JP2002241764A - Fluidized catalytic cracking process for heavy oil - Google Patents

Fluidized catalytic cracking process for heavy oil

Info

Publication number
JP2002241764A
JP2002241764A JP2001045197A JP2001045197A JP2002241764A JP 2002241764 A JP2002241764 A JP 2002241764A JP 2001045197 A JP2001045197 A JP 2001045197A JP 2001045197 A JP2001045197 A JP 2001045197A JP 2002241764 A JP2002241764 A JP 2002241764A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
zone
fluid catalytic
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001045197A
Other languages
Japanese (ja)
Other versions
JP3948905B2 (en
Inventor
Toshiaki Okuhara
俊彰 奥原
Takashi Ino
隆 井野
Aburuhamaeru Mohammad
モハマッド・アブルハマエル
Abdullah Aitani
アブドラ・アイタニ
Maghrabi Abdulgader
アブドゥルガデル・マグラビ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
King Fahd University of Petroleum and Minerals
Original Assignee
Petroleum Energy Center PEC
Nippon Mitsubishi Oil Corp
King Fahd University of Petroleum and Minerals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Nippon Mitsubishi Oil Corp, King Fahd University of Petroleum and Minerals filed Critical Petroleum Energy Center PEC
Priority to JP2001045197A priority Critical patent/JP3948905B2/en
Publication of JP2002241764A publication Critical patent/JP2002241764A/en
Application granted granted Critical
Publication of JP3948905B2 publication Critical patent/JP3948905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized catalytic cracking process for obtaining light olefins, for example, propylene, butene, and the like, by subjecting heavy oil to fluidized catalytic cracking at elevated temperature in shortened time. SOLUTION: In this process, heavy oil is catalytically cracked in a fluidized bed catalytic cracker that comprises a down-flow type reaction zone, a gas solid separation zone, a stripping zone and a catalyst regeneration zone to produce light olefins wherein the reaction zone outlet temperature is characteristically set to 580-630 deg.C, the weight ratio of the catalyst/the oil is in the range of 15-40, the residential time of a hydrocarbon in the reaction zone is 0.1-1.0 second and the catalyst comprises 60-95 wt.% of a fluidized bed type cracking catalyst of a hyper-stable Y-type zeolite having <=0.5 wt.% content of a rare earth metal oxide and 5-40 wt.% of additives including shape-selective zeolite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、重質油の流動接触分解
法に関し、詳しくは重質油からプロピレン、ブテン等の
軽質オレフィンを高収率で得るための流動接触分解法に
関する。
The present invention relates to a fluid catalytic cracking method for heavy oil, and more particularly to a fluid catalytic cracking method for obtaining light olefins such as propylene and butene from heavy oil in high yield.

【0002】[0002]

【従来の技術】通常の接触分解は石油系炭化水素を触媒
と接触させて分解し、主生成物としてのガソリンと少量
のLPGと分解軽油等を得、さらに触媒上に堆積したコ
−クを空気で燃焼除去して触媒を循環再使用するもので
ある。しかしながら最近では流動接触分解装置をガソリ
ン製造装置としてではなく石油化学原料としての軽質オ
レフィン(特にプロピレン)製造装置として利用してい
こうという動きがある。また一方、プロピレン、ブテン
は高オクタン価ガソリン基材であるアルキレート、メチ
ル−t−ブチルエーテル(MTBE)の原料となる。こ
のような流動接触分解装置の利用法は、石油精製と石油
化学工場が高度に結びついた精油所において特に経済的
なメリットがある。重質油の流動接触分解により軽質オ
レフィンを製造する方法としては、例えば、触媒と原料
油の接触時間を短くする方法(米国特許第4,419,221
号、米国特許第3,074,878号、米国特許第5,462,652号、
ヨーロッパ特許第315,179A号)、高温で反応を行う方法
(米国特許第4,980,053号)、ペンタシル型ゼオライト
を用いる方法(米国特許第5,326,465号、公表特許公報7
-506389号)等が挙げられる。
2. Description of the Related Art In conventional catalytic cracking, petroleum hydrocarbons are decomposed by contact with a catalyst to obtain gasoline as a main product, a small amount of LPG, cracked gas oil, and the like. The catalyst is circulated and reused by burning off with air. However, recently, there has been a movement to utilize a fluid catalytic cracking unit not as a gasoline production unit but as a light olefin (particularly propylene) production unit as a petrochemical raw material. On the other hand, propylene and butene are raw materials for alkylate and methyl-t-butyl ether (MTBE) which are high octane gasoline base materials. The use of such a fluid catalytic cracking unit has a particular economic advantage in a refinery where petroleum refining and petrochemical plants are highly connected. As a method for producing a light olefin by fluid catalytic cracking of heavy oil, for example, a method of shortening the contact time between a catalyst and a feed oil (US Pat. No. 4,419,221)
No., U.S. Pat.No. 3,074,878, U.S. Pat.No. 5,462,652,
European Patent No. 315,179A), a method in which the reaction is carried out at a high temperature (US Pat. No. 4,980,053), a method using a pentasil type zeolite (US Pat. No. 5,326,465, published patent publication 7).
-506389) and the like.

【0003】しかし、これらの方法においてもまだ軽質
オレフィン選択性を十分高めるまでには至っていない。
例えば、高温反応による方法おいては熱分解を併発して
不必要なドライガス収率が増大し、その分有用な軽質オ
レフィンの収率が犠牲となる。また高温反応ではジエン
の生成が増加するため軽質オレフィンとともに得られる
ガソリンの品質が劣化するという欠点もある。接触時間
を短くする方法では、水素移行反応を抑制し、軽質オレ
フィンが軽質パラフィンへ転化する割合を低減すること
はできるが、転化率を増加させることはできないため、
軽質オレフィン収率はまだ不充分である。また、これら
の高温反応、高触媒/油比、短接触時間などの技術を組
み合わせて熱分解を抑制し、しかも高い転化率を達成す
る方法(特開平10-60453号)が提案されているが、まだ
軽質オレフィン収率は充分とはいえない。またペンタシ
ル型ゼオライトを用いた方法ではガソリンを過分解して
軽質オレフィン収率を高めているだけであるから、軽質
オレフィン収率の増加も充分ではなく、ガソリン収率が
著しく減少するという欠点がある。従ってこれらの方法
で重質油から高い収率で軽質オレフィンを得ることは困
難である。
However, even in these methods, the selectivity of light olefins has not yet been sufficiently increased.
For example, in a method using a high-temperature reaction, unnecessary dry gas yield increases due to simultaneous thermal decomposition, and the yield of useful light olefins is sacrificed accordingly. In addition, the high temperature reaction has the disadvantage that the quality of gasoline obtained with light olefins is deteriorated due to the increased production of diene. In the method of shortening the contact time, the hydrogen transfer reaction can be suppressed, and the rate of conversion of light olefins to light paraffin can be reduced, but the conversion cannot be increased.
Light olefin yields are still inadequate. Further, a method has been proposed in which thermal decomposition is suppressed by combining these high-temperature reactions, high catalyst / oil ratio, short contact time and other techniques, and a high conversion is achieved (Japanese Patent Laid-Open No. 10-60453). However, the light olefin yield is not yet sufficient. In addition, in the method using pentasil-type zeolite, gasoline is only decomposed to increase the light olefin yield, so that the light olefin yield is not sufficiently increased and the gasoline yield is significantly reduced. . Therefore, it is difficult to obtain a light olefin from a heavy oil in a high yield by these methods.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、反応
形式、反応条件、触媒の組み合わせにより、熱分解によ
るドライガス発生量が少なく、軽質オレフィンが高収率
で得られる改良された重質油の流動接触分解法を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved heavy metal which can produce a small amount of dry gas due to thermal decomposition and a high yield of light olefin by a combination of a reaction type, a reaction condition and a catalyst. An object of the present invention is to provide a fluid catalytic cracking method for oil.

【0005】[0005]

【課題を解決するための手段】本発明者等は、重質油を
高温・短接触時間で流動接触分解し、プロピレン、ブテ
ン等の軽質オレフィンを得るための流動接触分解法にお
いて、高収率で軽質オレフィンを得ることを主眼に鋭意
研究した結果、特定の流動接触分解触媒と形状選択性ゼ
オライトを含む添加剤を特定の比率で混合して用い、か
つ特定の条件下に重質油を流動接触分解することにより
その目的が達成されることを見いだし、本発明に到達し
たものである。すなわち本発明は、ダウンフロー形式反
応帯域、気固分離帯域、ストリッピング帯域および触媒
再生帯域を有する流動接触分解反応装置を用いて軽質オ
レフィンを製造する重質油の流動接触分解法であって、
反応帯域出口温度が580〜630℃、触媒/油比が1
5〜40重量/重量、反応帯域での炭化水素の滞留時間
が0.1〜1.0秒であり、かつ触媒が希土類金属酸化
物の含有量が0.5質量%以下である超安定Y型ゼオラ
イトを含む流動接触分解触媒60〜95質量%と形状選
択性ゼオライトを含む添加剤5〜40質量%とからなる
ことを特徴とする重質油の流動接触分解法に関する。ま
た本発明においては、該超安定Y型ゼオライトの結晶格
子定数は24.30〜24.60Åであることが好まし
い。
Means for Solving the Problems The present inventors have developed a high-yield fluid catalytic cracking method for subjecting heavy oil to fluid catalytic cracking at a high temperature for a short contact time to obtain light olefins such as propylene and butene. As a result of intensive research focused on obtaining light olefins, a specific fluidized catalytic cracking catalyst and an additive containing shape-selective zeolite were mixed in a specific ratio and heavy oil was flowed under specific conditions. The inventors have found that the object can be achieved by catalytic decomposition, and have reached the present invention. That is, the present invention is a fluid catalytic cracking method of heavy oil for producing light olefins using a fluid catalytic cracking reactor having a down-flow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone,
Reaction zone outlet temperature 580-630 ° C, catalyst / oil ratio 1
Ultrastable Y having a hydrocarbon retention time of 0.1 to 1.0 second in a reaction zone of 5 to 40% by weight / weight, and a catalyst having a rare earth metal oxide content of 0.5% by mass or less. A fluid catalytic cracking method for heavy oil, comprising 60 to 95% by mass of a fluid catalytic cracking catalyst containing a zeolite and 5 to 40% by mass of an additive containing a shape-selective zeolite. Further, in the present invention, the crystal lattice constant of the ultrastable Y-type zeolite is preferably 24.30 to 24.60 °.

【0006】[0006]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明は、ダウンフロー形式反応帯域、気固分離
帯域、ストリッピング帯域および触媒再生帯域を有する
流動接触分解反応装置を用いて軽質オレフィンを製造す
る重質油の流動接触分解法である。本発明において流動
接触分解は、重質油を流動状態に保持されている触媒に
連続的に接触させて重質油を軽質オレフィンおよびガソ
リンを主体とした軽質な炭化水素に分解するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention is a fluid catalytic cracking method for heavy oil in which a light olefin is produced using a fluid catalytic cracking reactor having a downflow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone. In the present invention, the fluid catalytic cracking is a method in which heavy oil is continuously brought into contact with a catalyst maintained in a fluidized state to decompose heavy oil into light hydrocarbons mainly composed of light olefins and gasoline.

【0007】通常の流動接触分解法では触媒粒子と原料
油が共に管中を上昇するいわゆるライザ−反応帯域が採
用される。しかし、通常のライザー反応帯域を用いた場
合には逆混合が起こり、局部的にガスの滞留時間が長く
なり熱分解を併発することになる。特に、本発明のよう
に触媒/油比が通常の流動接触分解法に比べて極端に大
きい場合、逆混合の程度は大きくなる。熱分解は不必要
なドライガスの発生を増加させ、目的とする軽質オレフ
ィンおよびガソリンの収率を減少させるため好ましくな
い。本発明は触媒粒子と原料油が共に管中を降下するダ
ウンフロー形式(ダウナー)反応帯域を採用するため逆
混合が避けられるという特徴を有している。
The usual fluid catalytic cracking method employs a so-called riser-reaction zone in which both the catalyst particles and the feed oil rise in the tube. However, when a normal riser reaction zone is used, back mixing occurs, and the residence time of the gas is locally increased to cause thermal decomposition. In particular, when the catalyst / oil ratio is extremely large as compared with the ordinary fluid catalytic cracking method as in the present invention, the degree of back mixing increases. Thermal cracking is not preferred because it increases the generation of unnecessary dry gas and decreases the yield of the target light olefin and gasoline. The present invention employs a downflow type (downer) reaction zone in which both the catalyst particles and the feed oil descend in the tube, and thus has the characteristic that back mixing is avoided.

【0008】ダウンフロー形式反応帯域で流動接触分解
を受けた分解反応生成物、未反応物および使用済み触媒
の混合物からなる分解反応混合物は、次に気固分離帯域
に送られ、触媒粒子から分解反応生成物、未反応物等の
炭化水素類の大部分が除去される。なお、場合によって
は、不必要な熱分解あるいは過分解を抑制するため、分
解反応混合物は気固分離帯域の直前あるいは直後で急冷
される。
[0008] A cracking reaction mixture comprising a mixture of cracking reaction products, unreacted products and spent catalyst which has undergone fluid catalytic cracking in the downflow type reaction zone is then sent to a gas-solid separation zone where it is decomposed from catalyst particles. Most of the hydrocarbons such as reaction products and unreacted substances are removed. In some cases, the decomposition reaction mixture is quenched immediately before or immediately after the gas-solid separation zone in order to suppress unnecessary thermal decomposition or excessive decomposition.

【0009】大部分の炭化水素類が除去された使用済み
触媒は、さらにストリッピング帯域に送られ、ストリッ
ピング用ガスにより気固分離帯域で除去しきれなかった
炭化水素類の除去が行われる。このようにして使用済み
触媒と炭化水素類を分離した後、使用済み触媒を再生す
るため、炭素質物質および一部重質の炭化水素類が付着
した使用済み触媒は、ストリッピング帯域から触媒再生
帯域に送られる。触媒再生帯域においては使用済み触媒
に酸化処理が施され、触媒上に沈着・付着した炭素質物
質および重質炭化水素類が除去され再生される。この酸
化処理を受けて再生された触媒は前記反応帯域に再び送
られ、連続的に循環される。
The spent catalyst from which most of the hydrocarbons have been removed is further sent to a stripping zone, where the stripping gas removes hydrocarbons that could not be completely removed in the gas-solid separation zone. After the spent catalyst and hydrocarbons are separated in this way, the spent catalyst to which the carbonaceous material and some heavy hydrocarbons are attached is regenerated from the stripping zone in order to regenerate the spent catalyst. Sent to the band. In the catalyst regeneration zone, the spent catalyst is subjected to an oxidation treatment to remove and regenerate carbonaceous substances and heavy hydrocarbons deposited and adhered on the catalyst. The catalyst regenerated after the oxidation treatment is sent again to the reaction zone and continuously circulated.

【0010】図1に、ダウンフロー形式反応帯域、気固
分離帯域、ストリッピング帯域および触媒再生帯域を有
する流動接触分解反応装置の一例を示す。原料である重
質油は、ライン10を通って混合領域7に供給され、触
媒貯槽6から循環される再生触媒と混合される。その混
合物は反応帯域1内を並流で流下し、この間に原料重質
油と触媒は高温で短時間接触して重質油の分解反応が行
われる。反応帯域1からの分解反応混合物は、反応帯域
1の下方に位置する気固分離帯域2に流下し、ここで使
用済み触媒は、分解反応生成物及び未反応原料から分離
され、ディップレッグ9を経てストリッピング帯域3の
上部に導かれる。
FIG. 1 shows an example of a fluid catalytic cracking reactor having a downflow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone. The heavy oil as the raw material is supplied to the mixing area 7 through the line 10 and mixed with the regenerated catalyst circulated from the catalyst storage tank 6. The mixture flows down in the reaction zone 1 in a parallel flow, during which the raw heavy oil and the catalyst are brought into contact with each other at high temperature for a short time to carry out the cracking reaction of the heavy oil. The cracked reaction mixture from reaction zone 1 flows down to gas-solid separation zone 2 located below reaction zone 1, where the spent catalyst is separated from the cracked reaction products and unreacted raw materials and dipreg 9 is removed. Through the stripping zone 3.

【0011】大部分の使用済み触媒が除去された炭化水
素気体は、次に二次分離器8へ導かれる。ここで気体中
に少量残存した使用済み触媒が取り除かれ、炭化水素気
体は系外へ抜き出されて回収される。二次分離器8とし
ては接線型サイクロンが好ましく用いられる。
The hydrocarbon gas from which most of the spent catalyst has been removed is then led to a secondary separator 8. Here, a small amount of used catalyst remaining in the gas is removed, and the hydrocarbon gas is extracted out of the system and collected. As the secondary separator 8, a tangential cyclone is preferably used.

【0012】ストリッピング帯域3内の使用済み触媒
は、ライン11から導入されるストリッピング用ガスに
より、使用済み触媒の表面や触媒間に付着残存した炭化
水素類が取り除かれる。ストリッピング用ガスとして
は、ボイラーにより発生されたスチームやコンプレッサ
ー等により昇圧された窒素等の不活性ガスなどが用いら
れる。
From the spent catalyst in the stripping zone 3, hydrocarbons adhering and remaining on the surface of the spent catalyst and between the catalysts are removed by the stripping gas introduced from the line 11. As the stripping gas, an inert gas such as steam generated by a boiler or nitrogen pressurized by a compressor or the like is used.

【0013】ストリッピング条件としては、通常、温度
500〜900℃、好ましくは500〜700℃、触媒
粒子の滞留時間1〜10分が採用される。ストリッピン
グ帯域3においては、使用済み触媒に付着残存する分解
反応生成物並びに未反応原料が除去され、ストリッピン
グ用ガスと共にストリッピング帯域3頂部のライン12
から抜き出され、回収系に導かれる。一方、ストリッピ
ング処理を受けた使用済み触媒は、第1流量調節器13
を備えたラインを通って、触媒再生帯域4に供給され
る。
The stripping conditions include a temperature of 500 to 900 ° C., preferably 500 to 700 ° C., and a residence time of the catalyst particles of 1 to 10 minutes. In the stripping zone 3, cracking reaction products and unreacted raw materials adhering to the used catalyst and unreacted raw materials are removed, and the stripping gas and the line 12 at the top of the stripping zone 3 are removed.
, And guided to the recovery system. On the other hand, the spent catalyst which has been subjected to the stripping treatment is supplied to the first flow controller 13
Is supplied to the catalyst regeneration zone 4 through a line provided with.

【0014】ストリッピング帯域3のガス空塔速度は、
通常、0.05〜0.4m/sの範囲に保持することが
好ましく、これによってストリッピング帯域の流動層を
気泡流動層とすることができる。気泡流動層ではガス速
度が比較的小さいため、ストリッピング用ガスの消費量
を少なくすることができ、また、層密度が比較的大きい
ことから、第1流量調節器13の圧力制御幅を大きくで
きるので、ストリッピング帯域3から触媒再生帯域4へ
の触媒粒子の移送が容易となる。ストリッピング帯域3
には、使用済み触媒とストリッピング用ガスとの接触を
良くし、ストリッピングの効率向上を図る目的で、水平
多孔板やその他の内挿物を多段に設けることができる。
The gas superficial velocity in stripping zone 3 is:
Usually, it is preferable to keep the pressure in the range of 0.05 to 0.4 m / s, so that the fluidized bed in the stripping zone can be a bubble fluidized bed. In the bubble fluidized bed, since the gas velocity is relatively low, the consumption of the stripping gas can be reduced, and since the bed density is relatively large, the pressure control width of the first flow rate controller 13 can be increased. Therefore, the transfer of the catalyst particles from the stripping zone 3 to the catalyst regeneration zone 4 becomes easy. Stripping band 3
In order to improve the contact between the used catalyst and the stripping gas and improve the stripping efficiency, a horizontal perforated plate or other inserts can be provided in multiple stages.

【0015】触媒再生帯域4は、上部域が円錐状で下部
域が円筒状を呈する容器で区画され、その上部円錐部分
は直立導管(ライザー型再生塔)5と連通している。触
媒再生帯域4は、上部円錐部分の頂角が通常30〜90
度の範囲にあり、上部円錐部分の高さが下部円筒部分の
直径の1/2〜2倍の範囲にあることが好ましい。スト
リッピング帯域3から触媒再生帯域4に供給された使用
済み触媒は、触媒再生帯域4の底部から導入される再生
用ガス(典型的には空気などの酸素含有ガス)により、
流動化されながら触媒表面に付着した炭素質物質並びに
重質炭化水素の実質的に全てが燃焼除去されることで再
生される。再生条件としては、通常、温度600〜10
00℃、好ましくは650〜750℃、触媒滞留時間1
〜5分が採用され、ガス空塔速度は、通常、0.4〜
1.2m/sが好ましく採用される。
The catalyst regeneration zone 4 is defined by a vessel having an upper region having a conical shape and a lower region having a cylindrical shape, and the upper conical portion thereof communicates with an upright conduit (riser-type regeneration tower) 5. In the catalyst regeneration zone 4, the apex angle of the upper conical portion is usually 30 to 90.
Preferably, the height of the upper conical portion is in the range of 1/2 to 2 times the diameter of the lower cylindrical portion. The spent catalyst supplied from the stripping zone 3 to the catalyst regeneration zone 4 is regenerated by a regeneration gas (typically an oxygen-containing gas such as air) introduced from the bottom of the catalyst regeneration zone 4.
While being fluidized, substantially all of the carbonaceous materials and heavy hydrocarbons attached to the catalyst surface are burned off and regenerated. The regeneration conditions are usually at a temperature of 600 to 10
00 ° C, preferably 650-750 ° C, catalyst residence time 1
~ 5 minutes is adopted, and the gas superficial velocity is usually 0.4 ~
1.2 m / s is preferably adopted.

【0016】触媒再生帯域4内で再生され、乱流流動層
の上部から飛び出した再生触媒は、使用済みの再生用ガ
スに同伴されて上部円錐部分からライザー型再生塔5に
移送される。触媒再生帯域4の上部円錐部分と連通する
ライザー型再生塔5の直径は、下部円筒部分の直径の1
/6〜1/3であることが好ましい。こうすることで、
触媒再生帯域4内の流動層のガス空塔速度を、乱流流動
層の形成に適した0.4〜1.2m/sの範囲に維持す
ることができ、ライザー型再生塔5のガス空塔速度を、
再生触媒の上昇移送に適した4〜12m/sの範囲に維
持できる。
The regenerated catalyst that has been regenerated in the catalyst regeneration zone 4 and has jumped out from the upper part of the turbulent fluidized bed is transferred from the upper conical portion to the riser type regeneration tower 5 together with the used regeneration gas. The diameter of the riser-type regeneration tower 5 communicating with the upper conical portion of the catalyst regeneration zone 4 is one of the diameter of the lower cylindrical portion.
/ 6 to 1/3. By doing this,
The gas superficial velocity of the fluidized bed in the catalyst regeneration zone 4 can be maintained in a range of 0.4 to 1.2 m / s suitable for forming a turbulent fluidized bed. Tower speed,
The range of 4 to 12 m / s suitable for ascending transfer of the regenerated catalyst can be maintained.

【0017】ライザー型再生塔5内を上昇した再生触媒
は、ライザー型再生塔頂部に設置された触媒貯槽6に運
ばれる。触媒貯槽6は気固分離器としても機能し、炭酸
ガスなどを含有する使用済み再生用ガスは、ここで再生
触媒から分離され、サイクロン15を経由して系外に排
出される。
The regenerated catalyst that has risen inside the riser type regeneration tower 5 is carried to a catalyst storage tank 6 installed at the top of the riser type regeneration tower. The catalyst storage tank 6 also functions as a gas-solid separator, and the used regeneration gas containing carbon dioxide gas and the like is separated from the regeneration catalyst here and discharged outside the system via the cyclone 15.

【0018】一方、触媒貯槽6内の再生触媒は、第2流
量調節器17を備えた流下管を経て混合領域7に供給さ
れる。また必要に応じ、ライザー型再生塔5における触
媒循環量の制御を容易にするため、触媒貯槽6内の再生
触媒の一部を第3流量調節器16を備えたバイパス導管
を経由して再生帯域4に戻すこともできる。このように
触媒は、ダウンフロー形式反応帯域1、気固分離帯域
2、ストリッピング帯域3、触媒再生帯域4、ライザー
型再生塔5、触媒貯槽6、および混合領域7を経て、再
びダウンフロー形式反応帯域1の順で系内を循環してい
る。
On the other hand, the regenerated catalyst in the catalyst storage tank 6 is supplied to the mixing area 7 via a downflow pipe provided with a second flow controller 17. If necessary, a part of the regenerated catalyst in the catalyst storage tank 6 is regenerated through a bypass conduit provided with a third flow controller 16 in order to facilitate control of the amount of catalyst circulated in the riser type regenerator 5. You can change it back to 4. As described above, the catalyst passes through the reaction zone 1, the gas-solid separation zone 2, the stripping zone 3, the catalyst regeneration zone 4, the riser-type regeneration tower 5, the catalyst storage tank 6, and the mixing region 7, and is again subjected to the downflow type. The system is circulated in the reaction zone 1 in this order.

【0019】本発明で原料に用いる重質油としては、直
留軽油、減圧軽油、常圧残油、減圧残油、熱分解軽油、
およびこれらを水素化精製した重質油等が例示できる。
これらの重質油を単独で用いても良いし、これら重質油
の混合物あるいはこれら重質油に一部軽質油を混合した
ものも用いることができる。本発明でいう反応帯域出口
温度とはダウンフロー形式反応帯域の出口温度のことで
あり、分解反応生成物が触媒と分離される直前の温度、
あるいは気固分離帯域の手前で急冷される場合は急冷さ
れる直前の温度である。本発明において反応帯域出口温
度は580〜630℃であり、好ましくは590〜62
0℃である。580℃より低い温度では高い収率で軽質
オレフィンを得ることができず、630℃より高い温度
では熱分解が顕著になりドライガス発生量が多くなるた
め好ましくない。本発明でいう触媒/油比とは触媒循環
量(ton/h)と原料油供給速度(ton/h)の比
を示す。本発明において該触媒/油比は、15〜40重
量/重量であることが必要であり、好ましくは20〜3
0重量/重量である。触媒/油比が15重量/重量より
小さい場合には、ヒートバランス上、反応帯域へ供給さ
れる再生触媒の温度が高くなるため、熱分解によるドラ
イガス発生量が多くなり好ましくない。また触媒/油比
が40重量/重量より大きい場合には、触媒循環量が大
きくなり、触媒再生帯域での触媒再生に必要な触媒滞留
時間を確保するには触媒再生帯域の容量が大きくなり過
ぎるため好ましくない。
The heavy oil used as a raw material in the present invention includes straight-run gas oil, vacuum gas oil, atmospheric residual oil, vacuum residual oil, pyrolysis gas oil,
And hydrorefined heavy oils.
These heavy oils may be used alone, or a mixture of these heavy oils or a mixture of these heavy oils and a partly light oil may be used. The reaction zone outlet temperature in the present invention refers to the outlet temperature of the downflow type reaction zone, the temperature immediately before the decomposition reaction product is separated from the catalyst,
Alternatively, when quenching is performed immediately before the gas-solid separation zone, the temperature is immediately before quenching. In the present invention, the reaction zone outlet temperature is 580 to 630 ° C, preferably 590 to 62 ° C.
0 ° C. If the temperature is lower than 580 ° C., a light olefin cannot be obtained in a high yield, and if the temperature is higher than 630 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable. The term "catalyst / oil ratio" as used in the present invention refers to the ratio between the amount of circulated catalyst (ton / h) and the feed rate of feed oil (ton / h). In the present invention, the catalyst / oil ratio needs to be 15 to 40 weight / weight, preferably 20 to 3 weight / weight.
0 weight / weight. If the catalyst / oil ratio is smaller than 15% by weight, the temperature of the regenerated catalyst supplied to the reaction zone increases due to heat balance, and the amount of dry gas generated by thermal decomposition increases, which is not preferable. If the catalyst / oil ratio is greater than 40% by weight, the amount of circulated catalyst increases, and the capacity of the catalyst regeneration zone becomes too large to secure the catalyst residence time required for catalyst regeneration in the catalyst regeneration zone. Therefore, it is not preferable.

【0020】本発明でいう炭化水素の滞留時間とは、触
媒と原料油が接触してから反応帯域出口において触媒と
分解反応生成物が分離されるまでの時間、あるいは気固
分離帯域の手前で急冷される場合は急冷されるまでの時
間を示す。本発明において該滞留時間は0.1〜1.0
秒であることが必要であり、好ましくは0.2〜0.7
秒である。反応帯域内での炭化水素の滞留時間が0.1
秒より短い場合、分解反応が不充分となり軽質オレフィ
ンを高い収率で得ることができない。また該滞留時間が
1.0秒より長い場合、熱分解の寄与が大きくなり好ま
しくない。本発明における流動接触分解反応装置の操作
条件のうち上記以外については特に限定されないが、通
常、反応圧力196〜392kPa(1〜3kg/cm
2G)で好ましく運転される。
In the present invention, the hydrocarbon residence time refers to the time from the contact of the catalyst with the feed oil to the separation of the catalyst and the decomposition reaction product at the outlet of the reaction zone, or before the gas-solid separation zone. In the case of rapid cooling, it indicates the time until rapid cooling. In the present invention, the residence time is 0.1 to 1.0.
Seconds, preferably 0.2-0.7
Seconds. The residence time of the hydrocarbons in the reaction zone is 0.1
If the time is shorter than seconds, the cracking reaction becomes insufficient and a light olefin cannot be obtained in a high yield. If the residence time is longer than 1.0 second, the contribution of thermal decomposition increases, which is not preferable. The operating conditions of the fluid catalytic cracking reactor in the present invention are not particularly limited except for the above, but usually the reaction pressure is 196 to 392 kPa (1 to 3 kg / cm).
It is preferably operated at 2 G).

【0021】本発明に用いる触媒は流動接触分解触媒と
添加剤よりなる。該流動接触分解触媒は活性成分である
ゼオライトとその支持母体であるマトリックスよりなっ
ている。該ゼオライトの主成分は超安定Y型ゼオライト
であり、そのゼオライト中の希土類金属酸化物含有量は
0.5質量%以下である。一般に超安定Y型ゼオライト
中の希土類酸化物含有量が増加するほど耐熱性が増加す
るため平衡触媒の活性は高くなる。一方、希土類金属酸
化物を多く含む平衡触媒は水素移行活性も高くなる。流
動接触分解触媒の水素移行活性が高くなると生成物中の
オレフィンが減少しパラフィンが増加する。主にガソリ
ン留分中のオレフィン類は後で述べる形状選択性ゼオラ
イトを含む添加剤により軽質オレフィンに分解される。
しかし、該添加剤によるガソリン留分中のパラフィン類
の分解速度はオレフィン類の分解に比べて著しく遅いた
め、流動接触分解触媒の水素移行活性が高くなるほど該
添加剤による軽質オレフィンの生成速度は小さくなる。
本発明に用いる流動接触分解触媒中の希土類金属酸化物
含有量は0.5質量%以下であり、好ましくは0.3質
量%以下であり、さらに好ましくは0.1質量%以下で
ある。該希土類金属酸化物の含有量が0.5質量%より
多い場合水素移行活性が高くなりすぎ、分解活性は高く
なるものの軽質オレフィン収率は低下する。
The catalyst used in the present invention comprises a fluid catalytic cracking catalyst and an additive. The fluid catalytic cracking catalyst comprises zeolite as an active component and a matrix as a supporting matrix thereof. The main component of the zeolite is an ultra-stable Y-type zeolite, and the content of the rare earth metal oxide in the zeolite is 0.5% by mass or less. In general, the activity of the equilibrium catalyst increases as the content of the rare earth oxide in the ultra-stable Y-type zeolite increases as the heat resistance increases. On the other hand, an equilibrium catalyst containing a large amount of rare earth metal oxide also has a high hydrogen transfer activity. As the hydrogen transfer activity of the fluid catalytic cracking catalyst increases, olefins in the product decrease and paraffins increase. Olefins mainly in the gasoline fraction are decomposed into light olefins by additives including a shape-selective zeolite described later.
However, the decomposition rate of paraffins in the gasoline fraction by the additive is significantly slower than the decomposition of olefins, so the higher the hydrogen transfer activity of the fluid catalytic cracking catalyst, the lower the rate of light olefin generation by the additive. Become.
The rare earth metal oxide content in the fluid catalytic cracking catalyst used in the present invention is 0.5% by mass or less, preferably 0.3% by mass or less, and more preferably 0.1% by mass or less. When the content of the rare earth metal oxide is more than 0.5% by mass, the hydrogen transfer activity becomes too high, and the decomposition activity becomes high, but the light olefin yield decreases.

【0022】また、新触媒における該超安定Y型ゼオラ
イトの好ましい結晶格子定数は24.30〜24.60
Åであり、さらに好ましくは24.36〜24.45Å
である。ここでいうゼオライトの結晶格子定数はAST
M D−3942−80で測定したものである。この範
囲において結晶格子定数が小さいほどガソリン収率は減
少するが軽質オレフィン収率は増加する。しかし該結晶
格子定数が24.30Åより小さい場合、流動接触分解
触媒の分解活性が低すぎて高い転化率を得ることができ
ないため軽質オレフィン収率は減少する。また格子定数
が24.60Åより大きい場合、水素移行活性が高くな
り過ぎ好ましくない。流動接触分解触媒中の超安定Y型
ゼオライトの含有量は5〜50質量%が好ましく、15
〜40質量%がさらに好ましい。また流動接触分解触媒
のかさ密度は0.5〜1.0g/ml、平均粒径は50
〜90μm、表面積は50〜350m2/g、細孔容積
は0.05〜0.5ml/gの範囲であるのが好まし
い。
The preferred crystal lattice constant of the ultrastable Y-type zeolite in the new catalyst is from 24.30 to 24.60.
、, and more preferably 24.36 to 24.45Å
It is. The crystal lattice constant of zeolite here is AST
MD-3942-80. In this range, the smaller the crystal lattice constant, the lower the gasoline yield but the higher the light olefin yield. However, when the crystal lattice constant is less than 24.30 °, the cracking activity of the fluid catalytic cracking catalyst is too low to obtain a high conversion, and the light olefin yield decreases. If the lattice constant is larger than 24.60 °, the hydrogen transfer activity becomes too high, which is not preferable. The content of the ultra-stable Y-type zeolite in the fluid catalytic cracking catalyst is preferably 5 to 50% by mass,
-40 mass% is more preferable. The fluid catalytic cracking catalyst has a bulk density of 0.5 to 1.0 g / ml and an average particle size of 50 to 50 g / ml.
~90Myuemu, surface area 50~350m 2 / g, preferably a pore volume in the range of 0.05~0.5ml / g.

【0023】本発明に用いる添加剤は形状選択性ゼオラ
イトを含むものである。形状選択性ゼオライトとはその
細孔径がY型ゼオライトの細孔径よりも小さく、限られ
た形状の炭化水素のみがその細孔内へ進入できるという
ゼオライトのことである。そのようなゼオライトとし
て、ZSM−5、β、オメガ、SAPO−5、SAPO
−11、SAPO−34、ペンタシル型メタロシリケー
ト等が例示できる。これらの形状選択性ゼオライトのな
かでZSM−5が最も好ましい。添加剤中に含まれる形
状選択性ゼオライトの好ましい含有量は20〜70質量
%であり、30〜60質量%がさらに好ましい。本発明
に用いる添加剤のかさ密度は0.5〜1.0g/ml、
平均粒径は50〜90μm、表面積は10〜200m2
/g、細孔容積は0.01〜0.3ml/gの範囲であ
るのが好ましい。
The additive used in the present invention contains a shape-selective zeolite. Shape-selective zeolites are zeolites whose pore size is smaller than that of Y-type zeolites, and only hydrocarbons of a limited shape can enter the pores. Such zeolites include ZSM-5, β, omega, SAPO-5, SAPO
-11, SAPO-34, pentasil-type metallosilicate and the like. Among these shape-selective zeolites, ZSM-5 is most preferred. The preferred content of the shape-selective zeolite contained in the additive is 20 to 70% by mass, more preferably 30 to 60% by mass. The bulk density of the additive used in the present invention is 0.5 to 1.0 g / ml,
Average particle size is 50 to 90 μm, surface area is 10 to 200 m 2
/ G and the pore volume are preferably in the range of 0.01 to 0.3 ml / g.

【0024】本発明において使用する触媒中の該流動接
触分解触媒の割合は60〜95質量%であり、該添加剤
の割合は5〜40質量%である。該流動接触分解触媒の
割合が60質量%よりも小さい場合、あるいは該添加剤
の割合が40質量%よりも多い場合には、原料油である
重質油の転化率が低下し、高い軽質オレフィン収率は得
られない。一方、該流動接触分解触媒の割合が95質量
%よりも多い場合、あるいは該添加剤の割合が5質量%
よりも少ない場合には、高い転化率は得られるが高い軽
質オレフィン収率は得られない。
The proportion of the fluid catalytic cracking catalyst in the catalyst used in the present invention is 60 to 95% by mass, and the proportion of the additive is 5 to 40% by mass. When the ratio of the fluid catalytic cracking catalyst is less than 60% by mass, or when the ratio of the additive is more than 40% by mass, the conversion of heavy oil as a feed oil decreases, and a high light olefin is produced. No yield is obtained. On the other hand, when the ratio of the fluid catalytic cracking catalyst is more than 95% by mass, or when the ratio of the additive is 5% by mass.
If less, high conversions are obtained but high light olefin yields are not obtained.

【0025】[0025]

【実施例】次に本発明の実施例等について説明するが本
発明はこれに限定されるものではない。
Next, embodiments of the present invention will be described, but the present invention is not limited thereto.

【0026】実施例1 ダウンフローリアクター(ダウナー)タイプFCCパイ
ロット装置を用いて重質油の流動接触分解を行なった。
装置規模は、インベントリ−5kg、フィ−ド量1kg
/hであり、運転条件は、リアクター出口温度600
℃、反応圧力196kPa(1.0kg/cm2G)、
触媒/油比30重量/重量、触媒再生帯域温度720℃
である。このときリアクター内の炭化水素滞留時間は
0.5秒であった。用いた原料油は中東系(アラビアン
ライト)の脱硫減圧軽油(VGO)である。用いた触媒
は流動接触分解触媒(A)75質量%とZSM−5を含
む添加剤(Davison社製、商品名OlefinsMax)25質量
%の混合物である。流動接触分解触媒(A)の希土類酸
化物含有量は0.05質量%であり、流動接触分解触媒
(A)に含まれる超安定Y型ゼオライトの結晶格子定数
は24.40Åである。流動接触分解触媒(A)および
該添加剤を装置に充填する前にそれぞれを別々に810
℃で6時間、100%スチ−ムでスチ−ミングした。分
解反応の結果を第1表に示す。
Example 1 Fluid catalytic cracking of heavy oil was carried out using a down flow reactor (downer) type FCC pilot apparatus.
Equipment scale is 5kg for inventory and 1kg for feed
/ H, and operating conditions are reactor outlet temperature 600
° C, reaction pressure 196 kPa (1.0 kg / cm 2 G),
Catalyst / oil ratio 30 weight / weight, catalyst regeneration zone temperature 720 ° C
It is. At this time, the hydrocarbon residence time in the reactor was 0.5 seconds. The feedstock used was a Middle Eastern (Arabian light) desulfurized vacuum gas oil (VGO). The catalyst used was a mixture of 75% by mass of the fluid catalytic cracking catalyst (A) and 25% by mass of an additive (OlefinsMax, trade name, manufactured by Davison) containing ZSM-5. The fluid catalytic cracking catalyst (A) has a rare earth oxide content of 0.05% by mass, and the ultra-stable Y-type zeolite contained in the fluid catalytic cracking catalyst (A) has a crystal lattice constant of 24.40 °. The fluid catalytic cracking catalyst (A) and the additives are each separately charged 810 before being charged to the apparatus.
Steaming was performed at 100 ° C for 6 hours with 100% steam. Table 1 shows the results of the decomposition reaction.

【0027】実施例2 実施例1と同じ装置を用い、同じ運転条件で重質油の流
動接触分解を行なった。用いた原料油は未脱硫大慶VG
Oである。用いた触媒は実施例1と同じ流動接触分解触
媒(A)75質量%とZSM−5を含む添加剤(Daviso
n社製、商品名OlefinsMax)25質量%の混合物であ
る。分解反応の結果を第1表に示す。
Example 2 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The raw oil used is unsulfurized Daqing VG
O. The catalyst used was the same as in Example 1 and was an additive containing 75% by mass of a fluid catalytic cracking catalyst (A) and ZSM-5 (Daviso
A mixture of 25% by mass (OlefinsMax, trade name, manufactured by n Company). Table 1 shows the results of the decomposition reaction.

【0028】実施例3 実施例1と同じ装置を用い、同じ運転条件で重質油の流
動接触分解を行なった。用いた原料油は実施例1と同じ
中東系(アラビアンライト)の脱硫VGOである。用い
た触媒は流動接触分解触媒(B)75質量%とZSM−
5を含む添加剤(Davison社製、商品名OlefinsMax)2
5質量%の混合物である。流動接触分解触媒(B)の希
土類酸化物含有量は0.05質量%であり、流動接触分
解触媒(B)に含まれる超安定Y型ゼオライトの結晶格
子定数は24.55Åである。流動接触分解触媒(B)
および該添加剤を装置に充填する前にそれぞれを別々に
810℃で6時間、100%スチ−ムでスチ−ミングし
た。分解反応の結果を第1表に示す。
Example 3 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The feedstock used was the same Middle Eastern (Arabian light) desulfurized VGO as in Example 1. The catalyst used was 75% by mass of a fluid catalytic cracking catalyst (B) and ZSM-
Additive 5 (Davison, trade name OlefinsMax) 2
It is a mixture of 5% by mass. The fluid catalytic cracking catalyst (B) has a rare earth oxide content of 0.05% by mass, and the ultra-stable Y-type zeolite contained in the fluid catalytic cracking catalyst (B) has a crystal lattice constant of 24.55 °. Fluid catalytic cracking catalyst (B)
Each was separately steamed at 810 ° C. for 6 hours with 100% steam before loading the additives into the apparatus. Table 1 shows the results of the decomposition reaction.

【0029】比較例1 実施例1と同じ装置を用い、同じ運転条件で重質油の流
動接触分解を行なった。用いた原料油は実施例1と同じ
中東系(アラビアンライト)の脱硫VGOである。用い
た触媒は流動接触分解触媒(A)であり、添加剤は用い
ていない。流動接触分解触媒(A)を装置に充填する前
に810℃で6時間、100%スチ−ムでスチ−ミング
した。分解反応の結果を第1表に示す。
Comparative Example 1 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The feedstock used was the same Middle Eastern (Arabian light) desulfurized VGO as in Example 1. The catalyst used was a fluid catalytic cracking catalyst (A), and no additives were used. Before the fluidized catalytic cracking catalyst (A) was charged into the apparatus, it was steamed at 810 ° C. for 6 hours with 100% steam. Table 1 shows the results of the decomposition reaction.

【0030】比較例2 実施例1と同じ装置を用い、同じ運転条件で重質油の流
動接触分解を行なった。用いた原料油は実施例1と同じ
中東系(アラビアンライト)の脱硫VGOである。用い
た触媒は流動接触分解触媒(C)75質量%とZSM−
5を含む添加剤(Davison社製、商品名OlefinsMax)2
5質量%の混合物である。流動接触分解触媒(C)の希
土類酸化物含有量は3.5質量%であり、流動接触分解
触媒(C)に含まれる超安定Y型ゼオライトの結晶格子
定数は24.55Åである。流動接触分解触媒(C)お
よび該添加剤を装置に充填する前にそれぞれを別々に8
10℃で6時間、100%スチ−ムでスチ−ミングし
た。分解反応の結果を第1表に示す。
Comparative Example 2 Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The feedstock used was the same Middle Eastern (Arabian light) desulfurized VGO as in Example 1. The catalyst used was 75% by mass of a fluid catalytic cracking catalyst (C) and ZSM-
Additive 5 (Davison, trade name OlefinsMax) 2
It is a mixture of 5% by mass. The fluid catalytic cracking catalyst (C) has a rare earth oxide content of 3.5% by mass, and the ultra-stable Y-type zeolite contained in the fluid catalytic cracking catalyst (C) has a crystal lattice constant of 24.55 °. The fluid catalytic cracking catalyst (C) and the additive are each separately charged to the apparatus before charging to the apparatus.
Steaming was performed at 100C for 6 hours at 100C. Table 1 shows the results of the decomposition reaction.

【0031】比較例3 アップフローリアクター(ライザー)タイプFCCパイ
ロット装置を用いて重質油の流動接触分解を行なった。
装置規模は、インベントリ−3kg、フィ−ド量1kg
/hであり、運転条件は、リアクター出口温度600
℃、反応圧力196kPa(1.0kg/cm2G)、
触媒/油比10重量/重量、触媒再生帯域温度720℃
である。このときリアクター内の炭化水素滞留時間は
1.5秒であった。用いた原料油は中東系(アラビアン
ライト)の脱硫VGOである。用いた触媒は流動接触分
解触媒(A)75質量%とZSM−5を含む添加剤(Da
vison社製、商品名OlefinsMax)25質量%の混合物で
ある。流動接触分解触媒(A)および該添加剤を装置に
充填する前にそれぞれを別々に810℃で6時間、10
0%スチ−ムでスチ−ミングした。分解反応の結果を第
1表に示す。
Comparative Example 3 Fluid catalytic cracking of heavy oil was carried out using an upflow reactor (riser) type FCC pilot apparatus.
Equipment scale is inventory-3kg, feed amount 1kg
/ H, and operating conditions are reactor outlet temperature 600
° C, reaction pressure 196 kPa (1.0 kg / cm 2 G),
Catalyst / oil ratio 10 wt / wt, catalyst regeneration zone temperature 720 ° C
It is. At this time, the hydrocarbon residence time in the reactor was 1.5 seconds. The feedstock used was Middle Eastern (Arabian Light) desulfurized VGO. The catalyst used was an additive containing 75% by mass of the fluid catalytic cracking catalyst (A) and ZSM-5 (Da
Viles, trade name OlefinsMax) 25% by weight. Each of the fluidized catalytic cracking catalyst (A) and the additive was separately charged at 810 ° C. for 6 hours before being charged into the apparatus.
Steaming was performed with 0% steam. Table 1 shows the results of the decomposition reaction.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】以上のように、特定の流動接触分解触媒
と形状選択性ゼオライトを含む添加剤を特定の比率で混
合して用い、かつ特定の条件下に重質油を接触分解する
ことにより、熱分解によるドライガス発生量が少なく、
プロピレン、ブテンなどの軽質オレフィンを高い収率で
得ることができる。
As described above, a specific fluid catalytic cracking catalyst and an additive containing a shape-selective zeolite are mixed at a specific ratio and used, and heavy oil is catalytically cracked under specific conditions. The amount of dry gas generated by thermal decomposition is small,
Light olefins such as propylene and butene can be obtained in high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ダウンフロー形式の流動接触分解反応装置の一
例である。
FIG. 1 is an example of a down-flow type fluid catalytic cracking reactor.

【符号の説明】[Explanation of symbols]

1 ダウンフロー形式反応帯域 2 気固分離帯域 3 ストリッピング帯域 4 再生帯域 5 ライザー型再生塔 6 触媒貯槽 7 混合領域 8 二次分離器 9 ディップレッグ DESCRIPTION OF SYMBOLS 1 Down-flow type reaction zone 2 Gas-solid separation zone 3 Stripping zone 4 Regeneration zone 5 Riser type regeneration tower 6 Catalyst storage tank 7 Mixing area 8 Secondary separator 9 Dip-reg

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥原 俊彰 サウジアラビア王国,ダハラン31261, 財団法人石油産業活性化センター 新FC Cサウジ分室内 (72)発明者 井野 隆 サウジアラビア王国,ダハラン31261, 財団法人石油産業活性化センター 新FC Cサウジ分室内 (72)発明者 モハマッド・アブルハマエル サウジアラビア王国,ダハラン31261, キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 内 (72)発明者 アブドラ・アイタニ サウジアラビア王国,ダハラン31261, キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 内 (72)発明者 アブドゥルガデル・マグラビ サウジアラビア王国,ダハラン31261, キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 内 Fターム(参考) 4G069 AA02 AA15 BA07A BA07B BC38A BC38B CC07 DA08 EA01Y EB18Y EC02Y EC03Y EC06Y EC21Y FC08 GA06 ZA05A ZA05B ZC03 4H029 BA11 BB03 BC04 BC07 BC08 BD01 BD08 CA00 DA00  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiaki Okuhara, Saudi Arabia, Daharan 31261, Petroleum Industry Activation Center New FC C Saudi Branch Office (72) Inventor, Takashi Ino Kingdom of Saudi Arabia, Dahran 31261, Petroleum Industry Activation Center New FC C Saudi Branch Office (72) Inventor Mohammad Abulhamael Saudi Arabia, Daharan 31261, King Fahd University of Petroleum and Minerals (72) Inventor Abdullah Aitani Saudi Arabia, Dahlan 31261, King Fahd University of Petroleum and Minerals (72) Inventor Abdulgadel Magravi Dahran 3, Kingdom of Saudi Arabia 1261, King Fahd University of Petroleum and Minerals F-term (reference) 4G069 AA02 AA15 BA07A BA07B BC38A BC38B CC07 DA08 EA01Y EB18Y EC02Y EC03Y EC06Y EC21Y FC08 GA06 ZA05A ZA05B ZC03 4H03 BC

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ダウンフロー形式反応帯域、気固分離帯
域、ストリッピング帯域および触媒再生帯域を有する流
動接触分解反応装置を用いて軽質オレフィンを製造する
重質油の流動接触分解法であって、反応帯域出口温度が
580〜630℃、触媒/油比が15〜40重量/重
量、反応帯域での炭化水素の滞留時間が0.1〜1.0
秒であり、かつ触媒が希土類金属酸化物の含有量が0.
5質量%以下である超安定Y型ゼオライトを含む流動接
触分解触媒60〜95質量%と形状選択性ゼオライトを
含む添加剤5〜40質量%とからなることを特徴とする
重質油の流動接触分解法。
1. A fluidized catalytic cracking method of heavy oil for producing light olefins using a fluidized catalytic cracking reactor having a downflow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone, The reaction zone outlet temperature is 580 to 630 ° C, the catalyst / oil ratio is 15 to 40% by weight, and the residence time of hydrocarbons in the reaction zone is 0.1 to 1.0.
Second and the catalyst has a rare earth metal oxide content of 0.
Fluid catalytic cracking of heavy oil comprising 60 to 95% by mass of a fluid catalytic cracking catalyst containing ultra-stable Y-type zeolite of 5% by mass or less and 5 to 40% by mass of an additive containing shape-selective zeolite. Decomposition method.
【請求項2】 超安定Y型ゼオライトの結晶格子定数が
24.30〜24.60Åであることを特徴とする請求
項1に記載の重質油の流動接触分解法。
2. The process for fluid catalytic cracking of heavy oil according to claim 1, wherein the crystal lattice constant of the ultra-stable Y-type zeolite is 24.30 to 24.60 °.
JP2001045197A 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil Expired - Lifetime JP3948905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045197A JP3948905B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045197A JP3948905B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil

Publications (2)

Publication Number Publication Date
JP2002241764A true JP2002241764A (en) 2002-08-28
JP3948905B2 JP3948905B2 (en) 2007-07-25

Family

ID=18907040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045197A Expired - Lifetime JP3948905B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil

Country Status (1)

Country Link
JP (1) JP3948905B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519856A (en) * 2003-02-28 2006-08-31 エクソンモービル リサーチ アンド エンジニアリング カンパニー C6 recycling for propylene production in fluid catalytic cracker
KR20090098805A (en) * 2006-11-07 2009-09-17 사우디 아라비안 오일 컴퍼니 Advanced control of severe fluid catalytic cracking process for maximizing propylene production from petroleum feedstock
US7691767B2 (en) 2006-01-20 2010-04-06 Research Association Of Refinery Integration For Group-Operation Catalytic cracking catalyst for heavy oil and production process for olefin and fuel oil
JP2011504795A (en) * 2007-06-29 2011-02-17 ウールカ エス アー Color selection of catalyst or adsorbent particles
JP2015506821A (en) * 2011-12-15 2015-03-05 中国石油天然気股▲ふん▼有限公司 Heavy oil catalytic cracking catalyst and method for producing the same
WO2015182329A1 (en) * 2014-05-30 2015-12-03 Jx日鉱日石エネルギー株式会社 Method for fluid catalytic cracking of heavy oil
US20170009146A1 (en) * 2014-01-24 2017-01-12 Jx Nippon Oil & Energy Corporation Process for fluid catalytic cracking of heavy oil
RU2624443C2 (en) * 2012-08-17 2017-07-04 ДжейДжиСи КАТАЛИСТС ЭНД КЕМИКАЛЗ ЛТД. Catalyst for catalytic cracking of hydrocarbons
US9764314B2 (en) 2006-11-07 2017-09-19 Saudi Arabian Oil Company Control of fluid catalytic cracking process for minimizing additive usage in the desulfurization of petroleum feedstocks
JP2017534433A (en) * 2014-05-22 2017-11-24 サウジ アラビアン オイル カンパニー Framework-substituted zeolite catalyst for fluid catalytic cracking and method of fluid catalytic cracking

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519856A (en) * 2003-02-28 2006-08-31 エクソンモービル リサーチ アンド エンジニアリング カンパニー C6 recycling for propylene production in fluid catalytic cracker
JP4711951B2 (en) * 2003-02-28 2011-06-29 エクソンモービル リサーチ アンド エンジニアリング カンパニー C6 recycling for propylene production in fluid catalytic cracker
US7691767B2 (en) 2006-01-20 2010-04-06 Research Association Of Refinery Integration For Group-Operation Catalytic cracking catalyst for heavy oil and production process for olefin and fuel oil
KR101586093B1 (en) * 2006-11-07 2016-01-15 사우디 아라비안 오일 컴퍼니 Method for fluid catalytic cracking of petroleum oil feedstock
KR20090098805A (en) * 2006-11-07 2009-09-17 사우디 아라비안 오일 컴퍼니 Advanced control of severe fluid catalytic cracking process for maximizing propylene production from petroleum feedstock
JP2010509329A (en) * 2006-11-07 2010-03-25 サウジ アラビアン オイル カンパニー Advanced control of severe fluid catalytic cracking process to maximize propylene production from petroleum feedstock
US9764314B2 (en) 2006-11-07 2017-09-19 Saudi Arabian Oil Company Control of fluid catalytic cracking process for minimizing additive usage in the desulfurization of petroleum feedstocks
US9701914B2 (en) 2006-11-07 2017-07-11 Saudi Arabian Oil Company Advanced control of severe fluid catalytic cracking process for maximizing propylene production from petroleum feedstock
JP2011504795A (en) * 2007-06-29 2011-02-17 ウールカ エス アー Color selection of catalyst or adsorbent particles
JP2015506821A (en) * 2011-12-15 2015-03-05 中国石油天然気股▲ふん▼有限公司 Heavy oil catalytic cracking catalyst and method for producing the same
US9844772B2 (en) 2011-12-15 2017-12-19 Petrochina Company Limited Heavy oil catalytic cracking catalyst and preparation method therefor
RU2624443C2 (en) * 2012-08-17 2017-07-04 ДжейДжиСи КАТАЛИСТС ЭНД КЕМИКАЛЗ ЛТД. Catalyst for catalytic cracking of hydrocarbons
US9731281B2 (en) 2012-08-17 2017-08-15 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
US20170009146A1 (en) * 2014-01-24 2017-01-12 Jx Nippon Oil & Energy Corporation Process for fluid catalytic cracking of heavy oil
EP3098287A4 (en) * 2014-01-24 2017-09-20 JX Nippon Oil & Energy Corporation Fluid catalytic cracking process for heavy oil
JP2017534433A (en) * 2014-05-22 2017-11-24 サウジ アラビアン オイル カンパニー Framework-substituted zeolite catalyst for fluid catalytic cracking and method of fluid catalytic cracking
JP2015224338A (en) * 2014-05-30 2015-12-14 Jx日鉱日石エネルギー株式会社 Fluid catalytic cracking method for heavy oil
WO2015182329A1 (en) * 2014-05-30 2015-12-03 Jx日鉱日石エネルギー株式会社 Method for fluid catalytic cracking of heavy oil

Also Published As

Publication number Publication date
JP3948905B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP3580518B2 (en) Fluid catalytic cracking of heavy oil
JP6172819B2 (en) Fluid catalytic cracking process and apparatus for maximizing light olefins or medium effluents and light olefins
US6656346B2 (en) Fluid catalytic cracking process for heavy oil
US4116814A (en) Method and system for effecting catalytic cracking of high boiling hydrocarbons with fluid conversion catalysts
RU2580829C2 (en) Method and apparatus for catalytic cracking for producing propylene
US20020195373A1 (en) Heavy oil fluid catalytic cracking process
JPH04501579A (en) Catalytic cracking method combined with light olefin modification
US6495028B1 (en) Catalytic conversion process for producing isobutane and isoparaffin-enriched gasoline
JPH01279993A (en) Modification of hydrocarbon
JPH03504394A (en) Method for reforming propene-ethene mixture in a turbulent fluidized catalyst bed reactor
JPS6369534A (en) Two-phase fluidized catalytic cracking method and apparatus
CA2553783C (en) System and method for selective component cracking to maximize production of light olefins
JP3948905B2 (en) Fluid catalytic cracking of heavy oil
CN109722289A (en) Reduce the catalyst cracking method of dry gas and coke yield
JP4223690B2 (en) Fluid catalytic cracking method of heavy oil
CN105980527B (en) The FCC process of heavy oil
EP1194503B1 (en) Fluidized catalytic cracking process
JP5947797B2 (en) Catalytic modification to improve product distribution
JP6329436B2 (en) Fluid catalytic cracking of heavy oil
JP3724932B2 (en) Fluid catalytic cracking method of oil
JP3724934B2 (en) Fluid catalytic cracking method of oil
JP2019089907A (en) Method of producing light olefin
JP2013537926A5 (en)
EP0311375A1 (en) Process for cracking a hydrocarbon feedstock to obtain gasoline and olefins and upgrading the olefins to improve the total gasoline yield
JPH1046160A (en) Method for fluidized bed catalytic cracking of heavy oil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3948905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term