of moisture in the body manufacturing industry is possible, which can greatly contribute to labor saving in process management and improvement in process control accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のインライン粉粒体水分測定システムの
概要図である。
FIG. 1 is a schematic diagram of an in-line powder moisture measurement system of the present invention.

【図2】本発明のインライン粉粒体水分測定システムの
測定フローチャートを示す図である。
FIG. 2 is a view showing a measurement flowchart of the in-line powder / grain moisture measurement system of the present invention.

【図3】表面を平滑にした粉粒体層の変位測定例を示す
図である。
FIG. 3 is a diagram showing an example of measuring displacement of a granular material layer having a smooth surface.

【図4】表面を平滑にした粉粒体層の変位差算出例を示
す図である。
FIG. 4 is a diagram showing an example of calculating a displacement difference of a granular material layer having a smooth surface.

【図5】表面を平滑にした粉粒体層の平均変位差と粉粒
体の比表面積の逆数との関係を示す図である。
FIG. 5 is a diagram showing a relationship between an average displacement difference of a granular material layer having a smooth surface and a reciprocal of a specific surface area of the granular material.

【図6】粉粒体の比表面積の分析値と平均変位差を用い
て予測した予測値との関係を示す図である。
FIG. 6 is a diagram showing a relationship between an analysis value of a specific surface area of a granular material and a prediction value predicted using an average displacement difference.

【図7】実施例に使用した光学式水分計による平均水分
出力値と水分分析値との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the average moisture output value and the moisture analysis value by the optical moisture meter used in the examples.

【図8】平均水分出力値を平均変位差で補正した平均水
分出力補正値と水分分析値との関係を示す図である。
FIG. 8 is a diagram showing a relationship between an average moisture output correction value obtained by correcting an average moisture output value by an average displacement difference and a moisture analysis value.

【図9】本発明のインライン粉粒体水分測定システムを
使用して測定した水分測定値と分析値との関係を示す図
である。
FIG. 9 is a diagram showing a relationship between a measured moisture value and an analytical value measured using the in-line granular moisture measuring system of the present invention.

【符号の説明】[Explanation of symbols]

A…ベルトコンベア、B…粉粒体、C…整流板、E…赤
外反射式水分計、F…光学式変位計、G…データ収集装
置、H…演算処理装置
A: Belt conveyor, B: Powder, C: Rectifying plate, E: Infrared reflection type moisture meter, F: Optical displacement meter, G: Data collecting device, H: Arithmetic processing device

フロントページの続き Fターム(参考) 2G059 AA01 AA05 BB09 CC09 DD12 EE02 FF04 HH01 MM01 MM03 MM12 Continued on the front page F term (reference) 2G059 AA01 AA05 BB09 CC09 DD12 EE02 FF04 HH01 MM01 MM03 MM12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ベルトコンベア上を移動する粉粒体の水
分をインラインで自動測定するインライン粉粒体水分測
定システムであって、 移動する粉粒体層の表面を平滑にするための均し手段
と、 前記平滑にされた移動する粉粒体層について、粉粒体の
水分および比表面積あるいは粒径に応じた出力値を出力
する赤外反射式水分計と、 前記平滑にされた移動する粉粒体層の表面の変位を微小
長さごとに高速で測定し該変位に応じた出力値を出力す
る光学式変位計と、 前記赤外反射式水分計と前記光学式変位計から出力され
たそれぞれの出力値を高速で取り込むデータ収集装置
と、 前記赤外反射式水分計の出力値を平均することにより平
均水分出力値を算出し、前記光学式変位計の微小長さご
との出力値から微小長さ間の変位出力値差の絶対値であ
る変位差を順次算出し、さらに平均することにより粉粒
体の比表面積と高い相関関係にある平均変位差を算出
し、算出した平均水分出力値と平均変位差を用いて、予
め作成しておいた粉粒体の水分と平均水分出力値および
平均変位差との関係式から粉粒体の水分を演算する演算
処理装置と、から構成されたことを特徴とするインライ
ン粉粒体水分測定システム。
An in-line powder moisture measurement system for automatically measuring in-line moisture of a granular material moving on a belt conveyor, wherein the smoothing means smoothes the surface of the moving granular material layer. An infrared reflection moisture meter that outputs an output value according to the moisture and specific surface area or particle size of the granular material with respect to the smoothed moving granular material layer; and the smoothed moving powder. An optical displacement meter that measures the displacement of the surface of the granular layer at high speed for each minute length and outputs an output value according to the displacement; and the infrared reflection moisture meter and the optical displacement meter that are output from the optical displacement meter. A data collection device that captures each output value at high speed, calculates an average moisture output value by averaging the output values of the infrared reflection moisture meter, and from the output value for each minute length of the optical displacement meter Absolute value of displacement output value difference between minute lengths Calculate the displacement difference sequentially, calculate the average displacement difference having a high correlation with the specific surface area of the granular material by further averaging, using the calculated average moisture output value and the average displacement difference, to create in advance An arithmetic processing unit for calculating the moisture of the granular material from a relational expression between the moisture of the granular material and the average moisture output value and the average displacement difference. .
【請求項2】 前記平均水分出力値と前記平均変位差と
から前記粉粒体の水分を算出する演算式が以下のように
表すことができることを特徴とする請求項1記載のイン
ライン粉粒体水分測定システム。 W=a0 +a1 ・WM /(AVE(dLn ))^a2 W:粉粒体の水分 WM :平均水分出力値 AVE(dLn ):平均変位差 a0 ,a1 ,a2 :粉粒体の形状、使用する水分計およ
び変位計、ベルトコンベア速度、変位データ取り込み速
度により決定される係数
2. The in-line granular material according to claim 1, wherein an arithmetic expression for calculating the moisture of the granular material from the average moisture output value and the average displacement difference can be expressed as follows. Moisture measurement system. W = a 0 + a 1 · W M / (AVE (dL n )) ^ a 2 W: Moisture of the granular material W M : average moisture output value AVE (dL n ): average displacement difference a 0 , a 1 , a 2 : Coefficient determined by the shape of powder and granules, moisture meter and displacement meter used, belt conveyor speed, displacement data acquisition speed
【請求項3】 前記平均変位差から粉粒体の比表面積を
算出する演算式が以下のように表すことができることを
特徴とする請求項1記載のインライン粉粒体水分測定シ
ステム。 S=1/(b0 +b1 ・AVE(dLn )) S:粉粒体の比表面積 AVE(dLn ):平均変位差 b0 ,b1 :粉粒体の形状、使用する変位計、ベルトコ
ンベア速度、変位データ取り込み速度により決定される
係数
3. The in-line powder / grain moisture measurement system according to claim 1, wherein an arithmetic expression for calculating the specific surface area of the powder from the average displacement difference can be expressed as follows. S = 1 / (b 0 + b 1 AVE (dL n )) S: Specific surface area of powder and granular material AVE (dL n ): average displacement difference b 0 , b 1 : shape of powder and particle, displacement meter used, Coefficient determined by belt conveyor speed, displacement data capture speed
JP2001038409A 2001-02-15 2001-02-15 Inline powder moisture measurement system Expired - Lifetime JP3527476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038409A JP3527476B2 (en) 2001-02-15 2001-02-15 Inline powder moisture measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038409A JP3527476B2 (en) 2001-02-15 2001-02-15 Inline powder moisture measurement system

Publications (2)

Publication Number Publication Date
JP2002243638A true JP2002243638A (en) 2002-08-28
JP3527476B2 JP3527476B2 (en) 2004-05-17

Family

ID=18901387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038409A Expired - Lifetime JP3527476B2 (en) 2001-02-15 2001-02-15 Inline powder moisture measurement system

Country Status (1)

Country Link
JP (1) JP3527476B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289965A (en) * 2007-05-22 2008-12-04 Earth Technica:Kk Fly ash granulation system
JP2011117807A (en) * 2009-12-02 2011-06-16 Air Liquide Japan Ltd In-line apparatus and method for measurement of minute amount of moisture in organic solvent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289965A (en) * 2007-05-22 2008-12-04 Earth Technica:Kk Fly ash granulation system
JP2011117807A (en) * 2009-12-02 2011-06-16 Air Liquide Japan Ltd In-line apparatus and method for measurement of minute amount of moisture in organic solvent

Also Published As

Publication number Publication date
JP3527476B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
JP2008046077A (en) Grain size measuring method
CN108254281B (en) Online detection method and device for material moisture rate of belt conveyor
JP2002243638A (en) Inline particle water-measuring system
US11885615B2 (en) Method for thickness measurements of a work item in a rolling mill
GB2046900A (en) Method of controlling the thickness of a moving web
CN112833983B (en) Coal quantity detection method based on laser scanning
US7070325B2 (en) Hot melt adhesive detection methods and systems
JP3572023B2 (en) In-line particle size measurement system
JPH06123606A (en) Detection of overlap part of striplike materials
JP3400395B2 (en) Particle size distribution measuring device
JPH0634360A (en) Steel plate shape measuring method
JP2607772B2 (en) Flux filling rate detection method for flux cored welding wire
KR100419177B1 (en) Measurement Error Compensation Method and Apparatus on a Pacometer Using a CD Camera
JPH0578762B2 (en)
JP3331169B2 (en) Measurement method of oil amount on steel sheet surface
JP3508452B2 (en) Method and apparatus for measuring oil coating amount on metal material surface
JP2577456B2 (en) Thickness measuring device
JP2964801B2 (en) Film thickness measuring device
JP3719128B2 (en) Slab buckling detection method
JPH05157549A (en) Detecting method for camber of band-shaped body
JPH0547042B2 (en)
JPH06337214A (en) Measuring method for thickness of flame-sprayed film
JPH08122275A (en) Surface flaw inspection device
JP3439521B2 (en) Photoelectric sensor
JPS62192209A (en) Plate thickness control method for rolling mill

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040219

R150 Certificate of patent or registration of utility model

Ref document number: 3527476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term