JP3948905B2 - Fluid catalytic cracking of heavy oil - Google Patents

Fluid catalytic cracking of heavy oil Download PDF

Info

Publication number
JP3948905B2
JP3948905B2 JP2001045197A JP2001045197A JP3948905B2 JP 3948905 B2 JP3948905 B2 JP 3948905B2 JP 2001045197 A JP2001045197 A JP 2001045197A JP 2001045197 A JP2001045197 A JP 2001045197A JP 3948905 B2 JP3948905 B2 JP 3948905B2
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
fluid catalytic
zone
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001045197A
Other languages
Japanese (ja)
Other versions
JP2002241764A (en
Inventor
俊彰 奥原
隆 井野
モハマッド・アブルハマエル
アブドラ・アイタニ
アブドゥルガデル・マグラビ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2001045197A priority Critical patent/JP3948905B2/en
Publication of JP2002241764A publication Critical patent/JP2002241764A/en
Application granted granted Critical
Publication of JP3948905B2 publication Critical patent/JP3948905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、重質油の流動接触分解法に関し、詳しくは重質油からプロピレン、ブテン等の軽質オレフィンを高収率で得るための流動接触分解法に関する。
【0002】
【従来の技術】
通常の接触分解は石油系炭化水素を触媒と接触させて分解し、主生成物としてのガソリンと少量のLPGと分解軽油等を得、さらに触媒上に堆積したコ−クを空気で燃焼除去して触媒を循環再使用するものである。
しかしながら最近では流動接触分解装置をガソリン製造装置としてではなく石油化学原料としての軽質オレフィン(特にプロピレン)製造装置として利用していこうという動きがある。また一方、プロピレン、ブテンは高オクタン価ガソリン基材であるアルキレート、メチル−t−ブチルエーテル(MTBE)の原料となる。このような流動接触分解装置の利用法は、石油精製と石油化学工場が高度に結びついた精油所において特に経済的なメリットがある。
重質油の流動接触分解により軽質オレフィンを製造する方法としては、例えば、触媒と原料油の接触時間を短くする方法(米国特許第4,419,221号、米国特許第3,074,878号、米国特許第5,462,652号、ヨーロッパ特許第315,179A号)、高温で反応を行う方法(米国特許第4,980,053号)、ペンタシル型ゼオライトを用いる方法(米国特許第5,326,465号、公表特許公報7-506389号)等が挙げられる。
【0003】
しかし、これらの方法においてもまだ軽質オレフィン選択性を十分高めるまでには至っていない。例えば、高温反応による方法おいては熱分解を併発して不必要なドライガス収率が増大し、その分有用な軽質オレフィンの収率が犠牲となる。また高温反応ではジエンの生成が増加するため軽質オレフィンとともに得られるガソリンの品質が劣化するという欠点もある。接触時間を短くする方法では、水素移行反応を抑制し、軽質オレフィンが軽質パラフィンへ転化する割合を低減することはできるが、転化率を増加させることはできないため、軽質オレフィン収率はまだ不充分である。また、これらの高温反応、高触媒/油比、短接触時間などの技術を組み合わせて熱分解を抑制し、しかも高い転化率を達成する方法(特開平10-60453号)が提案されているが、まだ軽質オレフィン収率は充分とはいえない。またペンタシル型ゼオライトを用いた方法ではガソリンを過分解して軽質オレフィン収率を高めているだけであるから、軽質オレフィン収率の増加も充分ではなく、ガソリン収率が著しく減少するという欠点がある。従ってこれらの方法で重質油から高い収率で軽質オレフィンを得ることは困難である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、反応形式、反応条件、触媒の組み合わせにより、熱分解によるドライガス発生量が少なく、軽質オレフィンが高収率で得られる改良された重質油の流動接触分解法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、重質油を高温・短接触時間で流動接触分解し、プロピレン、ブテン等の軽質オレフィンを得るための流動接触分解法において、高収率で軽質オレフィンを得ることを主眼に鋭意研究した結果、特定の流動接触分解触媒と形状選択性ゼオライトを含む添加剤を特定の比率で混合して用い、かつ特定の条件下に重質油を流動接触分解することによりその目的が達成されることを見いだし、本発明に到達したものである。
すなわち本発明は、ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置を用いて軽質オレフィンを製造する重質油の流動接触分解法であって、反応帯域出口温度が580〜630℃、触媒/油比が15〜40重量/重量、反応帯域での炭化水素の滞留時間が0.1〜1.0秒であり、かつ触媒が希土類金属酸化物の含有量が0.05〜0.5質量%である超安定Y型ゼオライトを含む流動接触分解触媒60〜95質量%と形状選択性ゼオライトを含む添加剤5〜40質量%とからなることを特徴とする重質油の流動接触分解法に関する。
また本発明においては、該超安定Y型ゼオライトの結晶格子定数は24.30〜24.60Åであることが好ましい。
【0006】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明は、ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置を用いて軽質オレフィンを製造する重質油の流動接触分解法である。本発明において流動接触分解は、重質油を流動状態に保持されている触媒に連続的に接触させて重質油を軽質オレフィンおよびガソリンを主体とした軽質な炭化水素に分解するものである。
【0007】
通常の流動接触分解法では触媒粒子と原料油が共に管中を上昇するいわゆるライザ−反応帯域が採用される。しかし、通常のライザー反応帯域を用いた場合には逆混合が起こり、局部的にガスの滞留時間が長くなり熱分解を併発することになる。特に、本発明のように触媒/油比が通常の流動接触分解法に比べて極端に大きい場合、逆混合の程度は大きくなる。熱分解は不必要なドライガスの発生を増加させ、目的とする軽質オレフィンおよびガソリンの収率を減少させるため好ましくない。本発明は触媒粒子と原料油が共に管中を降下するダウンフロー形式(ダウナー)反応帯域を採用するため逆混合が避けられるという特徴を有している。
【0008】
ダウンフロー形式反応帯域で流動接触分解を受けた分解反応生成物、未反応物および使用済み触媒の混合物からなる分解反応混合物は、次に気固分離帯域に送られ、触媒粒子から分解反応生成物、未反応物等の炭化水素類の大部分が除去される。なお、場合によっては、不必要な熱分解あるいは過分解を抑制するため、分解反応混合物は気固分離帯域の直前あるいは直後で急冷される。
【0009】
大部分の炭化水素類が除去された使用済み触媒は、さらにストリッピング帯域に送られ、ストリッピング用ガスにより気固分離帯域で除去しきれなかった炭化水素類の除去が行われる。このようにして使用済み触媒と炭化水素類を分離した後、使用済み触媒を再生するため、炭素質物質および一部重質の炭化水素類が付着した使用済み触媒は、ストリッピング帯域から触媒再生帯域に送られる。触媒再生帯域においては使用済み触媒に酸化処理が施され、触媒上に沈着・付着した炭素質物質および重質炭化水素類が除去され再生される。この酸化処理を受けて再生された触媒は前記反応帯域に再び送られ、連続的に循環される。
【0010】
図1に、ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置の一例を示す。
原料である重質油は、ライン10を通って混合領域7に供給され、触媒貯槽6から循環される再生触媒と混合される。その混合物は反応帯域1内を並流で流下し、この間に原料重質油と触媒は高温で短時間接触して重質油の分解反応が行われる。反応帯域1からの分解反応混合物は、反応帯域1の下方に位置する気固分離帯域2に流下し、ここで使用済み触媒は、分解反応生成物及び未反応原料から分離され、ディップレッグ9を経てストリッピング帯域3の上部に導かれる。
【0011】
大部分の使用済み触媒が除去された炭化水素気体は、次に二次分離器8へ導かれる。ここで気体中に少量残存した使用済み触媒が取り除かれ、炭化水素気体は系外へ抜き出されて回収される。二次分離器8としては接線型サイクロンが好ましく用いられる。
【0012】
ストリッピング帯域3内の使用済み触媒は、ライン11から導入されるストリッピング用ガスにより、使用済み触媒の表面や触媒間に付着残存した炭化水素類が取り除かれる。ストリッピング用ガスとしては、ボイラーにより発生されたスチームやコンプレッサー等により昇圧された窒素等の不活性ガスなどが用いられる。
【0013】
ストリッピング条件としては、通常、温度500〜900℃、好ましくは500〜700℃、触媒粒子の滞留時間1〜10分が採用される。ストリッピング帯域3においては、使用済み触媒に付着残存する分解反応生成物並びに未反応原料が除去され、ストリッピング用ガスと共にストリッピング帯域3頂部のライン12から抜き出され、回収系に導かれる。一方、ストリッピング処理を受けた使用済み触媒は、第1流量調節器13を備えたラインを通って、触媒再生帯域4に供給される。
【0014】
ストリッピング帯域3のガス空塔速度は、通常、0.05〜0.4m/sの範囲に保持することが好ましく、これによってストリッピング帯域の流動層を気泡流動層とすることができる。気泡流動層ではガス速度が比較的小さいため、ストリッピング用ガスの消費量を少なくすることができ、また、層密度が比較的大きいことから、第1流量調節器13の圧力制御幅を大きくできるので、ストリッピング帯域3から触媒再生帯域4への触媒粒子の移送が容易となる。
ストリッピング帯域3には、使用済み触媒とストリッピング用ガスとの接触を良くし、ストリッピングの効率向上を図る目的で、水平多孔板やその他の内挿物を多段に設けることができる。
【0015】
触媒再生帯域4は、上部域が円錐状で下部域が円筒状を呈する容器で区画され、その上部円錐部分は直立導管(ライザー型再生塔)5と連通している。触媒再生帯域4は、上部円錐部分の頂角が通常30〜90度の範囲にあり、上部円錐部分の高さが下部円筒部分の直径の1/2〜2倍の範囲にあることが好ましい。
ストリッピング帯域3から触媒再生帯域4に供給された使用済み触媒は、触媒再生帯域4の底部から導入される再生用ガス(典型的には空気などの酸素含有ガス)により、流動化されながら触媒表面に付着した炭素質物質並びに重質炭化水素の実質的に全てが燃焼除去されることで再生される。
再生条件としては、通常、温度600〜1000℃、好ましくは650〜750℃、触媒滞留時間1〜5分が採用され、ガス空塔速度は、通常、0.4〜1.2m/sが好ましく採用される。
【0016】
触媒再生帯域4内で再生され、乱流流動層の上部から飛び出した再生触媒は、使用済みの再生用ガスに同伴されて上部円錐部分からライザー型再生塔5に移送される。
触媒再生帯域4の上部円錐部分と連通するライザー型再生塔5の直径は、下部円筒部分の直径の1/6〜1/3であることが好ましい。こうすることで、触媒再生帯域4内の流動層のガス空塔速度を、乱流流動層の形成に適した0.4〜1.2m/sの範囲に維持することができ、ライザー型再生塔5のガス空塔速度を、再生触媒の上昇移送に適した4〜12m/sの範囲に維持できる。
【0017】
ライザー型再生塔5内を上昇した再生触媒は、ライザー型再生塔頂部に設置された触媒貯槽6に運ばれる。触媒貯槽6は気固分離器としても機能し、炭酸ガスなどを含有する使用済み再生用ガスは、ここで再生触媒から分離され、サイクロン15を経由して系外に排出される。
【0018】
一方、触媒貯槽6内の再生触媒は、第2流量調節器17を備えた流下管を経て混合領域7に供給される。また必要に応じ、ライザー型再生塔5における触媒循環量の制御を容易にするため、触媒貯槽6内の再生触媒の一部を第3流量調節器16を備えたバイパス導管を経由して再生帯域4に戻すこともできる。
このように触媒は、ダウンフロー形式反応帯域1、気固分離帯域2、ストリッピング帯域3、触媒再生帯域4、ライザー型再生塔5、触媒貯槽6、および混合領域7を経て、再びダウンフロー形式反応帯域1の順で系内を循環している。
【0019】
本発明で原料に用いる重質油としては、直留軽油、減圧軽油、常圧残油、減圧残油、熱分解軽油、およびこれらを水素化精製した重質油等が例示できる。これらの重質油を単独で用いても良いし、これら重質油の混合物あるいはこれら重質油に一部軽質油を混合したものも用いることができる。
本発明でいう反応帯域出口温度とはダウンフロー形式反応帯域の出口温度のことであり、分解反応生成物が触媒と分離される直前の温度、あるいは気固分離帯域の手前で急冷される場合は急冷される直前の温度である。本発明において反応帯域出口温度は580〜630℃であり、好ましくは590〜620℃である。580℃より低い温度では高い収率で軽質オレフィンを得ることができず、630℃より高い温度では熱分解が顕著になりドライガス発生量が多くなるため好ましくない。本発明でいう触媒/油比とは触媒循環量(ton/h)と原料油供給速度(ton/h)の比を示す。本発明において該触媒/油比は、15〜40重量/重量であることが必要であり、好ましくは20〜30重量/重量である。触媒/油比が15重量/重量より小さい場合には、ヒートバランス上、反応帯域へ供給される再生触媒の温度が高くなるため、熱分解によるドライガス発生量が多くなり好ましくない。また触媒/油比が40重量/重量より大きい場合には、触媒循環量が大きくなり、触媒再生帯域での触媒再生に必要な触媒滞留時間を確保するには触媒再生帯域の容量が大きくなり過ぎるため好ましくない。
【0020】
本発明でいう炭化水素の滞留時間とは、触媒と原料油が接触してから反応帯域出口において触媒と分解反応生成物が分離されるまでの時間、あるいは気固分離帯域の手前で急冷される場合は急冷されるまでの時間を示す。本発明において該滞留時間は0.1〜1.0秒であることが必要であり、好ましくは0.2〜0.7秒である。反応帯域内での炭化水素の滞留時間が0.1秒より短い場合、分解反応が不充分となり軽質オレフィンを高い収率で得ることができない。また該滞留時間が1.0秒より長い場合、熱分解の寄与が大きくなり好ましくない。
本発明における流動接触分解反応装置の操作条件のうち上記以外については特に限定されないが、通常、反応圧力196〜392kPa(1〜3kg/cm2G)で好ましく運転される。
【0021】
本発明に用いる触媒は流動接触分解触媒と添加剤よりなる。該流動接触分解触媒は活性成分であるゼオライトとその支持母体であるマトリックスよりなっている。該ゼオライトの主成分は超安定Y型ゼオライトであり、そのゼオライト中の希土類金属酸化物含有量は0.5質量%以下である。一般に超安定Y型ゼオライト中の希土類酸化物含有量が増加するほど耐熱性が増加するため平衡触媒の活性は高くなる。一方、希土類金属酸化物を多く含む平衡触媒は水素移行活性も高くなる。流動接触分解触媒の水素移行活性が高くなると生成物中のオレフィンが減少しパラフィンが増加する。主にガソリン留分中のオレフィン類は後で述べる形状選択性ゼオライトを含む添加剤により軽質オレフィンに分解される。しかし、該添加剤によるガソリン留分中のパラフィン類の分解速度はオレフィン類の分解に比べて著しく遅いため、流動接触分解触媒の水素移行活性が高くなるほど該添加剤による軽質オレフィンの生成速度は小さくなる。
本発明に用いる流動接触分解触媒中の希土類金属酸化物含有量は0.05質量%以上、0.5質量%以下であり、好ましくは0.3質量%以下であり、さらに好ましくは0.1質量%以下である。該希土類金属酸化物の含有量が0.5質量%より多い場合水素移行活性が高くなりすぎ、分解活性は高くなるものの軽質オレフィン収率は低下する。
【0022】
また、新触媒における該超安定Y型ゼオライトの好ましい結晶格子定数は24.30〜24.60Åであり、さらに好ましくは24.36〜24.45Åである。ここでいうゼオライトの結晶格子定数はASTM D−3942−80で測定したものである。この範囲において結晶格子定数が小さいほどガソリン収率は減少するが軽質オレフィン収率は増加する。しかし該結晶格子定数が24.30Åより小さい場合、流動接触分解触媒の分解活性が低すぎて高い転化率を得ることができないため軽質オレフィン収率は減少する。また格子定数が24.60Åより大きい場合、水素移行活性が高くなり過ぎ好ましくない。流動接触分解触媒中の超安定Y型ゼオライトの含有量は5〜50質量%が好ましく、15〜40質量%がさらに好ましい。
また流動接触分解触媒のかさ密度は0.5〜1.0g/ml、平均粒径は50〜90μm、表面積は50〜350m2/g、細孔容積は0.05〜0.5ml/gの範囲であるのが好ましい。
【0023】
本発明に用いる添加剤は形状選択性ゼオライトを含むものである。形状選択性ゼオライトとはその細孔径がY型ゼオライトの細孔径よりも小さく、限られた形状の炭化水素のみがその細孔内へ進入できるというゼオライトのことである。そのようなゼオライトとして、ZSM−5、β、オメガ、SAPO−5、SAPO−11、SAPO−34、ペンタシル型メタロシリケート等が例示できる。これらの形状選択性ゼオライトのなかでZSM−5が最も好ましい。添加剤中に含まれる形状選択性ゼオライトの好ましい含有量は20〜70質量%であり、30〜60質量%がさらに好ましい。本発明に用いる添加剤のかさ密度は0.5〜1.0g/ml、平均粒径は50〜90μm、表面積は10〜200m2/g、細孔容積は0.01〜0.3ml/gの範囲であるのが好ましい。
【0024】
本発明において使用する触媒中の該流動接触分解触媒の割合は60〜95質量%であり、該添加剤の割合は5〜40質量%である。該流動接触分解触媒の割合が60質量%よりも小さい場合、あるいは該添加剤の割合が40質量%よりも多い場合には、原料油である重質油の転化率が低下し、高い軽質オレフィン収率は得られない。一方、該流動接触分解触媒の割合が95質量%よりも多い場合、あるいは該添加剤の割合が5質量%よりも少ない場合には、高い転化率は得られるが高い軽質オレフィン収率は得られない。
【0025】
【実施例】
次に本発明の実施例等について説明するが本発明はこれに限定されるものではない。
【0026】
実施例1
ダウンフローリアクター(ダウナー)タイプFCCパイロット装置を用いて重質油の流動接触分解を行なった。装置規模は、インベントリ−5kg、フィ−ド量1kg/hであり、運転条件は、リアクター出口温度600℃、反応圧力196kPa(1.0kg/cm2G)、触媒/油比30重量/重量、触媒再生帯域温度720℃である。このときリアクター内の炭化水素滞留時間は0.5秒であった。用いた原料油は中東系(アラビアンライト)の脱硫減圧軽油(VGO)である。用いた触媒は流動接触分解触媒(A)75質量%とZSM−5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒(A)の希土類酸化物含有量は0.05質量%であり、流動接触分解触媒(A)に含まれる超安定Y型ゼオライトの結晶格子定数は24.40Åである。流動接触分解触媒(A)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ−ムでスチ−ミングした。分解反応の結果を第1表に示す。
【0027】
実施例2
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は未脱硫大慶VGOである。用いた触媒は実施例1と同じ流動接触分解触媒(A)75質量%とZSM−5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。分解反応の結果を第1表に示す。
【0028】
実施例3
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫VGOである。用いた触媒は流動接触分解触媒(B)75質量%とZSM−5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒(B)の希土類酸化物含有量は0.05質量%であり、流動接触分解触媒(B)に含まれる超安定Y型ゼオライトの結晶格子定数は24.55Åである。流動接触分解触媒(B)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ−ムでスチ−ミングした。分解反応の結果を第1表に示す。
【0029】
比較例1
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫VGOである。用いた触媒は流動接触分解触媒(A)であり、添加剤は用いていない。流動接触分解触媒(A)を装置に充填する前に810℃で6時間、100%スチ−ムでスチ−ミングした。分解反応の結果を第1表に示す。
【0030】
比較例2
実施例1と同じ装置を用い、同じ運転条件で重質油の流動接触分解を行なった。用いた原料油は実施例1と同じ中東系(アラビアンライト)の脱硫VGOである。用いた触媒は流動接触分解触媒(C)75質量%とZSM−5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒(C)の希土類酸化物含有量は3.5質量%であり、流動接触分解触媒(C)に含まれる超安定Y型ゼオライトの結晶格子定数は24.55Åである。流動接触分解触媒(C)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ−ムでスチ−ミングした。分解反応の結果を第1表に示す。
【0031】
比較例3
アップフローリアクター(ライザー)タイプFCCパイロット装置を用いて重質油の流動接触分解を行なった。装置規模は、インベントリ−3kg、フィ−ド量1kg/hであり、運転条件は、リアクター出口温度600℃、反応圧力196kPa(1.0kg/cm2G)、触媒/油比10重量/重量、触媒再生帯域温度720℃である。このときリアクター内の炭化水素滞留時間は1.5秒であった。用いた原料油は中東系(アラビアンライト)の脱硫VGOである。用いた触媒は流動接触分解触媒(A)75質量%とZSM−5を含む添加剤(Davison社製、商品名OlefinsMax)25質量%の混合物である。流動接触分解触媒(A)および該添加剤を装置に充填する前にそれぞれを別々に810℃で6時間、100%スチ−ムでスチ−ミングした。分解反応の結果を第1表に示す。
【0032】
【表1】

Figure 0003948905
【0033】
【発明の効果】
以上のように、特定の流動接触分解触媒と形状選択性ゼオライトを含む添加剤を特定の比率で混合して用い、かつ特定の条件下に重質油を接触分解することにより、熱分解によるドライガス発生量が少なく、プロピレン、ブテンなどの軽質オレフィンを高い収率で得ることができる。
【図面の簡単な説明】
【図1】ダウンフロー形式の流動接触分解反応装置の一例である。
【符号の説明】
1 ダウンフロー形式反応帯域
2 気固分離帯域
3 ストリッピング帯域
4 再生帯域
5 ライザー型再生塔
6 触媒貯槽
7 混合領域
8 二次分離器
9 ディップレッグ[0001]
[Industrial application fields]
The present invention relates to a fluid catalytic cracking method for heavy oil, and more particularly to a fluid catalytic cracking method for obtaining light olefins such as propylene and butene in high yield from heavy oil.
[0002]
[Prior art]
Ordinary catalytic cracking involves cracking petroleum hydrocarbons in contact with a catalyst to obtain gasoline as a main product, a small amount of LPG, cracked light oil, etc., and the coal deposited on the catalyst is burned and removed with air. The catalyst is circulated and reused.
Recently, however, there is a movement to use the fluid catalytic cracking apparatus not as a gasoline production apparatus but as a light olefin (particularly propylene) production apparatus as a petrochemical raw material. On the other hand, propylene and butene are raw materials for alkylate and methyl-t-butyl ether (MTBE), which are high octane gasoline base materials. Such a method of using a fluid catalytic cracker has an economic advantage particularly in refineries where oil refining and petrochemical factories are highly coupled.
As a method for producing light olefins by fluid catalytic cracking of heavy oil, for example, a method of shortening the contact time between the catalyst and the feedstock (US Pat. No. 4,419,221, US Pat. No. 3,074,878, US Pat. No. 5,462,652, Europe Patent No. 315,179A), a method of performing a reaction at high temperature (US Pat. No. 4,980,053), a method using pentasil-type zeolite (US Pat. No. 5,326,465, published patent publication No. 7-506389), and the like.
[0003]
However, even in these methods, the selectivity for light olefins has not been sufficiently improved. For example, in a method using a high temperature reaction, the pyrolysis is combined with an increase in unnecessary dry gas yield, and the yield of useful light olefin is sacrificed accordingly. Moreover, since the production of diene increases in the high temperature reaction, there is a disadvantage that the quality of gasoline obtained together with the light olefin deteriorates. Although the method of shortening the contact time can suppress the hydrogen transfer reaction and reduce the rate of conversion of light olefins to light paraffin, the conversion rate cannot be increased, so the yield of light olefins is still insufficient. It is. In addition, a method (Japanese Patent Laid-Open No. 10-60453) that suppresses thermal decomposition and achieves a high conversion rate by combining these techniques such as high temperature reaction, high catalyst / oil ratio, and short contact time has been proposed. However, the yield of light olefins is still not sufficient. In addition, the method using pentasil-type zeolite merely over-decomposes gasoline to increase the light olefin yield, so the light olefin yield is not increased sufficiently and the gasoline yield is significantly reduced. . Therefore, it is difficult to obtain light olefins from heavy oil in high yield by these methods.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an improved heavy oil fluidized catalytic cracking method that produces a light olefin in a high yield with a small amount of dry gas generated by thermal cracking, depending on the combination of reaction mode, reaction conditions, and catalyst. There is.
[0005]
[Means for Solving the Problems]
The present inventors mainly focused on obtaining light olefins in a high yield in a fluid catalytic cracking process for obtaining light olefins such as propylene and butene by fluid catalytic cracking of heavy oil at a high temperature and a short contact time. As a result of diligent research, the purpose was achieved by using a specific fluid catalytic cracking catalyst and an additive containing a shape-selective zeolite mixed in a specific ratio and fluid catalytic cracking of heavy oil under specific conditions. The present invention has been found.
That is, the present invention is a fluid catalytic cracking method of heavy oil for producing light olefins using a fluid catalytic cracking reactor having a downflow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone, The reaction zone outlet temperature is 580 to 630 ° C., the catalyst / oil ratio is 15 to 40 weight / weight, the hydrocarbon residence time in the reaction zone is 0.1 to 1.0 seconds, and the catalyst is a rare earth metal oxide. The catalyst comprises a fluid catalytic cracking catalyst containing 60 to 95% by mass containing an ultrastable Y-type zeolite having a content of 0.05 to 0.5% by mass and an additive containing 5 to 40% by mass containing a shape selective zeolite. The present invention relates to a characteristic fluid catalytic cracking method of heavy oil.
In the present invention, the crystal lattice constant of the ultrastable Y-type zeolite is preferably 24.30 to 24.60.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The present invention is a fluid catalytic cracking method of heavy oil for producing light olefins using a fluid catalytic cracking reactor having a down flow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone. In the present invention, fluid catalytic cracking is one in which heavy oil is continuously brought into contact with a catalyst held in a fluid state to decompose heavy oil into light hydrocarbons mainly composed of light olefins and gasoline.
[0007]
In a normal fluid catalytic cracking method, a so-called riser reaction zone is employed in which both catalyst particles and feed oil rise in the pipe. However, when a normal riser reaction zone is used, backmixing occurs, and the residence time of the gas is locally increased, causing thermal decomposition. In particular, when the catalyst / oil ratio is extremely large as in the present invention as compared with a normal fluid catalytic cracking process, the degree of backmixing becomes large. Pyrolysis is undesirable because it increases the generation of unnecessary dry gas and decreases the yield of the desired light olefins and gasoline. The present invention employs a downflow type (downer) reaction zone in which catalyst particles and raw material oil both descend in the pipe, and therefore has a feature that back-mixing can be avoided.
[0008]
The cracking reaction mixture comprising the mixture of the cracking reaction product, unreacted material and spent catalyst that has undergone fluid catalytic cracking in the downflow type reaction zone is then sent to the gas-solid separation zone, where the cracking reaction product from the catalyst particles. Most of the hydrocarbons such as unreacted substances are removed. In some cases, the decomposition reaction mixture is quenched immediately before or after the gas-solid separation zone in order to suppress unnecessary thermal decomposition or excessive decomposition.
[0009]
The spent catalyst from which most of the hydrocarbons have been removed is further sent to a stripping zone, where hydrocarbons that could not be removed in the gas-solid separation zone by the stripping gas are removed. After separating the spent catalyst and hydrocarbons in this way, the used catalyst with the carbonaceous material and some heavy hydrocarbons attached is regenerated from the stripping zone in order to regenerate the spent catalyst. Sent to the band. In the catalyst regeneration zone, the used catalyst is oxidized, and carbonaceous substances and heavy hydrocarbons deposited and deposited on the catalyst are removed and regenerated. The catalyst regenerated by this oxidation treatment is sent again to the reaction zone and continuously circulated.
[0010]
FIG. 1 shows an example of a fluid catalytic cracking reactor having a downflow type reaction zone, a gas-solid separation zone, a stripping zone, and a catalyst regeneration zone.
The heavy oil as the raw material is supplied to the mixing region 7 through the line 10 and mixed with the regenerated catalyst circulated from the catalyst storage tank 6. The mixture flows down in the reaction zone 1 in a parallel flow, and during this time, the raw heavy oil and the catalyst are brought into contact with each other at a high temperature for a short time, and the heavy oil is decomposed. The decomposition reaction mixture from reaction zone 1 flows down to gas-solid separation zone 2 located below reaction zone 1, where spent catalyst is separated from decomposition reaction products and unreacted raw materials, and dipleg 9 is Then, it is guided to the upper part of the stripping band 3.
[0011]
The hydrocarbon gas from which most of the spent catalyst has been removed is then led to the secondary separator 8. Here, a small amount of spent catalyst remaining in the gas is removed, and the hydrocarbon gas is extracted out of the system and recovered. A tangential cyclone is preferably used as the secondary separator 8.
[0012]
The spent catalyst in the stripping zone 3 is removed by the stripping gas introduced from the line 11 to remove the hydrocarbons remaining on the surface of the spent catalyst and between the catalysts. As the stripping gas, an inert gas such as nitrogen generated by a steam or a compressor generated by a boiler is used.
[0013]
As stripping conditions, a temperature of 500 to 900 ° C., preferably 500 to 700 ° C., and a residence time of catalyst particles of 1 to 10 minutes are usually employed. In the stripping zone 3, the decomposition reaction products and unreacted raw materials adhering to the spent catalyst are removed, and the stripping gas is extracted from the line 12 at the top of the stripping zone 3 and led to the recovery system. On the other hand, the spent catalyst that has undergone the stripping process is supplied to the catalyst regeneration zone 4 through a line including the first flow rate regulator 13.
[0014]
The gas superficial velocity in the stripping zone 3 is usually preferably maintained in the range of 0.05 to 0.4 m / s, whereby the fluidized bed in the stripping zone can be a bubble fluidized bed. Since the gas velocity is relatively small in the bubbling fluidized bed, the consumption of the stripping gas can be reduced, and since the bed density is relatively large, the pressure control width of the first flow rate regulator 13 can be increased. Therefore, the transfer of the catalyst particles from the stripping zone 3 to the catalyst regeneration zone 4 is facilitated.
In the stripping zone 3, a horizontal perforated plate and other insertions can be provided in multiple stages for the purpose of improving the contact between the used catalyst and the stripping gas and improving the stripping efficiency.
[0015]
The catalyst regeneration zone 4 is defined by a container having a conical upper portion and a cylindrical lower portion, and the upper conical portion communicates with an upright conduit (riser type regeneration tower) 5. In the catalyst regeneration zone 4, the apex angle of the upper cone portion is usually in the range of 30 to 90 degrees, and the height of the upper cone portion is preferably in the range of 1/2 to 2 times the diameter of the lower cylindrical portion.
The spent catalyst supplied from the stripping zone 3 to the catalyst regeneration zone 4 is fluidized by a regeneration gas (typically an oxygen-containing gas such as air) introduced from the bottom of the catalyst regeneration zone 4. It is regenerated by burning off substantially all of the carbonaceous material and heavy hydrocarbons adhering to the surface.
As regeneration conditions, a temperature of 600 to 1000 ° C., preferably 650 to 750 ° C., a catalyst residence time of 1 to 5 minutes is adopted, and a gas superficial velocity is preferably 0.4 to 1.2 m / s. Adopted.
[0016]
The regenerated catalyst regenerated in the catalyst regeneration zone 4 and jumped out from the upper part of the turbulent fluidized bed is transferred to the riser type regeneration tower 5 from the upper conical part along with the used regeneration gas.
The diameter of the riser-type regeneration tower 5 communicating with the upper conical portion of the catalyst regeneration zone 4 is preferably 1/6 to 1/3 of the diameter of the lower cylindrical portion. By doing so, the gas superficial velocity of the fluidized bed in the catalyst regeneration zone 4 can be maintained in the range of 0.4 to 1.2 m / s suitable for the formation of the turbulent fluidized bed. The gas superficial velocity of the column 5 can be maintained in the range of 4 to 12 m / s suitable for the upward transfer of the regenerated catalyst.
[0017]
The regenerated catalyst rising in the riser type regeneration tower 5 is carried to a catalyst storage tank 6 installed at the top of the riser type regeneration tower. The catalyst storage tank 6 also functions as a gas-solid separator, and the used regeneration gas containing carbon dioxide gas or the like is separated from the regeneration catalyst here and discharged out of the system via the cyclone 15.
[0018]
On the other hand, the regenerated catalyst in the catalyst storage tank 6 is supplied to the mixing region 7 through a downflow pipe provided with a second flow rate regulator 17. Further, if necessary, a part of the regenerated catalyst in the catalyst storage tank 6 is regenerated through a bypass conduit having a third flow rate regulator 16 in order to facilitate control of the catalyst circulation amount in the riser type regenerating tower 5. It can be returned to 4.
In this way, the catalyst passes through the downflow type reaction zone 1, the gas-solid separation zone 2, the stripping zone 3, the catalyst regeneration zone 4, the riser type regeneration tower 5, the catalyst storage tank 6, and the mixing region 7, and again the downflow type. It circulates in the system in the order of reaction zone 1.
[0019]
Examples of the heavy oil used as a raw material in the present invention include straight-run gas oil, vacuum gas oil, atmospheric residue, vacuum residue, pyrolysis gas oil, and heavy oil obtained by hydrorefining these. These heavy oils may be used alone, or a mixture of these heavy oils or a mixture of these heavy oils with a part of light oil may be used.
In the present invention, the reaction zone outlet temperature is the outlet temperature of the downflow type reaction zone, and the temperature immediately before the decomposition reaction product is separated from the catalyst, or when it is rapidly cooled before the gas-solid separation zone. This is the temperature just before quenching. In this invention, reaction zone exit | outlet temperature is 580-630 degreeC, Preferably it is 590-620 degreeC. If the temperature is lower than 580 ° C., a light olefin cannot be obtained in a high yield, and if it is higher than 630 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable. The catalyst / oil ratio in the present invention indicates the ratio of the catalyst circulation rate (ton / h) to the feed oil supply rate (ton / h). In the present invention, the catalyst / oil ratio needs to be 15 to 40 weight / weight, preferably 20 to 30 weight / weight. When the catalyst / oil ratio is smaller than 15 weight / weight, the temperature of the regenerated catalyst supplied to the reaction zone becomes high in view of heat balance, which is not preferable because the amount of dry gas generated by thermal decomposition increases. Further, when the catalyst / oil ratio is larger than 40 weight / weight, the catalyst circulation amount becomes large, and the capacity of the catalyst regeneration zone becomes too large to secure the catalyst residence time necessary for catalyst regeneration in the catalyst regeneration zone. Therefore, it is not preferable.
[0020]
The hydrocarbon residence time as used in the present invention is the time from when the catalyst comes into contact with the raw material oil until the catalyst and the decomposition reaction product are separated at the outlet of the reaction zone, or immediately before the gas-solid separation zone. In the case, the time until quenching is shown. In the present invention, the residence time is required to be 0.1 to 1.0 seconds, and preferably 0.2 to 0.7 seconds. When the residence time of hydrocarbons in the reaction zone is shorter than 0.1 seconds, the decomposition reaction becomes insufficient and light olefins cannot be obtained in high yield. On the other hand, if the residence time is longer than 1.0 seconds, the contribution of thermal decomposition becomes large, which is not preferable.
Although it does not specifically limit among the operating conditions of the fluid catalytic cracking reaction apparatus in this invention, Usually, it is preferably operated at a reaction pressure of 196 to 392 kPa (1 to 3 kg / cm 2 G).
[0021]
The catalyst used in the present invention comprises a fluid catalytic cracking catalyst and an additive. The fluid catalytic cracking catalyst comprises a zeolite which is an active component and a matrix which is a supporting matrix. The main component of the zeolite is ultrastable Y-type zeolite, and the rare earth metal oxide content in the zeolite is 0.5% by mass or less. Generally, as the rare earth oxide content in the ultrastable Y-type zeolite increases, the heat resistance increases, so the activity of the equilibrium catalyst increases. On the other hand, an equilibrium catalyst containing a large amount of rare earth metal oxide has a high hydrogen transfer activity. When the hydrogen transfer activity of the fluid catalytic cracking catalyst increases, the olefin in the product decreases and the paraffin increases. Olefins mainly in gasoline fractions are decomposed into light olefins by an additive containing a shape selective zeolite described later. However, since the decomposition rate of paraffins in gasoline fractions by the additive is remarkably slower than that of olefins, the higher the hydrogen transfer activity of the fluid catalytic cracking catalyst, the lower the rate of light olefin formation by the additive. Become.
The rare earth metal oxide content in the fluid catalytic cracking catalyst used in the present invention is 0.05% by mass or more and 0.5% by mass or less, preferably 0.3% by mass or less, more preferably 0.1% by mass. It is below mass%. When the content of the rare earth metal oxide is more than 0.5% by mass, the hydrogen transfer activity becomes too high and the cracking activity becomes high, but the light olefin yield decreases.
[0022]
Further, the crystal lattice constant of the ultrastable Y-type zeolite in the new catalyst is preferably 24.30 to 24.60Å, and more preferably 24.36 to 24.45Å. The crystal lattice constant of a zeolite here is measured by ASTM D-3942-80. In this range, the gasoline yield decreases as the crystal lattice constant decreases, but the light olefin yield increases. However, when the crystal lattice constant is smaller than 24.30 mm, the cracking activity of the fluid catalytic cracking catalyst is too low to obtain a high conversion rate, so that the light olefin yield is reduced. On the other hand, when the lattice constant is larger than 24.60 mm, the hydrogen transfer activity becomes too high. The content of the ultrastable Y-type zeolite in the fluid catalytic cracking catalyst is preferably 5 to 50% by mass, and more preferably 15 to 40% by mass.
The bulk density of the fluid catalytic cracking catalyst is 0.5 to 1.0 g / ml, the average particle size is 50 to 90 μm, the surface area is 50 to 350 m 2 / g, and the pore volume is 0.05 to 0.5 ml / g. A range is preferred.
[0023]
The additive used in the present invention includes a shape selective zeolite. The shape-selective zeolite is a zeolite whose pore diameter is smaller than that of the Y-type zeolite, and that only limited shape hydrocarbons can enter the pores. Examples of such zeolite include ZSM-5, β, omega, SAPO-5, SAPO-11, SAPO-34, and pentasil type metallosilicates. Of these shape selective zeolites, ZSM-5 is most preferred. The preferable content of the shape selective zeolite contained in the additive is 20 to 70% by mass, and more preferably 30 to 60% by mass. The bulk density of the additive used in the present invention is 0.5 to 1.0 g / ml, the average particle size is 50 to 90 μm, the surface area is 10 to 200 m 2 / g, and the pore volume is 0.01 to 0.3 ml / g. It is preferable that it is the range of these.
[0024]
The ratio of the fluid catalytic cracking catalyst in the catalyst used in the present invention is 60 to 95% by mass, and the ratio of the additive is 5 to 40% by mass. When the proportion of the fluid catalytic cracking catalyst is less than 60% by mass, or when the proportion of the additive is more than 40% by mass, the conversion rate of the heavy oil as the raw material oil decreases, and a high light olefin No yield is obtained. On the other hand, when the proportion of the fluid catalytic cracking catalyst is more than 95% by mass, or when the proportion of the additive is less than 5% by mass, a high conversion rate is obtained but a high light olefin yield is obtained. Absent.
[0025]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited thereto.
[0026]
Example 1
Heavy oil fluidized catalytic cracking was carried out using a downflow reactor (downer) type FCC pilot device. The equipment scale is inventory-5 kg, the feed amount is 1 kg / h, and the operating conditions are reactor outlet temperature 600 ° C., reaction pressure 196 kPa (1.0 kg / cm 2 G), catalyst / oil ratio 30 weight / weight, The catalyst regeneration zone temperature is 720 ° C. At this time, the hydrocarbon residence time in the reactor was 0.5 seconds. The feedstock used was Middle Eastern (Arabian Light) desulfurized vacuum gas oil (VGO). The catalyst used was a mixture of 75% by mass of a fluid catalytic cracking catalyst (A) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax). The rare earth oxide content of the fluid catalytic cracking catalyst (A) is 0.05% by mass, and the crystal lattice constant of the ultrastable Y-type zeolite contained in the fluid catalytic cracking catalyst (A) is 24.40%. Each of the fluid catalytic cracking catalyst (A) and the additive was separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
[0027]
Example 2
Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The feedstock used was undesulfurized Daqing VGO. The catalyst used was a mixture of 75% by mass of the same fluid catalytic cracking catalyst (A) as in Example 1 and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax). The results of the decomposition reaction are shown in Table 1.
[0028]
Example 3
Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The feedstock used was the same Middle Eastern desulfurized VGO as in Example 1. The catalyst used is a mixture of 75% by mass of fluid catalytic cracking catalyst (B) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax). The rare earth oxide content of the fluid catalytic cracking catalyst (B) is 0.05% by mass, and the crystal lattice constant of the ultrastable Y-type zeolite contained in the fluid catalytic cracking catalyst (B) is 24.55Å. Each of the fluid catalytic cracking catalyst (B) and the additive was separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
[0029]
Comparative Example 1
Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The feedstock used was the same Middle Eastern desulfurized VGO as in Example 1. The catalyst used was a fluid catalytic cracking catalyst (A), and no additive was used. The fluid catalytic cracking catalyst (A) was steamed at 810 ° C. for 6 hours in 100% steam before filling the apparatus. The results of the decomposition reaction are shown in Table 1.
[0030]
Comparative Example 2
Using the same apparatus as in Example 1, fluid catalytic cracking of heavy oil was performed under the same operating conditions. The raw material oil used was the same Middle Eastern desulfurized VGO as in Example 1. The catalyst used is a mixture of 75% by mass of a fluid catalytic cracking catalyst (C) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax). The rare earth oxide content of the fluid catalytic cracking catalyst (C) is 3.5% by mass, and the crystal lattice constant of the ultrastable Y-type zeolite contained in the fluid catalytic cracking catalyst (C) is 24.55Å. Each of the fluid catalytic cracking catalyst (C) and the additive was separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
[0031]
Comparative Example 3
Heavy oil fluidized catalytic cracking was carried out using an upflow reactor (riser) type FCC pilot device. The equipment scale is inventory-3 kg, feed amount 1 kg / h, operating conditions are reactor outlet temperature 600 ° C., reaction pressure 196 kPa (1.0 kg / cm 2 G), catalyst / oil ratio 10 weight / weight, The catalyst regeneration zone temperature is 720 ° C. At this time, the hydrocarbon residence time in the reactor was 1.5 seconds. The feedstock used was Middle Eastern (Arabian Light) desulfurized VGO. The catalyst used was a mixture of 75% by mass of a fluid catalytic cracking catalyst (A) and 25% by mass of an additive containing ZSM-5 (Davison, trade name OlefinsMax). Each of the fluid catalytic cracking catalyst (A) and the additive was separately steamed at 100% steam for 6 hours at 810 ° C. before being charged to the apparatus. The results of the decomposition reaction are shown in Table 1.
[0032]
[Table 1]
Figure 0003948905
[0033]
【The invention's effect】
As described above, a specific fluid catalytic cracking catalyst and an additive containing a shape-selective zeolite are mixed in a specific ratio and used, and heavy oil is catalytically cracked under specific conditions, thereby enabling dryness by thermal cracking. The amount of gas generated is small, and light olefins such as propylene and butene can be obtained in high yield.
[Brief description of the drawings]
FIG. 1 is an example of a fluidized catalytic cracking reactor of a down flow type.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Down flow type reaction zone 2 Gas-solid separation zone 3 Stripping zone 4 Regeneration zone 5 Riser type regeneration tower 6 Catalyst storage tank 7 Mixing zone 8 Secondary separator 9 Dipreg

Claims (2)

ダウンフロー形式反応帯域、気固分離帯域、ストリッピング帯域および触媒再生帯域を有する流動接触分解反応装置を用いて軽質オレフィンを製造する重質油の流動接触分解法であって、反応帯域出口温度が580〜630℃、触媒/油比が15〜40重量/重量、反応帯域での炭化水素の滞留時間が0.1〜1.0秒であり、かつ触媒が希土類金属酸化物の含有量が0.05〜0.5質量%である超安定Y型ゼオライトを含む流動接触分解触媒60〜95質量%と形状選択性ゼオライトを含む添加剤5〜40質量%とからなることを特徴とする重質油の流動接触分解法。A fluid catalytic cracking process for producing heavy olefins using a fluid catalytic cracking reactor having a down flow type reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone, wherein the reaction zone outlet temperature is 580 to 630 ° C., catalyst / oil ratio 15 to 40 weight / weight, hydrocarbon residence time in the reaction zone is 0.1 to 1.0 seconds, and the catalyst has a rare earth metal oxide content of 0 A heavy catalyst comprising 60 to 95% by mass of a fluid catalytic cracking catalyst containing 0.05 to 0.5% by mass of an ultrastable Y-type zeolite and 5 to 40% by mass of an additive containing a shape-selective zeolite. Fluid catalytic cracking of oil. 超安定Y型ゼオライトの結晶格子定数が24.30〜24.60Åであることを特徴とする請求項1に記載の重質油の流動接触分解法。  The fluid catalytic cracking method of heavy oil according to claim 1, wherein the crystal lattice constant of the ultrastable Y-type zeolite is 24.30 to 24.60 Å.
JP2001045197A 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil Expired - Lifetime JP3948905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045197A JP3948905B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045197A JP3948905B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil

Publications (2)

Publication Number Publication Date
JP2002241764A JP2002241764A (en) 2002-08-28
JP3948905B2 true JP3948905B2 (en) 2007-07-25

Family

ID=18907040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045197A Expired - Lifetime JP3948905B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking of heavy oil

Country Status (1)

Country Link
JP (1) JP3948905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111566A1 (en) 2014-01-24 2015-07-30 Jx日鉱日石エネルギー株式会社 Fluid catalytic cracking process for heavy oil
KR20170015301A (en) 2014-05-30 2017-02-08 제이엑스 에네루기 가부시키가이샤 Method for fluid catalytic cracking of heavy oil

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425258B2 (en) * 2003-02-28 2008-09-16 Exxonmobil Research And Engineering Company C6 recycle for propylene generation in a fluid catalytic cracking unit
JP4714589B2 (en) 2006-01-20 2011-06-29 石油コンビナート高度統合運営技術研究組合 Heavy oil catalytic cracking catalyst and process for producing olefin and fuel oil
US9764314B2 (en) 2006-11-07 2017-09-19 Saudi Arabian Oil Company Control of fluid catalytic cracking process for minimizing additive usage in the desulfurization of petroleum feedstocks
EP2099880A2 (en) * 2006-11-07 2009-09-16 Saudi Arabian Oil Company Advanced control of severe fluid catalytic cracking process for maximizing propylene production from petroleum feedstock
EP2008726B1 (en) * 2007-06-29 2013-08-14 Eurecat Sa. Colour sorting of catalyst or adsorbent particles
CN103157507B (en) * 2011-12-15 2015-05-13 中国石油天然气股份有限公司 Heavy oil catalytic cracking catalyst and preparation method thereof
JP5940935B2 (en) * 2012-08-17 2016-06-29 日揮触媒化成株式会社 Hydrocarbon catalytic cracking catalyst
WO2015179735A1 (en) * 2014-05-22 2015-11-26 Saudi Arabian Oil Company Framework substituted zeolite catalyst for fluidized catalytic cracking and method for fluidized catalytic cracking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111566A1 (en) 2014-01-24 2015-07-30 Jx日鉱日石エネルギー株式会社 Fluid catalytic cracking process for heavy oil
KR20160113122A (en) 2014-01-24 2016-09-28 제이엑스 에네루기 가부시키가이샤 Fluid catalytic cracking process for heavy oil
KR20170015301A (en) 2014-05-30 2017-02-08 제이엑스 에네루기 가부시키가이샤 Method for fluid catalytic cracking of heavy oil

Also Published As

Publication number Publication date
JP2002241764A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
TWI599400B (en) Fluid catalytic cracking process and apparatus for maximizing light olefins or middle distillates and light olefins
JP4656689B2 (en) Riser reactor for fluid catalytic conversion.
US6656346B2 (en) Fluid catalytic cracking process for heavy oil
US4419221A (en) Cracking with short contact time and high temperatures
US20020195373A1 (en) Heavy oil fluid catalytic cracking process
JPH04501579A (en) Catalytic cracking method combined with light olefin modification
US20110139683A1 (en) Fcc process with spent catalyst recycle
EP0585247B1 (en) Catalytic cracking process and apparatus
US6495028B1 (en) Catalytic conversion process for producing isobutane and isoparaffin-enriched gasoline
JPH03504394A (en) Method for reforming propene-ethene mixture in a turbulent fluidized catalyst bed reactor
JP3996320B2 (en) Method for producing gasoline with a high content of isobutane and isoparaffin by conversion using a catalyst
JP3948905B2 (en) Fluid catalytic cracking of heavy oil
CA2553783C (en) System and method for selective component cracking to maximize production of light olefins
CN109722289A (en) Reduce the catalyst cracking method of dry gas and coke yield
JP4223690B2 (en) Fluid catalytic cracking method of heavy oil
JP7436503B2 (en) Staged Fluid Catalytic Cracking Process Incorporating Solids Separator for Upgrading Naphtha Range Materials
JP6234829B2 (en) Fluid catalytic cracking of heavy oil
EP1194503B1 (en) Fluidized catalytic cracking process
US20040140246A1 (en) Process for upgrading fcc product with additional reactor
JP6329436B2 (en) Fluid catalytic cracking of heavy oil
JP5947797B2 (en) Catalytic modification to improve product distribution
JP2019089907A (en) Method of producing light olefin
JP3724934B2 (en) Fluid catalytic cracking method of oil
EP0311375A1 (en) Process for cracking a hydrocarbon feedstock to obtain gasoline and olefins and upgrading the olefins to improve the total gasoline yield

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3948905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term