JP2015506821A - Heavy oil catalytic cracking catalyst and method for producing the same - Google Patents

Heavy oil catalytic cracking catalyst and method for producing the same Download PDF

Info

Publication number
JP2015506821A
JP2015506821A JP2014546274A JP2014546274A JP2015506821A JP 2015506821 A JP2015506821 A JP 2015506821A JP 2014546274 A JP2014546274 A JP 2014546274A JP 2014546274 A JP2014546274 A JP 2014546274A JP 2015506821 A JP2015506821 A JP 2015506821A
Authority
JP
Japan
Prior art keywords
exchange
rare earth
molecular sieve
producing
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014546274A
Other languages
Japanese (ja)
Other versions
JP5941994B2 (en
JP2015506821A5 (en
Inventor
ションホウ ガオ
ションホウ ガオ
ハイタオ チャン
ハイタオ チャン
チェングオ タン
チェングオ タン
ディ リ
ディ リ
ドン ジ
ドン ジ
ホンチャン ダン
ホンチャン ダン
チェンシ チャン
チェンシ チャン
Original Assignee
中国石油天然気股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然気股▲ふん▼有限公司 filed Critical 中国石油天然気股▲ふん▼有限公司
Publication of JP2015506821A publication Critical patent/JP2015506821A/en
Publication of JP2015506821A5 publication Critical patent/JP2015506821A5/ja
Application granted granted Critical
Publication of JP5941994B2 publication Critical patent/JP5941994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/67Pore distribution monomodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本発明は、超安定希土類Y型モレキュラーシーブを2〜50重量%、1種又は複種のほかのモレキュラーシーブを0.5〜30重量%、クレーを0.5〜70重量%、耐高温無機酸化物を1.0〜65重量%、及び酸化希土類を0.01〜12.5%重量含む重質油接触分解触媒およびその製造方法に関する。超安定希土類Y型モレキュラーシーブは、NaYモレキュラーシーブを原料として、順次に限定されてなくてもよい希土類交換、分散予備交換を経た後、モレキュラーシーブスラリーをさらに濾過、水洗及び1回目焼成して、「1交換1焼成」希土類ナトリウムYモレキュラーシーブが得られ、「1交換1焼成」希土類ナトリウムYモレキュラーシーブをアンモニウム塩交換によるナトリウム低減し、2回目焼成して、超安定希土類Y型モレキュラーシーブが得られる。本発明で提供する触媒は、重質油転化能が強く、液体総収率及び軽質油収率が高いという特徴を具備する。The present invention comprises 2 to 50% by weight of ultrastable rare earth Y-type molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, and 1.0 to The present invention relates to a heavy oil catalytic cracking catalyst containing 65% by weight and 0.01 to 12.5% by weight of rare earth oxide and a method for producing the same. The ultra-stable rare earth Y-type molecular sieve is made of NaY molecular sieve as a raw material, and after passing through rare-earth exchange and dispersion pre-exchange that may not be limited sequentially, the molecular sieve slurry is further filtered, washed with water and fired for the first time, "One exchange and one calcination" rare earth sodium Y molecular sieve is obtained, "One exchange and one calcination" rare earth sodium Y molecular sieve is reduced with sodium by ammonium salt exchange, and second firing is performed to obtain an ultrastable rare earth Y molecular sieve It is done. The catalyst provided in the present invention is characterized by a strong heavy oil conversion ability and high liquid total yield and light oil yield.

Description

本発明は、高重質油転化能を示す重質油接触分解触媒およびその製造方法に関する。より詳細には、本発明は、混練残渣油に適用される接触分解触媒およびその製造方法に関する。   The present invention relates to a heavy oil catalytic cracking catalyst exhibiting high heavy oil conversion ability and a method for producing the same. More specifically, the present invention relates to a catalytic cracking catalyst applied to kneaded residue oil and a method for producing the catalyst.

接触分解装置は、原油の重要な二次加工手段として、それによる総合製品の分布が製油所の経済性を決定する。近年、原料油の重質化、低質化する傾向が進行するに伴って、FCC触媒により強い重質油転化能及び高価値製品の選択性が求められる。Y型モレキュラーシーブは、重質油分解触媒の分解活性の主提供者として、その活性安定性の優劣及び分解活性の高低がFCC触媒の重質油転化能を決定する要因となる。   Catalytic cracking equipment is an important secondary processing means of crude oil, and the distribution of the total product thereby determines the economics of the refinery. In recent years, as the tendency of raw material oils to become heavier and lower has progressed, FCC catalysts require stronger heavy oil conversion ability and selectivity of high-value products. As the main provider of cracking activity of heavy oil cracking catalysts, Y-type molecular sieves are the factors that determine the heavy oil conversion capacity of FCC catalysts because of their superiority and inferior activity stability and cracking activity.

そこで、如何にY型モレキュラーシーブの分解活性及び活性安定性を向上するかに関して、国内外における関連研究機構は多く検討している。現在、一般にモレキュラーシーブの希土類による変性過程において希土類イオンをソーダライトケージにできるだけ多く定位させることにより、水蒸気劣化の過程においてモレキュラーシーブ骨格における脱アルミニウムを抑制し、モレキュラーシーブ骨格の構造安定性及び活性安定性を向上すると考えられている。中国特許ZL200410058089.3には、希土類変性Y型モレキュラーシーブの製造方法を公開し、当該方法は、希土類交換反応の終了後、アルカリ液を用いて系内をpH8〜11に調整した後、通常の後続処理手順を行い、当該方法で調製したモレキュラーシーブ希土類イオンは全てケージ(ソーダライトケージ)に定位される。中国特許ZL200410058090.6には、中国特許ZL200410058089.3におけるモレキュラーシーブの反応性能を公開し、当該特許において、触媒反応結果によれば、希土類イオンがソーダライトケージに定位されることによってモレキュラーシーブの構造安定性及び活性安定性が向上し、触媒の重質油転化能が明らかに改良されるが、当該触媒によるコークス選択性が悪いことが明らかになる。   Therefore, many related research organizations in Japan and overseas are studying how to improve the degradation activity and activity stability of Y-type molecular sieves. Currently, in the process of modification of molecular sieves with rare earths, rare earth ions are localized in the sodalite cage as much as possible to suppress dealumination of the molecular sieve skeleton in the process of water vapor degradation, thereby stabilizing the structural stability and activity of the molecular sieve skeleton. It is thought to improve the performance. In Chinese patent ZL200410058089.3, a method for producing a rare earth-modified Y-type molecular sieve is disclosed. After the rare earth exchange reaction is completed, the method is adjusted to pH 8 to 11 using an alkaline solution, and then the usual method is used. Subsequent processing procedures are performed, and all the molecular sieve rare earth ions prepared by the method are localized in a cage (sodalite cage). In Chinese Patent ZL200410058090.6, the molecular sieve reaction performance in Chinese Patent ZL200410058089.3 is published, and according to the catalytic reaction result, the structure of molecular sieve is determined by the localization of rare earth ions in sodalite cage. Stability and activity stability are improved and the heavy oil conversion ability of the catalyst is clearly improved, but it becomes clear that the coke selectivity by the catalyst is poor.

中国特許ZL97122039.5には超安定Yゼオライトの製造方法を公開し、当該方法において、Y型ゼオライトを、1種の酸溶液及び1種のアンモニウムイオン含有溶液と接触させて、高温水蒸気処理を行い、上記の酸の使用量は骨格アルミニウム1モル当たり1.5〜6モル水素イオンであり、酸溶液の濃度が0.1〜5当量/リットルであり、Y型ゼオライトと酸溶液との接触温度が5〜100℃、接触時間が0.5〜72時間であり、Y型ゼオライトとアンモニウムイオンとの重量比が2〜20である。当該特許に係る変性方法においてアンモニウムイオン含有溶液を加えることが必要であり、その目的として、モレキュラーシーブにおける酸化ナトリウムの含有量を低下させたり、焼成過程におけるモレキュラーシーブ構造に対して酸性ガスの破壊を低減するためであり、当該モレキュラーシーブを採用して調製されたFCC触媒は、重質油転化能が強く、軽質油の収率が高いという特徴を有するが、当該モレキュラーシーブ変性技術は以下の技術欠陥を存在し、1)調製過程においてアンモニウムイオンが多く添加され、アンモニウムイオンは最終的に大気又は排水に導入されて、アンモニア窒素汚染や治理コストが増加すること;2)当該特許方法によってモレキュラーシーブ粒子凝集の問題を効果的に解決することができず、粒子凝集によってモレキュラーシーブの比表面および空孔容積が低下し、モレキュラーシーブ交換過程における孔通路の抵抗が増加して、変性元素をモレキュラーシーブ内に正確に定位、定量させることが難しくになること;3)それとともに、当該特許はさらにY型ゼオライトをアンモニウムイオン含有溶液と接触させるとともに、又はその後、イオン交換で希土類イオンを導入してもよいと言及しており、当該交換過程において、アンモニウムイオンと希土類イオンとの間に競合反応が存在し、アンモニウムイオンは希土類イオンのサイトを優先的に占有して、希土類イオンがモレキュラーシーブケージ内に交換進入する抵抗を増やすとともに、希土類イオンの利用効率が低下すること、に繋がってしまう。   Chinese Patent ZL97122039.5 discloses a method for producing ultra-stable Y zeolite, in which Y-type zeolite is contacted with one acid solution and one ammonium ion-containing solution for high-temperature steam treatment. The amount of the acid used is 1.5 to 6 mole hydrogen ions per mole of skeletal aluminum, the concentration of the acid solution is 0.1 to 5 equivalents / liter, and the contact temperature between the Y-type zeolite and the acid solution is 5 to 100. C., the contact time is 0.5 to 72 hours, and the weight ratio of Y-type zeolite to ammonium ions is 2 to 20. In the modification method according to the patent, it is necessary to add an ammonium ion-containing solution. For that purpose, the content of sodium oxide in the molecular sieve is reduced or the acidic gas is destroyed to the molecular sieve structure in the firing process. The FCC catalyst prepared using the molecular sieve is characterized by strong heavy oil conversion ability and high yield of light oil, but the molecular sieve modification technology is the following technology. 1) A large amount of ammonium ions are added during the preparation process, and ammonium ions are finally introduced into the atmosphere or wastewater, resulting in increased ammonia nitrogen contamination and management costs; 2) Molecular sieves according to the patented method The problem of particle aggregation cannot be solved effectively, and The specific surface and pore volume of the molecular sieve are reduced, and the resistance of the pore passage during the molecular sieve exchange process is increased, making it difficult to accurately localize and quantify the modified elements in the molecular sieve; 3) At the same time, the patent further mentions that the Y-type zeolite may be brought into contact with the ammonium ion-containing solution, or thereafter, rare earth ions may be introduced by ion exchange, and in the exchange process, ammonium ions and rare earth ions are introduced. There is a competitive reaction between the ammonium ions and the rare earth ions preferentially occupying the sites, increasing the resistance of rare earth ions to exchange and enter the molecular sieve cage, and reducing the utilization efficiency of the rare earth ions. , Will lead to.

中国特許ZL02103909.7には、希土類含有超安定Y型モレキュラーシーブの製造方法を公開し、当該方法は、NaYモレキュラーシーブを1回交換及び1回焼成を経て得られたものであって、NaYモレキュラーシーブをアンモニウムイオン溶液に入れ、25〜100℃で化学脱アルミニウム処理を行い、化学脱アルミニウム錯化剤にシュウ酸及び/又はシュウ酸塩が含まれ、処理時間 が0.5〜5時間であり、その後、希土類溶液を入れて、攪拌して、シュウ酸希土類を含む希土類沈殿物を生成させ、濾過、水洗してケーキとなり、さらに水熱処理を行ってモレキュラーシーブ製品を作製することを特徴とする。当該方法で調製されたモレキュラーシーブは一定の耐バナジウム汚染能を有するが、その活性安定性及び分解活性が低く、原料油の重質化、低質化する動向に満たさない。これは、主にモレキュラーシーブの変性過程において希土類イオンの、モレキュラーシーブスーパーケージ及びソーダライトケージにおける位置分布に関わるためである。当該方法によって明らかにするように、希土類イオンは二種類の形態でモレキュラーシーブ系に存在し、つまり、一部の希土類はイオン形態でソーダライトケージに進入し、他の一部希土類イオンは酸化希土類(その前駆体としてはシュウ酸希土類であり、後続の焼成によって酸化希土類に転化される)でモレキュラーシーブの表面に独立で分散し、これは、モレキュラーシーブ構造に対して希土類イオンの安定支持作用を低減するとともに、当該方法においてアンモニア窒素汚染の問題が多く存在し、環境や人体に対して加えられるシュウ酸及び/又はシュウ酸塩の毒害が大きいである。   In Chinese Patent ZL02103909.7, a method for producing a rare earth-containing ultrastable Y-type molecular sieve is disclosed, which is obtained by changing NaY molecular sieve once and firing once, and NaY molecular sieve. The sieve is put in an ammonium ion solution and subjected to a chemical dealumination treatment at 25 to 100 ° C. The chemical dealumination complex contains oxalic acid and / or oxalate, and the treatment time is 0.5 to 5 hours, and thereafter Then, a rare earth solution is added and stirred to produce a rare earth precipitate containing rare earth oxalate, filtered, washed with water to form a cake, and further subjected to hydrothermal treatment to produce a molecular sieve product. The molecular sieve prepared by this method has a certain resistance to fouling by vanadium, but its activity stability and decomposition activity are low, and it does not meet the trend of increasing the weight and quality of feedstock. This is mainly due to the position distribution of rare earth ions in the molecular sieve supercage and sodalite cage in the modification process of the molecular sieve. As clarified by the method, rare earth ions exist in the molecular sieve system in two types, that is, some rare earth ions enter the sodalite cage in ionic form and other rare earth ions are rare earth oxides. (The precursor is rare earth oxalate, which is converted to rare earth oxide by subsequent firing) and is dispersed independently on the surface of the molecular sieve, which provides a stable support of rare earth ions for the molecular sieve structure. In addition to the reduction, there are many problems of ammonia nitrogen contamination in the method, and the poisoning of oxalic acid and / or oxalate added to the environment and human body is large.

CN200410029875.0には希土類超安定Y型ゼオライトの製造方法を公開し、当該方法は希土類塩とクエン酸からなる混合溶液、または無機アンモニウム塩と、希土類塩及びクエン酸からなる混合溶液を用いてゼオライトを処理する工程を含むことを特徴とする。当該方法によって、プロセスの簡略化ができ、調製されたゼオライトは分解触媒の活性構成要素として、ガソリンを接触分解する生成物であるオレフィン含有量を低減し、及び軽質油を接触分解する生成物の収率を明らかに増加する利点があるが、当該方法はモレキュラーシーブにおける希土類イオンの定位について説明していない。   CN200410029875.0 discloses a method for producing a rare earth ultrastable Y-type zeolite, which uses a mixed solution consisting of a rare earth salt and citric acid or a mixed solution consisting of an inorganic ammonium salt, a rare earth salt and citric acid. The process of processing is included. The process simplifies the process, and the prepared zeolite is used as an active component of the cracking catalyst to reduce the olefin content, which is the product of catalytic cracking of gasoline, and of the product of catalytic cracking of light oil. Although there is a clear advantage in increasing the yield, the method does not account for the localization of rare earth ions in the molecular sieve.

本発明は、重質油転化能が強く、コークス選択性が適度な、目的とする製品の収率が高いであることを特徴とする新規な、重質油の効率転化可能な接触分解触媒およびその製造方法の提供を目的とする。   The present invention is a novel catalytic cracking catalyst capable of converting heavy oil efficiently and having a high heavy oil conversion ability, a suitable coke selectivity, and a high yield of a target product. It aims at providing the manufacturing method.

本発明は、触媒の組成において、超安定希土類Y型モレキュラーシーブを2〜50重量%、1種又は複種のほかのモレキュラーシーブを0.5〜30重量%、クレーを0.5〜70重量%、耐高温無機酸化物を1.0〜65重量%、及び酸化希土類を0.01〜12.5重量%含む重質油の接触分解触媒であって、超安定希土類Y型モレキュラーシーブは、希土類交換、分散予備交換を含む調製過程により得られるものであり、超安定希土類Y型モレキュラーシーブにおいて酸化希土類を0.5〜25重量%含み、酸化ナトリウムが1.2重量%以下、結晶化度が40〜75%、格子定数が2.449nm〜2.472nmでり、希土類交換と分散予備交換は順次に限定されず連続して行われ、その間に焼成過程がなく;分散予備交換は、モレキュラーシーブスラリーの濃度を固形分として80〜400g/Lに調整して、分散剤を0.2重量%〜7重量%加えて分散予備交換を行うものであり、交換温度が0〜100℃、交換時間が0.1〜1.5時間であり;分散予備交換における上記の分散剤は、セスバニア粉、ホウ酸、尿素、エタノール、ポリアクリルアミド、酢酸、シュウ酸、アジピン酸、ギ酸、塩酸、硝酸、クエン酸、サリチル酸、酒石酸、安息香酸、デンプンから選ばれる1種又は1種以上のものであり;希土類交換、分散予備交換においてアンモニウム塩が使用されないことを特徴とする新規な、重質油の効率転化可能な接触分解触媒を提供する。   In the composition of the catalyst, 2 to 50% by weight of ultrastable rare earth Y-type molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, high temperature resistant inorganic Catalytic cracking catalyst of heavy oil containing 1.0 to 65% by weight of oxide and 0.01 to 12.5% by weight of rare earth oxide, ultrastable rare earth Y-type molecular sieve is prepared by a preparation process including rare earth exchange and dispersion pre-exchange. In the ultrastable rare earth Y-type molecular sieve, 0.5 to 25% by weight of rare earth oxide, 1.2% by weight or less of sodium oxide, 40 to 75% crystallinity, and 2.449 nm to 2.472 nm in lattice constant The rare earth exchange and the dispersion pre-exchange are not limited sequentially but are performed continuously, and there is no firing process between them; the dispersion pre-exchange is performed by adjusting the concentration of the molecular sieve slurry to 80 to 400 g / L as the solid content. , 0.2% to 7% by weight of dispersant The dispersion preliminary exchange is performed, the exchange temperature is 0 to 100 ° C., the exchange time is 0.1 to 1.5 hours; the above dispersants in the dispersion preliminary exchange are sesbania powder, boric acid, urea, ethanol, polyacrylamide , Acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, benzoic acid, one or more selected from starch; A novel catalytic cracking catalyst capable of converting heavy oil efficiently, which is characterized in that it is not used.

本発明は、さらに以下の当該重質油接触分解触媒の製造方法を提供する。   The present invention further provides the following method for producing the heavy oil catalytic cracking catalyst.

(1)超安定希土類Y型モレキュラーシーブの調製:NaYモレキュラーシーブ(ケイバン比が4.0より大きく、結晶化度が70%より大きいものを好ましい)を原料として、順次に限定されなく希土類交換、分散予備交換を経て、モレキュラーシーブスラリーをさらに濾過、水洗及び1回目焼成して、「1交換1焼成」希土類ナトリウムYモレキュラーシーブが得られ、希土類交換、分散予備交換の順番が限定されるものではなく、「1交換1焼成」希土類ナトリウムYモレキュラーシーブをアンモニウム塩交換によるナトリウム低減し、2回目焼成して、超安定希土類Y型モレキュラーシーブが得られる。
(2)重質油触媒の調製:超安定希土類Y型である上記のモレキュラーシーブ成分と、クレー、耐高温無機酸化物の前駆体を混合均質化し、噴霧成形、焼成及び水洗して、触媒完成品が得られる。
(1) Preparation of ultra-stable rare earth Y-type molecular sieve: NaY molecular sieve (preferably having a caivan ratio of greater than 4.0 and a crystallinity of greater than 70%) is used as a raw material. Through the exchange, the molecular sieve slurry is further filtered, washed with water and fired for the first time to obtain a “one exchange and one firing” rare earth sodium Y molecular sieve, and the order of rare earth exchange and dispersion pre-exchange is not limited, “One-exchange-one-fired” rare earth sodium Y molecular sieve is reduced by sodium exchange by ammonium salt exchange, and then fired a second time to obtain an ultra-stable rare-earth Y-type molecular sieve.
(2) Preparation of heavy oil catalyst: Mixing and homogenizing the above-mentioned molecular sieve component, which is an ultrastable rare earth Y-type, and a precursor of clay and high temperature resistant inorganic oxide, spray molding, firing and washing with water to complete the catalyst Goods are obtained.

当該発明に記載する重質油接触分解触媒の調製過程における工程(1)に、即ち超安定希土類Y型モレキュラーシーブが得られる場合、NaYモレキュラーシーブ希土類交換と分散予備交換との間に、モレキュラーシーブスラリーは洗浄、濾過しなくてもよく、洗浄、濾過してもよい。希土類交換の際に、そのRE2O3/Yゼオライト(質量)は0.005〜0.25であるのが好ましく、0.01〜0.20が最も好ましく、交換温度は0〜100℃であり、60〜95℃が最も好ましく、交換pH値は2.5〜6.0であり、3.5〜5.5が最も好ましく、交換時間は0.1〜2時間であり、0.3〜1.5時間が最も好ましい。分散予備交換の際に、分散剤の添加量は0.2重量%〜7重量%であり、0.2重量%〜5重量%が最も好ましく、交換温度は0〜100℃であり、60〜95℃が最も好ましく、交換時間は0.1〜1.5時間である。変性されたモレキュラーシーブスラリーは濾過、水洗を経てケーキが得られ、得たれたケーキを、その水分含有量を30%〜50%とするようにフラッシュ乾燥して、最後焼成を行い、焼成条件は通常の条件を用いてもよく、例えば、350℃〜700℃、0〜100%水蒸気で0.3〜3.5時間焼成し、450℃〜650℃、15〜100%水蒸気で0.5〜2.5時間焼成することが好ましく、これにより、「1交換1焼成」超安定希土類ナトリウムYモレキュラーシーブが得られる。「1交換1焼成」超安定希土類ナトリウムYモレキュラーシーブは2回目の交換及び2回目の焼成を経て本発明に記載する超安定希土類Y型モレキュラーシーブが得られ、2回目の交換、2回目の焼成は当該業界に周知するアンモニウム塩交換によるナトリウム低減し、及び超安定化する過程であり、本発明では、特に限定されない。 In step (1) in the process of preparing the heavy oil catalytic cracking catalyst described in the present invention, that is, when an ultrastable rare earth Y-type molecular sieve is obtained, the molecular sieves are exchanged between the NaY molecular sieve rare earth exchange and the dispersion pre-exchange. The rally may not be washed and filtered, and may be washed and filtered. During the rare earth exchange, the RE 2 O 3 / Y zeolite (mass) is preferably 0.005 to 0.25, most preferably 0.01 to 0.20, the exchange temperature is 0 to 100 ° C, and 60 to 95 ° C is the most. Preferably, the exchange pH value is 2.5 to 6.0, most preferably 3.5 to 5.5, the exchange time is 0.1 to 2 hours, and most preferably 0.3 to 1.5 hours. In the dispersion pre-exchange, the amount of the dispersant added is 0.2 wt% to 7 wt%, most preferably 0.2 wt% to 5 wt%, the exchange temperature is 0 to 100 ° C., and 60 to 95 ° C. is the most. Preferably, the exchange time is 0.1 to 1.5 hours. The modified molecular sieve slurry is filtered and washed with water to obtain a cake. The obtained cake is flash-dried so that the water content is 30% to 50%, and the final baking is performed. Ordinary conditions may be used. For example, baking may be performed at 350 ° C. to 700 ° C. with 0 to 100% steam for 0.3 to 3.5 hours, and 450 ° C. to 650 ° C. with 15 to 100% steam for 0.5 to 2.5 hours. Preferably, this results in a “one exchange one calcined” ultrastable rare earth sodium Y molecular sieve. "1 exchange 1 firing" ultrastable rare earth sodium Y molecular sieve is obtained through the second exchange and the second firing to obtain the ultrastable rare earth Y type molecular sieve described in the present invention, the second exchange, the second firing Is a process of sodium reduction and ultrastabilization by ammonium salt exchange well known in the industry, and is not particularly limited in the present invention.

本発明に記載する超安定希土類Y型モレキュラーシーブの「1交換1焼成」過程において、希土類交換及び分散予備交換の交換過程にポット式交換、ベルト式交換及び/又はケーキ交換を採用してもよい。希土類交換を行う際に、以下のとおり行ってもよく、即ち、希土類の総量が変化しないことを前提として、希土類化合物溶液を複数部に分けて、ポット式交換、ベルト式交換及び/又はケーキ交換、即ち複数回の交換を行ってもよい。同様に、分散予備交換過程において、分散剤総量が変化しないことを前提として、分散剤を複数部に分けて、ポット式交換、ベルト式交換及び/又はケーキ交換を行ってもよい。希土類交換及び分散予備交換は複数回の交換である場合に、二種類の交換は交互に行ってもよい。   In the “one-exchange-one-firing” process of the ultrastable rare earth Y-type molecular sieve described in the present invention, pot-type exchange, belt-type exchange, and / or cake exchange may be employed in the exchange process of rare earth exchange and dispersion pre-exchange. . When performing rare earth exchange, it may be performed as follows, that is, assuming that the total amount of rare earth does not change, the rare earth compound solution is divided into multiple parts, pot type exchange, belt type exchange and / or cake exchange That is, a plurality of exchanges may be performed. Similarly, in the dispersion pre-exchange process, it is also possible to divide the dispersant into a plurality of parts and perform pot type exchange, belt type exchange and / or cake exchange on the assumption that the total amount of the dispersant does not change. When the rare earth exchange and the dispersion pre-exchange are a plurality of exchanges, the two kinds of exchanges may be performed alternately.

本発明に記載する希土類化合物は、塩化希土類や硝酸希土類や硫酸希土類であり、塩化希土類や硝酸希土類が好ましい。   The rare earth compounds described in the present invention are rare earth chloride, rare earth nitrate and rare earth sulfate, and rare earth chloride and rare earth nitrate are preferred.

本発明に記載する希土類は、ランタン濃化希土類やセリウム濃化希土類でもよく、純ランタンや純セリウムでもよい。   The rare earth described in the present invention may be lanthanum enriched rare earth or cerium enriched rare earth, or pure lanthanum or pure cerium.

本発明に記載する分散予備交換過程における上記の分散剤は、セスバニア粉、ホウ酸、尿素、エタノール、ポリアクリルアミド、酢酸、シュウ酸、アジピン酸、ギ酸、塩酸、硝酸、クエン酸、サリチル酸、酒石酸、安息香酸、デンプンから選ばれる1種又は1種以上のものであり、2種又は2種以上が好ましい。   In the dispersion pre-exchange process described in the present invention, the dispersant is sesbania powder, boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, One or more kinds selected from benzoic acid and starch, and two or more kinds are preferred.

本発明に記載する触媒組成におけるほかのモレキュラーシーブは、Y型ゼオライト、Lゼオライト、ZSM-5ゼオライト、bゼオライト、リン酸アルミニウムゼオライト、Wゼオライトから選ばれる1種又は1種以上ものもであり、好ましいのはY型ゼオライト、ZSM-5ゼオライト、bゼオライト、或は上記のゼオライトの通常の物理又は化学変性されたものであり、HY、USY、REY、REHY、REUSY、H-ZSM-5、Hbを含む。   Other molecular sieves in the catalyst composition described in the present invention are Y type zeolite, L zeolite, ZSM-5 zeolite, b zeolite, aluminum phosphate zeolite, one or more types selected from W zeolite, Preference is given to Y-type zeolite, ZSM-5 zeolite, b zeolite, or the usual physical or chemical modifications of the above mentioned zeolites, HY, USY, REY, REHY, REUSY, H-ZSM-5, Hb. including.

本発明に記載するクレーは、カオリン、ハロイサイト、モンモリロナイト、セピオライト、パーライトなどから選ばれる1種又は1種以上のものであり、上記の耐高温無機酸化物は、Al2O3、SiO2、SiO2-Al2O3、AlPO4から選ばれる1種又は1種以上のものであり、その前駆体は、シリカアルミナゲル 、シリカゾル、アルミナゾル、シリカアルミナ複合ゾル、擬ベーマイトを含む。 The clay described in the present invention is one or more selected from kaolin, halloysite, montmorillonite, sepiolite, pearlite, and the like, and the high-temperature resistant inorganic oxide includes Al 2 O 3 , SiO 2 , SiO 2 One or more selected from 2- Al 2 O 3 and AlPO 4 , and precursors thereof include silica alumina gel, silica sol, alumina sol, silica alumina composite sol, and pseudoboehmite.

本発明に記載する噴霧条件は通常の分解触媒を調製する操作条件であり、本発明では、何ら制限がなく、後処理過程は従来技術と同じであり、触媒焼成、水洗、乾燥などを含み、中でも焼成について、好ましいのは噴霧微小球サンプルを200℃〜700℃、より好ましく300℃〜650℃で焼成させ、時間は0.05〜4時間であり、0.1〜3.5時間が好ましく、水洗条件として、好ましいのは水/触媒重量が0.5〜35、水洗温度が20℃〜100℃、時間が0.1〜0.3時間である。   The spraying conditions described in the present invention are the operating conditions for preparing a normal cracking catalyst, and in the present invention, there is no limitation, the post-treatment process is the same as in the prior art, including catalyst calcination, water washing, drying, etc. Above all, for firing, it is preferable that the sprayed microsphere sample is fired at 200 ° C. to 700 ° C., more preferably 300 ° C. to 650 ° C., the time is 0.05 to 4 hours, 0.1 to 3.5 hours are preferable, and the washing conditions are preferable. The water / catalyst weight is 0.5 to 35, the washing temperature is 20 ° C. to 100 ° C., and the time is 0.1 to 0.3 hours.

実施例に用いられる原料の仕様について
1.NaYモレキュラーシーブ:NaY-1(ケイバン比4.8、結晶化度92%)、NaY-2(ケイバン比4.1、結晶化度83%)、蘭州石化社触媒工場製。
2.超安定1交換1焼成モレキュラーシーブサンプル:結晶化度60%、酸化ナトリウム4.3m%、蘭州石化社触媒工場製。
3.希土類溶液:塩化希土類(酸化希土類 277.5g/l)、硝酸希土類(酸化希土類 252g/l)、いずれも工業製品であり、蘭州石化社触媒工場から得られるもの。
4.セスバニア粉、ホウ酸、尿素、エタノール、ポリアクリルアミド、シュウ酸、アジピン酸、酢酸、ギ酸、塩酸、硝酸、クエン酸、サリチル酸、酒石酸、デンプンはいずれも化学用ものであり;塩化アンモニウム、硝酸アンモニウム、硫酸アンモニウム、シュウ酸アンモニウムはいずれも工業製品である。
5.擬ベーマイト(熱灼減量36.2%)、カオリン(熱灼減量16.4%)、ハロイサイト(熱灼減量21.4%)、モンモリロナイト(熱灼減量15.8%)、パーライト(熱灼減量17.6%)は、固体であり;アルミニウムゾルは酸化アルミニウムを23.0重量%含み;シリコンゾルはシリカを24.5重量%含み、いずれも工業合格品である。
6.REY、REHY、USY、REUSYモレキュラーシーブは、いずれも合格工業品であり、蘭州石化社触媒工場製;bゼオライトは、工業合格品、撫順石化社製;H-ZSM-5は、工業合格品、上海復旦大学製。
About specifications of raw materials used in Examples 1. NaY molecular sieve: NaY-1 (Kayban ratio 4.8, crystallinity 92%), NaY-2 (Kayban ratio 4.1, crystallinity 83%), manufactured by Lanzhou Petrochemical Co., Ltd. Catalyst Factory.
2. Ultra-stable 1 exchange 1 calcined molecular sieve sample: 60% crystallinity, 4.3m% sodium oxide, manufactured by Lanzhou Petrochemical Company.
3. Rare earth solution: rare earth chloride (rare earth oxide 277.5g / l), rare earth nitrate (rare earth oxide) 252g / l), both industrial products, obtained from Lanzhou Petrochemical's catalyst factory.
4). Sesbania powder, boric acid, urea, ethanol, polyacrylamide, oxalic acid, adipic acid, acetic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, starch are all for chemical use; ammonium chloride, ammonium nitrate, ammonium sulfate Ammonium oxalate is an industrial product.
5. Pseudo boehmite (heat loss 36.2%), kaolin (heat loss 16.4%), halloysite (heat loss 21.4%), montmorillonite (heat loss 15.8%), perlite (heat loss 17.6%) are solid Aluminum sol contains 23.0% by weight aluminum oxide; silicon sol contains 24.5% by weight silica, both of which are industrially acceptable.
6). REY, REHY, USY, and REUSY molecular sieve are all acceptable industrial products, manufactured by Lanzhou Petrochemical Co., Ltd .; b Zeolite is an industrially acceptable product, manufactured by Fushunishi Chemical; H-ZSM-5, Made by Shanghai Fudan University.

[実施例1]
加熱ジャケット付の反応槽に、NaY-1モレキュラーシーブ3000g(無水ベース)及び一定量の脱イオン水を順に添加して固形分220g/Lのスラリーに調製し、ホウ酸82g及びセスバニア粉105gを入れた後、85℃に昇温し、攪拌下で0.5時間交換反応させた後、濾過、洗浄して、得られたケーキを反応槽に置き、その後塩化希土類1.67リットルを入れ、系内pH=4.0に調節して、80℃に昇温し、0.3時間交換反応させて、得られたケーキを、その水分含有量が30%〜50%となるようにフラッシュ乾燥して、最後に70%水蒸気、670℃で1.0時間焼成して、「1交換1焼成」希土類ナトリウムYが得られた。加熱ジャケット付の反応槽に、「1交換1焼成」超安定希土類ナトリウムYモレキュラーシーブ500g(無水ベース)及び一定量の脱イオン水を添加して固形分120g/Lのスラリーに調製し、硫酸アンモニウム120gを入れて系内pH=4.2に調節して、90℃に昇温し、0.8時間交換させた後、濾過、洗浄して、ケーキを80%水蒸気、560℃で2.5時間焼成して、本発明に記載する希土類超安定Yモレキュラーシーブ活性成分が作製され、変性モレキュラーシーブA-1と表記する。
[Example 1]
In a reaction vessel with a heating jacket, add 3000 g of NaY-1 molecular sieve (anhydrous base) and a certain amount of deionized water in order to prepare a slurry with a solid content of 220 g / L, and add 82 g of boric acid and 105 g of sesbania powder. Thereafter, the temperature was raised to 85 ° C. and exchange reaction was performed for 0.5 hours with stirring, followed by filtration and washing.The resulting cake was placed in a reaction vessel, and then 1.67 liters of rare earth chloride was added, and the system pH = 4.0. To 80 ° C. and exchange reaction for 0.3 hours, the cake obtained is flash-dried so that its water content is 30% to 50%, finally 70% steam, By calcining at 670 ° C. for 1.0 hour, “one exchange and one calcined” rare earth sodium Y was obtained. To a reaction vessel with a heating jacket, add 500g (1 basis 1 calcined) ultrastable rare earth sodium Y molecular sieve (anhydrous base) and a certain amount of deionized water to prepare a slurry with a solid content of 120g / L. To adjust the pH in the system to 4.2, heated to 90 ° C., exchanged for 0.8 hours, filtered and washed, the cake was baked at 80% steam, 560 ° C. for 2.5 hours, the present invention The rare earth ultra-stable Y molecular sieve active ingredient described in 1 is prepared and denoted as modified molecular sieve A-1.

水浴加熱付の反応槽に、水4.381リットル、カオリン1062g、酸化アルミニウム986g及び塩酸63.5mlを添加して均一に混合し、1時間攪拌した後、変性モレキュラーシーブA-1 448g、H-ZSM-5 63g、REUSY 755gを順に添加し、均一に混合された後アルミニウムゾル1500gを徐々に加えゲル化し、噴霧成形を経て、得られた微小球を400℃で0.5時間焼成させた。焼成された微小球2kgを取り、脱イオン水15kgを入れて60℃で15分間洗浄し、濾過乾燥して本発明に調製される分解触媒が得られ、Aと表記する。   In a reaction bath with water bath heating, 4.381 liters of water, 1062 g of kaolin, 986 g of aluminum oxide and 63.5 ml of hydrochloric acid were added and mixed uniformly. After stirring for 1 hour, 448 g of modified molecular sieve A-1 and H-ZSM-5 63 g and REUSY 755 g were added in order, and after mixing uniformly, 1500 g of aluminum sol was gradually added to gel, followed by spray molding, and the resulting microspheres were fired at 400 ° C. for 0.5 hour. Take 2 kg of the calcined microspheres, add 15 kg of deionized water, wash at 60 ° C. for 15 minutes, filter and dry to obtain the cracking catalyst prepared in the present invention, denoted as A.

[実施例2]
加熱ジャケット付の反応槽に、NaY-1モレキュラーシーブ3000g(無水ベース)及び一定量の脱イオン水を順に添加して固形分360g/Lのスラリーに調製し、硝酸希土類0.82リットルを入れ、系内pH=3.3に調節して、80℃に昇温し、1.5時間交換反応させた後、濾過、洗浄して、得られたケーキを反応槽に入れ、さらにポリアクリルアミド202g及びサリチル酸30gを入れた後、78℃に昇温して分散交換を行い、攪拌下で0.5時間交換反応させて、得られたケーキフを、その水分含有量が30%〜50%となるようにラッシュ乾燥して、最後に30%水蒸気、630℃で1.8時間焼成して、「1交換1焼成」希土類ナトリウムYが作製された。加熱ジャケット付の反応槽に、「1交換1焼成」超安定希土類ナトリウムYモレキュラーシーブ500g(無水ベース)及び脱イオン水を入れて、固形分370g/Lのスラリーに調整し、硫酸アンモニウム200gを入れて系内pH=3.6に調節して、90℃に昇温し、1.2時間交換させた後、濾過、洗浄して、ケーキを20%水蒸気、600℃で0.5時間焼成して、本発明に記載する希土類超安定Yモレキュラーシーブ活性成分が作製され、変性モレキュラーシーブB-1と表記する。
[Example 2]
In a reaction vessel with a heating jacket, add 3000 g of NaY-1 molecular sieve (anhydrous base) and a certain amount of deionized water in order to prepare a slurry with a solid content of 360 g / L, add 0.82 liter of rare earth nitrate, After adjusting to pH = 3.3, raising the temperature to 80 ° C. and allowing the reaction to exchange for 1.5 hours, filtering and washing, the resulting cake was put into a reaction vessel, and further, 202 g of polyacrylamide and 30 g of salicylic acid were added. The dispersion was exchanged by raising the temperature to 78 ° C., and the exchange reaction was carried out for 0.5 hours with stirring. The cake cake obtained was rush dried so that its water content was 30% to 50%, and finally Baking for 30 hours at 30% steam and 630 ° C. for 1.8 hours produced “one-exchange-one-fired” rare earth sodium Y. In a reactor equipped with a heating jacket, put 500g (anhydrous base) of ultra-stable rare earth sodium Y molecular sieve and deionized water, and adjust the slurry to a solid content of 370g / L, and add 200g of ammonium sulfate. The system pH is adjusted to 3.6, the temperature is raised to 90 ° C., exchanged for 1.2 hours, filtered and washed, and the cake is baked at 20% steam and 600 ° C. for 0.5 hours, as described in the present invention. A rare earth ultra-stable Y molecular sieve active ingredient was prepared and denoted as modified molecular sieve B-1.

水浴加熱付の反応槽に、水4.620リットル、カオリン1024g、擬ベーマイト971g及び塩酸90.8mlを添加して均一に混合し、1時間攪拌した後、変性モレキュラーシーブB-1 338g、bゼオライト129g、REHY 806gを順に添加し、均一に混合された後アルミニウムゾル1304gを徐々に加えゲル化し、噴霧成形を経て、得られた微小球を400℃で1.0時間焼成させた。焼成された微小球2kgを取り、脱イオン水20kgを入れて35℃で40分間洗浄し、濾過乾燥して本発明に調製される分解触媒が得られ、Bと表記する。   In a reaction bath with water bath heating, 4.620 liters of water, 1024 g of kaolin, 971 g of pseudoboehmite and 90.8 ml of hydrochloric acid were added and mixed uniformly. After stirring for 1 hour, 338 g of modified molecular sieve B-1, 129 g of b zeolite, REHY 806 g was added in order, and after mixing uniformly, 1304 g of aluminum sol was gradually added to gel. After spray molding, the resulting microspheres were fired at 400 ° C. for 1.0 hour. Take 2 kg of calcined microspheres, add 20 kg of deionized water, wash at 35 ° C. for 40 minutes, filter and dry to obtain the cracking catalyst prepared in the present invention, which is denoted as B.

[実施例3]
加熱ジャケット付の反応槽に、NaY-1モレキュラーシーブ3000g(無水ベース)及び脱イオン水を順に添加して固形分150g/Lのスラリーに調製し、塩酸43gを入れて、85℃で1時間反応させた後、さらに塩化希土類1.68リットルを添加して系内pH=3.7に調節して、90℃に昇温し、1時間交換反応させた後、モレキュラーシーブスラリーを濾過し、分散剤ベルト式交換を行い、ベルト式交換条件は:35gシュウ酸を、pH値=3.4の溶液になるように調製するとともに、85℃に昇温し、ベルト式ろ過機の真空度が0.04であり、その後得られたケーキを、その水分含有量が30%〜50%となるようにフラッシュ乾燥して、最後に10%水蒸気、510℃で2.0時間焼成して、「1交換1焼成」超安定希土類ナトリウムYが作製された。加熱ジャケット付の反応槽に、「1交換1焼成」超安定希土類ナトリウムYモレキュラーシーブ500g(無水ベース)及び脱イオン水を入れて固形分145g/Lのスラリーに調製し、硫酸アンモニウム80gを入れて系内pH=3.5に調節して、90℃に昇温し、1.2時間交換させた後、濾過、洗浄して、ケーキを50%水蒸気、650℃で2時間焼成して、本発明に記載する希土類超安定Yモレキュラーシーブ活性成分が作製され、変性モレキュラーシーブC-1と表記する。
[Example 3]
In a reaction vessel with a heating jacket, add 3000 g of NaY-1 molecular sieve (anhydrous base) and deionized water in order to prepare a slurry with a solid content of 150 g / L, add 43 g of hydrochloric acid, and react at 85 ° C for 1 hour After that, add 1.68 liters of rare earth chloride to adjust the system pH to 3.7, raise the temperature to 90 ° C., carry out exchange reaction for 1 hour, filter the molecular sieve slurry, and change the dispersant belt type The belt-type replacement conditions are: 35 g oxalic acid is prepared so as to become a solution with a pH value of 3.4, the temperature is raised to 85 ° C., and the degree of vacuum of the belt-type filter is 0.04. The cake is flash-dried so that its moisture content is 30% to 50%, and finally baked at 10% steam and 510 ° C for 2.0 hours to obtain "1 exchange 1 baked" ultrastable rare earth sodium Y. It was made. In a reactor equipped with a heating jacket, put 500g (anhydrous base) of ultra-stable rare earth sodium Y molecular sieve and deionized water into a slurry with a solid content of 145g / L, and add 80g of ammonium sulfate. Adjust the internal pH = 3.5, raise the temperature to 90 ° C., exchange for 1.2 hours, filter, wash, baked the cake at 50% steam, 650 ° C. for 2 hours, the rare earth according to the present invention An ultrastable Y molecular sieve active ingredient was prepared and is denoted as modified molecular sieve C-1.

水浴加熱付の反応槽に、水4.854リットル、ハロイサイト1125g、擬ベーマイト825g及び塩酸51.4mlを添加して均一に混合し、1時間攪拌した後、変性モレキュラーシーブC-1 406g及びUSY 903gを順に添加し、均一に混合された後シリコンゾル1224gを徐々に加えゲル化し、噴霧成形を経て、得られた微小球を600℃で0.3時間焼成させた。焼成された微小球2kgを取り、脱イオン水15kgを入れて80℃で30分間洗浄し、濾過乾燥して本発明に調製される分解触媒が得られ、Cと表記する。   Add 4.854 liters of water, 1125 g of halloysite, 825 g of pseudoboehmite and 51.4 ml of hydrochloric acid to a reaction bath with water bath heating, mix uniformly, stir for 1 hour, and then add 406 g of modified molecular sieve C-1 and 903 g of USY in order. After being uniformly mixed, 1224 g of silicon sol was gradually added to be gelled, and after spray molding, the obtained microspheres were fired at 600 ° C. for 0.3 hours. Take 2 kg of calcined microspheres, add 15 kg of deionized water, wash at 80 ° C. for 30 minutes, filter and dry to obtain the cracking catalyst prepared in the present invention, which is denoted as C.

[実施例4]
加熱ジャケット付の反応槽に、NaY-1モレキュラーシーブ3000g(無水ベース)及び一定量の脱イオン水を順に添加して固形分320g/Lのスラリーに調製し、硝酸30gを入れて、85℃に昇温し、攪拌下で0.8時間反応させた後、さらに硝酸希土類0.95リットルを添加して系内pH=3.3に調節して、80℃に昇温し、1.8時間交換反応させた後、最後にデンプン62gを入れて80℃で0.5時間反応させて、反応した後濾過、洗浄して、得られたケーキを、その水分含有量が30%〜50%となるようにフラッシュ乾燥して、最後に60%水蒸気、560℃で2時間焼成して、「1交換1焼成」希土類ナトリウムYが作製された。加熱ジャケット付の反応槽に、「1交換1焼成」超安定希土類ナトリウムYモレキュラーシーブ500g(無水ベース)及び脱イオン水を添加して固形分280g/Lのスラリーに調製し、硫酸アンモニウム130gを入れて系内pH=4.0に調節して、90℃に昇温し、0.5時間交換させた後、濾過、洗浄して、ケーキを60%水蒸気、680℃で1時間焼成して、本発明に記載する希土類超安定Yモレキュラーシーブ活性成分が作製され、変性モレキュラーシーブD-1と表記する。
[Example 4]
In a reaction vessel with a heating jacket, add 3000 g of NaY-1 molecular sieve (anhydrous base) and a certain amount of deionized water in order to prepare a slurry with a solid content of 320 g / L, and add 30 g of nitric acid to 85 ° C. After raising the temperature and reacting with stirring for 0.8 hours, 0.95 liters of rare earth nitrate was further added to adjust the system pH to 3.3, the temperature was raised to 80 ° C., and exchange reaction was carried out for 1.8 hours. Put 62g of starch, react at 80 ° C for 0.5 hour, react, filter and wash, flash dry the resulting cake so that its moisture content is 30% to 50%, finally A “one-exchange-one-fired” rare earth sodium Y was fired at 60% steam at 560 ° C. for 2 hours. In a reaction vessel with a heating jacket, add 500g of ultra-stable rare earth sodium Y molecular sieve (anhydrous base) and deionized water to a slurry with a solids content of 280g / L, and add 130g of ammonium sulfate. The system is adjusted to pH = 4.0, heated to 90 ° C., exchanged for 0.5 hour, filtered and washed, and the cake is baked at 60% steam at 680 ° C. for 1 hour, and is described in the present invention. A rare earth ultra-stable Y molecular sieve active ingredient was prepared and denoted as modified molecular sieve D-1.

水浴加熱付の反応槽に、水4.577リットル、カオリン1055g、酸化アルミニウム983g及び塩酸63.5mlを添加して均一に混合し、1時間攪拌した後、変性モレキュラーシーブD-1 892g、ZSM-5ゼオライト63g、USY 118g及びREY 188gを順に添加し、均一に混合された後アルミニウムゾル1500gを徐々に加えゲル化し、噴霧成形を経て、得られた微小球を400℃で0.5時間焼成させた。焼成された微小球2kgを取り、脱イオン水10kgを入れて40℃で20分間洗浄し、濾過乾燥して本発明に調製される分解触媒が得られ、Dと表記する。   Add 4.577 liters of water, 1055 g of kaolin, 983 g of aluminum oxide and 63.5 ml of hydrochloric acid to a reaction bath with water bath heating, mix uniformly, and stir for 1 hour, then 892 g of modified molecular sieve D-1 and 63 g of ZSM-5 zeolite Then, 118 g of USY and 188 g of REY were added in order, and after uniform mixing, 1500 g of aluminum sol was gradually added to gel, and the resulting microspheres were fired at 400 ° C. for 0.5 hour. Take 2 kg of calcined microspheres, add 10 kg of deionized water, wash at 40 ° C. for 20 minutes, filter and dry to obtain the cracking catalyst prepared according to the present invention, denoted as D.

[実施例5]
加熱ジャケット付の反応槽に、NaY-1モレキュラーシーブ3000g(無水ベース)及び一定量の脱イオン水を順に添加して固形分350g/Lのスラリーに調製し、クエン酸42g及びセスバニア粉28gを入れた後、82℃に昇温し、攪拌下で1.3時間交換反応させた後、硝酸希土類0.56リットルを添加して、85℃で0.8時間交換反応させた後、モレキュラーシーブスラリーを濾過し、ベルト式交換を行い、ベルト式交換条件は:硝酸希土類溶液を88℃に昇温し、交換pH値が4.7であり、硝酸希土類加入量はRE2O3/Yゼオライト(質量)が0.04であり、ベルト式ろ過機の真空度が0.03であり、その後得られたケーキを、その水分含有量が30%〜50%となるようにフラッシュ乾燥して、最後に80%水蒸気、530℃で1.5時間焼成して、「1交換1焼成」超安定希土類ナトリウムYが作製される。加熱ジャケット付の反応槽に、「1交換1焼成」超安定希土類ナトリウムYモレキュラーシーブ500g(無水ベース)及び脱イオン水を添加して固形分150g/Lのスラリーに調製し、硫酸アンモニウム100gを添加し、系内pH=4.0に調節して、90℃に昇温し、1時間交換させた後、濾過、洗浄して、ケーキを60%水蒸気、620℃で2時間焼成して、本発明に記載する希土類超安定Yモレキュラーシーブ活性成分が作製され、変性モレキュラーシーブE-1と表記する。
[Example 5]
In a reaction vessel with a heating jacket, add 3000 g of NaY-1 molecular sieve (anhydrous base) and a certain amount of deionized water in order to prepare a slurry with a solid content of 350 g / L, and add 42 g of citric acid and 28 g of sesbania powder. Then, the temperature was raised to 82 ° C., and exchange reaction was performed for 1.3 hours with stirring. After addition of 0.56 liters of rare earth nitrate and exchange reaction at 85 ° C. for 0.8 hours, the molecular sieve slurry was filtered, and the belt type The belt type replacement conditions are as follows: The temperature of the rare earth nitrate solution is raised to 88 ° C., the replacement pH value is 4.7, the rare earth nitrate addition amount is 0.04 for RE 2 O 3 / Y zeolite (mass), the belt The vacuum degree of the filter is 0.03, and then the cake obtained is flash dried so that its moisture content is 30% to 50%, and finally baked at 80% steam and 530 ° C for 1.5 hours Thus, “one exchange and one firing” ultrastable rare earth sodium Y is produced. In a reactor equipped with a heating jacket, add 500 g of ultra-stable rare earth sodium Y molecular sieve (anhydrous base) and deionized water to a slurry with a solid content of 150 g / L, and add 100 g of ammonium sulfate. The system pH was adjusted to 4.0, the temperature was raised to 90 ° C., exchanged for 1 hour, filtered, washed, and the cake was baked at 60% steam at 620 ° C. for 2 hours, as described in the present invention. A rare earth ultra-stable Y molecular sieve active ingredient is prepared and denoted as modified molecular sieve E-1.

水浴加熱付の反応槽に、水6.5リットル、カオリン995g、酸化アルミニウム676g及び塩酸130mlを添加して均一に混合し、1時間攪拌した後、変性モレキュラーシーブE-1 558g、H-ZSM-5 19g、REUSY 830gを順に添加し、均一に混合された後アルミニウムゾル1359gを徐々に加えゲル化し、噴霧成形を経て、得られた微小球を500℃で0.6時間焼成させた。焼成された微小球2kgを取り、脱イオン水19kgを入れて80℃で10分間洗浄し、濾過乾燥して本発明に調製される分解触媒が得られ、Eと表記する。   To a reaction bath with water bath heating, 6.5 liters of water, 995 g of kaolin, 676 g of aluminum oxide and 130 ml of hydrochloric acid were added and mixed uniformly. After stirring for 1 hour, 558 g of modified molecular sieve E-1 and 19 g of H-ZSM-5 Then, 830 g of REUSY was added in order, and after uniform mixing, 1359 g of aluminum sol was gradually added to form a gel. After spray molding, the obtained microspheres were fired at 500 ° C. for 0.6 hours. Take 2 kg of calcined microspheres, add 19 kg of deionized water, wash at 80 ° C. for 10 minutes, filter and dry to obtain the cracking catalyst prepared according to the present invention, denoted as E.

[比較例1]
REUSYモレキュラーシーブの製造方法は、実施例3に示す方法と類似し、塩酸及びシュウ酸を加えない以外に、ほかの部分は実施例3と同一であり、得られた超安定希土類Y型モレキュラーシーブの番号がF-1であり、得られた触媒の番号がFである。
[Comparative Example 1]
The production method of REUSY molecular sieve is similar to the method shown in Example 3, except that hydrochloric acid and oxalic acid are not added, and other parts are the same as in Example 3, and the obtained ultrastable rare earth Y-type molecular sieve is obtained. The number of the catalyst is F-1, and the number of the obtained catalyst is F.

[比較例2]
本比較例はCN200510114495.1に記載するモレキュラーシーブの製造方法を用いて、当該モレキュラーシーブの反応性能を考察し、触媒の製造工程は実施例5と同一である。
[Comparative Example 2]
This comparative example uses the molecular sieve manufacturing method described in CN200510114495.1, considers the reaction performance of the molecular sieve, and the catalyst manufacturing process is the same as in Example 5.

蘭州石化社触媒工場で水熱法によって生産された超安定1交換1焼成モレキュラーシーブサンプル(Na2O含有量1.4重量%、RE2O3含有量8.6重量%、格子2.468nm、相対結晶化度62%)を3000g(無水ベース)取り、2Nシュウ酸水溶液3リットルに入れて均一に混合攪拌し、90〜100℃に昇温して1時間反応させた後、濾過水洗して、得られたケーキを脱イオン水6リットルに置き、硝酸希土類溶液1.46リットルを入れて、90〜95℃に昇温し1時間反応させた後、濾過水洗して、ケーキを120℃で乾燥して、当該比較例モレキュラーシーブサンプルが得られ、H-1と表記する。 Ultra-stable 1 exchange 1 calcined molecular sieve sample produced by hydrothermal method at Lanzhou Petrochemical Co., Ltd. (1.4% Na 2 O content, 8.6% RE 2 O 3 content, lattice 2.468 nm, relative crystallinity 62%), 3000 g (anhydrous basis) was taken, put into 3 liters of 2N oxalic acid aqueous solution, uniformly mixed and stirred, heated to 90-100 ° C. and reacted for 1 hour, then washed with filtered water to obtain Place the cake in 6 liters of deionized water, add 1.46 liters of rare earth nitrate solution, raise the temperature to 90-95 ° C, react for 1 hour, wash with filtered water, dry the cake at 120 ° C, compare Example A molecular sieve sample is obtained, denoted as H-1.

水浴加熱付の反応槽に、水6.5リットル、カオリン995g、酸化アルミニウム676g及び塩酸130mlを添加して均一に混合し、1時間攪拌した後、変性モレキュラーシーブH-1 558g、H-ZSM-5 19g、REUSY 830gを順に添加し、均一に混合された後アルミニウムゾル1359gを徐々に加えゲル化し、噴霧成形を経て、得られた微小球を500℃で0.6時間焼成させた。焼成された微小球2kgを取り、脱イオン水19kgを入れて80℃で10分間洗浄し、濾過乾燥して本発明に調製される分解触媒が得られ、Hと表記する。   To a reaction bath with water bath heating, 6.5 liters of water, 995 g of kaolin, 676 g of aluminum oxide, and 130 ml of hydrochloric acid were added and mixed uniformly. After stirring for 1 hour, modified molecular sieve H-1 558 g, H-ZSM-5 19 g Then, 830 g of REUSY was added in order, and after uniform mixing, 1359 g of aluminum sol was gradually added to form a gel. After spray molding, the obtained microspheres were fired at 500 ° C. for 0.6 hours. Take 2 kg of the calcined microspheres, add 19 kg of deionized water, wash at 80 ° C. for 10 minutes, filter and dry to obtain the cracking catalyst prepared in the present invention, denoted as H.

[比較例3]
本比較例は、CN97122039.5に記載するモレキュラーシーブの製造方法を用いて、触媒の製造工程は実施例3と同一である。
[Comparative Example 3]
In this comparative example, the molecular sieve manufacturing method described in CN97122039.5 is used, and the catalyst manufacturing process is the same as in Example 3.

加熱ジャケット付の反応槽に、脱イオン水及び3000g(無水ベース)NaY-1モレキュラーシーブを添加して固形分90g/Lのスラリーに調製し、80℃に攪拌昇温して、塩酸59gを入れて、8時間恒温を保持し、塩化希土類溶液1.65リットル及び固体塩化アンモニウム1200gを添加して、1時間攪拌し、塩素イオンが検出されないまで濾過水洗し、得られたウェットケーキ(水分含有量47%)を600℃で2時間焼成して、当該比較例モレキュラーシーブサンプルが得られ、G-1と表記する。   Add deionized water and 3000 g (anhydrous base) NaY-1 molecular sieve to a reaction vessel with a heating jacket to prepare a slurry with a solid content of 90 g / L, stir to 80 ° C, and heat up to 59 g of hydrochloric acid. Holding the constant temperature for 8 hours, adding 1.65 liters of rare earth chloride solution and 1200 g of solid ammonium chloride, stirring for 1 hour, washing with filtered water until chlorine ions are not detected, and the resulting wet cake (water content 47% ) Is calcined at 600 ° C. for 2 hours to obtain a comparative molecular sieve sample, which is denoted as G-1.

水浴加熱付の反応槽に、水4.854リットル、ハロイサイト1125g、擬ベーマイト825g及び塩酸51.4mlを添加して均一に混合し、1時間攪拌した後、変性モレキュラーシーブG-1 406g及びUSY 903gを順に添加し、均一に混合した後、シリコンゾル1224gを徐々に加えゲル化し、噴霧成形を経て、得られた微小球を600℃で0.3時間焼成させた。焼成された微小球2kgを取り、脱イオン水15kgを入れて80℃で30分間洗浄し、濾過乾燥して本発明に調製される分解触媒が得られ、Gと表記する。   Add 4.854 liters of water, 1125 g of halloysite, 825 g of pseudoboehmite and 51.4 ml of hydrochloric acid to a reaction bath with water bath heating, mix uniformly, stir for 1 hour, then add 406 g of modified molecular sieve G-1 and 903 g of USY in order. After uniform mixing, 1224 g of silicon sol was gradually added to gel, and after spray molding, the obtained microspheres were fired at 600 ° C. for 0.3 hours. Take 2 kg of calcined microspheres, add 15 kg of deionized water, wash at 80 ° C. for 30 minutes, filter and dry to obtain the cracking catalyst prepared in the present invention, which is denoted as G.

実施例において用いられる分析及び評価方法について
1.格子定数(a0):X線回折法。
2.結晶化度(C/C0):X線回折法。
3.ケイバン比:X線回折法。
4.Na2O含有量:炎光光度法。
5.RE2O3含有量:比色法。
6.マイクロ反応活性(Micro Activity):サンプルを事前に800℃、100%水蒸気条件で4時間処理させる。反応原料は大港軽質ディーゼルであり、反応温度が460℃、反応時間が70秒、触媒充填量が5.0g、触媒/オイル重量比が3.2、総転化率をマイクロ反応活性とする。
7.ACE重質油マイクロリアクター:反応温度が530℃、触媒/オイル比が5、原料油は新疆油30%混練する減圧残渣油である。
1. Analysis and evaluation methods used in Examples Lattice constant (a 0 ): X-ray diffraction method.
2. Crystallinity (C / C 0 ): X-ray diffraction method.
3. Keiban ratio: X-ray diffraction method.
4). Na 2 O content: flame photometric method.
5. RE 2 O 3 content: Colorimetric method.
6). Micro Activity: Samples are pretreated for 4 hours at 800 ° C. and 100% steam conditions. The reaction raw material is Oko light diesel, the reaction temperature is 460 ° C, the reaction time is 70 seconds, the catalyst charge is 5.0g, the catalyst / oil weight ratio is 3.2, and the total conversion rate is micro reaction activity.
7). ACE heavy oil microreactor: The reaction temperature is 530 ° C, the catalyst / oil ratio is 5, and the feedstock oil is a vacuum residue oil kneaded with 30% of fresh oil.

表1に本発明実施例及比較例で得られる超安定希土類Y型モレキュラーシーブの理化学的性質を示す。分析の結果により、新規なモレキュラーシーブは、比較例と比べて、構造安定性が良く、粒子粒度が小さいという特徴を具備する。   Table 1 shows the physicochemical properties of the ultrastable rare earth Y-type molecular sieves obtained in the inventive examples and comparative examples. As a result of analysis, the novel molecular sieve has the characteristics that the structural stability is good and the particle size is small compared to the comparative example.

表2に実施例1〜5及び比較例で調製された触媒の反応性能の評価結果を示す。   Table 2 shows the evaluation results of the reaction performance of the catalysts prepared in Examples 1 to 5 and Comparative Example.

ACE重質油のマイクロ反応活性評価結果から、本発明方法で調製される触媒を使用する方は、比較触媒と比べて、優れた重質油転化能及びコークス選択性を有し、液体総収率及び軽質油収率が比較触媒より明らかに高いであることを分かる。数1は触媒Bライザー評価結果であり、本発明触媒は、比較触媒Gと比べて、液体総収率が0.97%向上し、軽質油収率が0.77%増加し、ガソリン性質がほぼ一致する。 From the results of ACE heavy oil microreaction activity evaluation, those using the catalyst prepared by the method of the present invention have superior heavy oil conversion ability and coke selectivity compared to the comparative catalyst, and the total liquid yield. It can be seen that the rate and light oil yield are clearly higher than the comparative catalyst. Equation 1 shows the evaluation results of the catalyst B riser, and the catalyst of the present invention improves the total liquid yield by 0.97%, the light oil yield increases by 0.77%, and the gasoline properties substantially match those of the comparative catalyst G.

本発明に記載する新規な重質油触媒の主活性成分の一つとして、高分解活性安定性希土類超安定Y型モレキュラーシーブであり、希土類変性調製過程において当該モレキュラーシーブは分散剤を用いてNaYモレキュラーシーブを予備分散させて、モレキュラーシーブ粒子の間の凝集度を低減し、モレキュラーシーブ表面に希土類イオンとより多く接触させ、交換過程において希土類イオンの抵抗を低減し、より多い希土類イオンをモレキュラーシーブケージ内に交換進入させ、後続の水蒸気焼成過程においてソーダライトケージに遷移して、モレキュラーシーブの構造安定性及び活性安定性を高める。希土類イオンはソーダライトケージに定位し、スーパーケージ及びモレキュラーシーブ表面に希土類イオンがなく、当該箇所の酸性強度と密度を低下し、当該活性サイトにおけるコークス生成確率を低減し、触媒の重質油転化能とコークス選択性との矛盾をうまく解決した。   As one of the main active components of the novel heavy oil catalyst described in the present invention, it is a high decomposition activity stable rare earth ultrastable Y type molecular sieve. In the rare earth modification preparation process, the molecular sieve uses NaY Pre-dispersing the molecular sieve reduces the degree of aggregation between the molecular sieve particles, brings more contact with the rare earth ions on the surface of the molecular sieve, reduces the resistance of the rare earth ions in the exchange process, and more molecular sieves The cage is exchanged into the cage and transitions to a sodalite cage in the subsequent steam baking process, thereby improving the structural stability and active stability of the molecular sieve. Rare earth ions are localized in the sodalite cage, there are no rare earth ions on the surface of the super cage and molecular sieve, the acid strength and density at that location are reduced, the probability of coke formation at the active site is reduced, and the heavy oil conversion of the catalyst He successfully solved the contradiction between Noh and coke selectivity.

Claims (21)

触媒の組成において、超安定希土類Y型モレキュラーシーブを2〜50重量%、1種又は複種のほかのモレキュラーシーブを0.5〜30重量%、クレーを0.5〜70重量%、耐高温無機酸化物を1.0〜65重量%、及び酸化希土類を0.01〜12.5重量%含む重質油接触分解触媒であって、
超安定希土類Y型モレキュラーシーブは、希土類交換、分散予備交換を含む調製過程により得られるものであり、酸化希土類を0.5〜25重量%含み、酸化ナトリウムが1.2重量%以下、結晶化度が40〜75%、格子定数が2.449nm〜2.472nmであり、
希土類交換と分散予備交換は順次に限定されず連続して行われ、その間に焼成過程がなく、
分散予備交換は、モレキュラーシーブスラリーの濃度を固形分として80〜400g/Lに調整して、分散剤を0.2重量%〜7重量%加えて分散予備交換を行うものであり、交換温度が0〜100℃、交換時間が0.1〜1.5時間であり、
分散予備交換における上記の分散剤は、セスバニア粉、ホウ酸、尿素、エタノール、ポリアクリルアミド、酢酸、シュウ酸、アジピン酸、ギ酸、塩酸、硝酸、クエン酸、サリチル酸、酒石酸、安息香酸、デンプンから選ばれる1種又は1種以上のものであり、
希土類交換、分散予備交換においてアンモニウム塩が使用されないことを特徴とする重質油接触分解触媒。
In the composition of the catalyst, 2 to 50% by weight of ultra-stable rare earth Y-type molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0% of high-temperature inorganic oxide A heavy oil catalytic cracking catalyst comprising ~ 65 wt% and rare earth oxide 0.01 to 12.5 wt%,
The ultra-stable rare earth Y-type molecular sieve is obtained by a preparation process including rare earth exchange and dispersion pre-exchange, containing 0.5 to 25% by weight of rare earth oxide, 1.2% by weight or less of sodium oxide, and crystallinity of 40 to 40%. 75%, lattice constant is 2.449nm ~ 2.472nm,
Rare earth exchange and dispersion pre-exchange are not limited sequentially but are performed continuously, and there is no firing process between them,
In the dispersion pre-exchange, the concentration of the molecular sieve slurry is adjusted to 80 to 400 g / L as the solid content, and the dispersion pre-exchange is performed by adding 0.2 to 7 wt% of the dispersant, and the exchange temperature is 0 to 100 ° C, replacement time is 0.1-1.5 hours,
The above dispersant in the dispersion pre-exchange is selected from sesbania powder, boric acid, urea, ethanol, polyacrylamide, acetic acid, oxalic acid, adipic acid, formic acid, hydrochloric acid, nitric acid, citric acid, salicylic acid, tartaric acid, benzoic acid, starch One or more types
A heavy oil catalytic cracking catalyst characterized in that no ammonium salt is used in rare earth exchange or dispersion pre-exchange.
ほかのモレキュラーシーブは、Y型ゼオライト、Lゼオライト、ZSM-5ゼオライト、bゼオライト、リン酸アルミニウムゼオライト、Wゼオライト、又は変性された上記のゼオライトから選ばれる1種又は複種のものであることを特徴とする請求項1に記載の触媒。   The other molecular sieve is one or more selected from Y-type zeolite, L zeolite, ZSM-5 zeolite, b zeolite, aluminum phosphate zeolite, W zeolite, or modified zeolite described above. 2. The catalyst according to claim 1. ほかのモレキュラーシーブは、HY、USY、REY、REHY、REUSY、H-ZSM-5、bゼオライトの1種又は複種のものであることを特徴とする請求項1に記載の触媒。   2. The catalyst according to claim 1, wherein the other molecular sieve is one or more of HY, USY, REY, REHY, REUSY, H-ZSM-5, and b zeolite. クレーは、カオリン、ハロイサイト、モンモリロナイト、セピオライト、パーライトから選ばれる1種又は複種のものであることを特徴とする請求項1に記載の触媒。   2. The catalyst according to claim 1, wherein the clay is one or more selected from kaolin, halloysite, montmorillonite, sepiolite, and pearlite. 耐高温無機酸化物は、Al2O3、SiO2、SiO2-Al2O3、AlPO4から選ばれる1種又は複種のものであることを特徴とする請求項1に記載の触媒。 2. The catalyst according to claim 1, wherein the high temperature resistant inorganic oxide is one or more selected from Al 2 O 3 , SiO 2 , SiO 2 —Al 2 O 3 , and AlPO 4 . 触媒の製造過程において、
(1)NaYモレキュラーシーブを原料として、モレキュラーシーブスラリーが順次に限定されなく希土類交換、分散予備交換を経て、モレキュラーシーブスラリーをさらに濾過、水洗及び1回目焼成して、「1交換1焼成」希土類ナトリウムYモレキュラーシーブが得られ、「1交換1焼成」希土類ナトリウムYモレキュラーシーブをアンモニウム塩交換によるナトリウム低減し、2回目焼成して、超安定希土類Y型モレキュラーシーブが得られる超安定希土類Y型モレキュラーシーブの調製工程と、
(2)上記の超安定希土類Y型モレキュラーシーブと、クレー、耐高温無機酸化物の前駆体を混合均質化し、噴霧成形、焼成及び水洗して、触媒完成品が得られる重質油触媒の調製工程と、
を含むことを特徴とする請求項1に記載の触媒の製造方法。
During the catalyst production process,
(1) The molecular sieve slurry is not limited to the raw material, and the molecular sieve slurry is subjected to rare earth exchange and dispersion pre-exchange, and the molecular sieve slurry is further filtered, washed with water, and fired for the first time. Ultra-stable rare earth Y molecular sieves can be obtained by obtaining sodium Y molecular sieves, and reducing sodium by ammonium salt exchange in the “one-exchange-one-fired” rare earth sodium Y molecular sieves and firing the second time to obtain ultra-stable rare-earth Y-type molecular sieves. The sheave preparation process;
(2) Preparation of a heavy oil catalyst that can be obtained by mixing and homogenizing the above ultrastable rare earth Y-type molecular sieve with clay and high-temperature resistant inorganic oxide precursor, followed by spray molding, firing and washing with water. Process,
2. The method for producing a catalyst according to claim 1, comprising:
希土類交換の際に、そのRE2O3/Yゼオライト質量比は0.005〜0.25であり、交換温度は0〜100℃であり、交換pH値は2.5〜6.0であり、交換時間は0.1〜2時間であることを特徴とする請求項6に記載の触媒の製造方法。 Upon rare earth exchange, the RE 2 O 3 / Y zeolite mass ratio is 0.005-0.25, exchange temperature is 0-100 ° C., exchange pH value is 2.5-6.0, exchange time is 0.1-2 hours 7. The method for producing a catalyst according to claim 6, wherein 分散予備交換の際に、分散剤の添加量は0.2重量%〜7重量%であり、交換温度は0〜100℃であり、交換時間は0.1〜1.5時間であることを特徴とする請求項6に記載の触媒の製造方法。   6. In the dispersion pre-exchange, the amount of dispersant added is 0.2 wt% to 7 wt%, the exchange temperature is 0 to 100 ° C., and the exchange time is 0.1 to 1.5 hours. The manufacturing method of the catalyst as described in 1 .. 希土類交換の際に、そのRE2O3/Yゼオライト質量比は0.01〜0.20であり、交換温度は60〜95℃であり、交換pH値は3.5〜5.5であり、交換時間は0.3〜1.5時間であり;分散予備交換の際に、分散剤の添加量は0.2重量%〜5重量%であり、交換温度は60〜95℃であり、交換時間は0.1〜1.5時間であることを特徴とする請求項6に記載の触媒の製造方法。 Upon rare earth exchange, its RE 2 O 3 / Y zeolite mass ratio is 0.01 ~ 0.20, exchange temperature is 60 ~ 95 ° C, exchange pH value is 3.5 ~ 5.5, exchange time is 0.3 ~ 1.5 hours In the dispersion pre-exchange, the amount of the dispersant added is 0.2 wt% to 5 wt%, the exchange temperature is 60 to 95 ° C., and the exchange time is 0.1 to 1.5 hours. 7. A method for producing the catalyst according to claim 6. 希土類交換と分散予備交換との間に、モレキュラーシーブスラリーは洗浄、濾過しなくてもよく、洗浄、濾過してもよいであることを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein the molecular sieve slurry does not have to be washed and filtered between the rare earth exchange and the dispersion pre-exchange, and may be washed and filtered. 希土類交換又は分散予備交換の交換過程にポット式交換、ベルト式交換及び/又はケーキ交換を採用することを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein pot-type exchange, belt-type exchange and / or cake exchange are employed in the rare earth exchange or dispersion pre-exchange exchange process. 希土類交換を行う際に、希土類化合物溶液を複数部に分けて、ポット式交換、ベルト式交換及び/又はケーキ交換を行い、即ち複数回の交換を行うことを特徴とする請求項6に記載の触媒の製造方法。   The rare earth compound solution is divided into a plurality of parts when performing rare earth exchange, pot type exchange, belt type exchange and / or cake exchange are performed, that is, a plurality of exchanges are performed. A method for producing a catalyst. 分散予備交換過程において、分散剤を複数部に分けて、ポット式交換、ベルト式交換及び/又はケーキ交換を行い、即ち複数回の交換を行うことを特徴とする請求項6に記載の触媒の製造方法。   In the dispersion pre-exchange process, the dispersant is divided into a plurality of parts, pot-type exchange, belt-type exchange and / or cake exchange is performed, that is, a plurality of exchanges are performed. Production method. 希土類交換及び分散予備交換は複数回の交換である場合に、二種類の交換は交互に行うことを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein when the rare earth exchange and the dispersion preliminary exchange are a plurality of exchanges, the two kinds of exchanges are alternately performed. モレキュラーシーブの1回目焼成の焼成条件は、350℃〜700℃、0〜100%水蒸気で0.3〜3.5時間焼成することを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein the calcining conditions for the first calcination of the molecular sieve are calcination at 350 ° C. to 700 ° C. and 0 to 100% steam for 0.3 to 3.5 hours. 耐高温無機酸化物の前駆体は、シリカアルミナゲル 、シリカゾル、アルミナゾル、シリカアルミナ複合ゾル、擬ベーマイトから選ばれるものであることを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein the precursor of the high temperature resistant inorganic oxide is selected from silica alumina gel, silica sol, alumina sol, silica alumina composite sol, and pseudoboehmite. 希土類化合物は、塩化希土類又は硝酸希土類又は硫酸希土類であることを特徴とする請求項12に記載の触媒の製造方法。   13. The method for producing a catalyst according to claim 12, wherein the rare earth compound is a rare earth chloride, a rare earth nitrate, or a rare earth sulfate. 本発明に記載する希土類は、ランタン濃化希土類又は、セリウム濃化希土類、純ランタン、純セリウムであることを特徴とする請求項17に記載の触媒の製造方法。   18. The method for producing a catalyst according to claim 17, wherein the rare earth described in the present invention is lanthanum enriched rare earth, cerium enriched rare earth, pure lanthanum, or pure cerium. 工程(2)における焼成条件は、噴霧微小球を200℃〜700℃で焼成させ、時間は0.05〜4時間であることを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein the calcination conditions in step (2) are that the sprayed microspheres are calcined at 200 ° C. to 700 ° C. and the time is 0.05 to 4 hours. 工程(2)における焼成条件は、噴霧微小球を300℃〜650℃で焼成させ、時間は0.1〜3.5時間であることを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein the calcination conditions in the step (2) are that the sprayed microspheres are calcined at 300 ° C. to 650 ° C. and the time is 0.1 to 3.5 hours. 工程(2)における水洗条件は、水/触媒重量が0.5〜35、水洗温度が20℃〜100℃、時間が0.1〜0.3時間であることを特徴とする請求項6に記載の触媒の製造方法。   7. The method for producing a catalyst according to claim 6, wherein water washing conditions in step (2) are: water / catalyst weight of 0.5 to 35, water washing temperature of 20 ° C. to 100 ° C., and time of 0.1 to 0.3 hours. .
JP2014546274A 2011-12-15 2012-04-13 Heavy oil catalytic cracking catalyst and method for producing the same Active JP5941994B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110419922.2A CN103157507B (en) 2011-12-15 2011-12-15 Heavy oil catalytic cracking catalyst and preparation method thereof
CN201110419922.2 2011-12-15
PCT/CN2012/000508 WO2013086767A1 (en) 2011-12-15 2012-04-13 Heavy oil catalytic cracking catalyst and preparation method therefor

Publications (3)

Publication Number Publication Date
JP2015506821A true JP2015506821A (en) 2015-03-05
JP2015506821A5 JP2015506821A5 (en) 2015-04-16
JP5941994B2 JP5941994B2 (en) 2016-06-29

Family

ID=48581342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014546274A Active JP5941994B2 (en) 2011-12-15 2012-04-13 Heavy oil catalytic cracking catalyst and method for producing the same

Country Status (7)

Country Link
US (1) US9844772B2 (en)
JP (1) JP5941994B2 (en)
CN (1) CN103157507B (en)
AU (1) AU2012351266B2 (en)
CA (1) CA2862144C (en)
SG (1) SG11201404089RA (en)
WO (1) WO2013086767A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157507B (en) 2011-12-15 2015-05-13 中国石油天然气股份有限公司 Heavy oil catalytic cracking catalyst and preparation method thereof
CN104923282B (en) * 2015-06-25 2017-08-15 湖北赛因化工有限公司 A kind of super stabilizing processing method of high rare-earth content in-situ crystallization catalyst
WO2017020848A1 (en) 2015-08-05 2017-02-09 中国石油天然气股份有限公司 Molecular sieve modification method and catalytic cracking catalyst containing molecular sieve
CN105314652B (en) * 2015-11-27 2017-10-27 郑州大学 A kind of preparation method of the molecular sieves of H types ZSM 5
CN106809856A (en) * 2015-12-01 2017-06-09 中国石油天然气股份有限公司 A kind of catalyst for heavy oil catalytic cracking and preparation method thereof
CN106925334B (en) * 2015-12-29 2019-12-10 中国石油天然气股份有限公司 Heavy metal resistant heavy oil cracking catalyst and preparation method thereof
CN108404897B (en) * 2017-02-10 2021-03-09 中国石油天然气股份有限公司 Heavy oil hydrogenation catalyst carrier, preparation method thereof, catalyst using heavy oil hydrogenation catalyst carrier and preparation method of catalyst
CN108101073A (en) * 2017-12-27 2018-06-01 洛阳神佳窑业有限公司 A kind of preparation method of molecular sieve catalyst
RU2020125402A (en) 2018-01-12 2022-02-14 Альбемарл Корпорейшн FCC CATALYST WITH IMPROVED MESOPOROSITY, ITS PRODUCTION AND APPLICATION
CN111085243B (en) * 2018-10-23 2022-06-28 中国石油化工股份有限公司 Metal-loaded REY molecular sieve catalyst, preparation method and application thereof
CN109772426B (en) * 2019-01-23 2021-09-21 浙江恒澜科技有限公司 Microspheric MFI topological structure all-silicon-1 molecular sieve catalyst containing trace rare earth ions and spray forming preparation method thereof
CN111686787B (en) * 2020-06-10 2023-10-03 中国石油天然气集团有限公司 Hydrocracking catalyst carrier, and preparation method and application thereof
CN114477218A (en) * 2020-10-28 2022-05-13 中国石油化工股份有限公司 Molecular sieve crystallization slurry cleaning equipment and cleaning method
CN114433253B (en) * 2020-11-02 2023-10-24 中国石油化工股份有限公司 Catalytic cracking catalyst and preparation method thereof
CN112551489B (en) * 2020-12-08 2023-02-28 中触媒新材料股份有限公司 Modified Y-type molecular sieve regenerant, preparation method and application thereof
CN115672380B (en) * 2021-07-23 2024-05-24 中国石油化工股份有限公司 Preparation method of low-coke catalytic cracking catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108608A (en) * 1990-08-30 1992-04-09 Kanebo Ltd Method for ion-exchanging of zeolite
JPH0747279A (en) * 1990-12-04 1995-02-21 W R Grace & Co Dual zeolite fluid decomposition catalytic composition for improved gasoline octane
JPH08229405A (en) * 1995-02-27 1996-09-10 Catalysts & Chem Ind Co Ltd Catalyst composition for catalytically cracking hydrocarbon
JP2000514863A (en) * 1996-07-19 2000-11-07 エクソン リサーチ アンド エンジニアリング カンパニー Catalysts for optimal resid cracking of heavy feedstocks.
JP2002241764A (en) * 2001-02-21 2002-08-28 Petroleum Energy Center Fluidized catalytic cracking process for heavy oil

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006497A (en) 1988-12-30 1991-04-09 Mobil Oil Corporation Multi component catalyst and a process for catalytic cracking of heavy hydrocarbon feed to lighter products
CN1075466C (en) 1997-12-16 2001-11-28 中国石油化工总公司 Method for preparing superstable Y type zeolite
CN1111136C (en) 2000-11-13 2003-06-11 中国石油化工股份有限公司 Process for preparing Y-type molecular sieve
CN1215905C (en) 2002-12-13 2005-08-24 中国石油天然气股份有限公司 Ultrastable Y-type RE molecular sieve active component and its prepn process
CN1307098C (en) 2004-03-31 2007-03-28 中国石油化工股份有限公司 Method for preparing rare-earth ultrastable Y-type zeolite
CN1322928C (en) 2004-08-13 2007-06-27 中国石油化工股份有限公司 Cracking catalyst for reducing alkene content in catalytically cracked gasoline
CN100344374C (en) 2004-08-13 2007-10-24 中国石油化工股份有限公司 Rare earth Y molecular screen and process for preparing the same
CN100357399C (en) * 2005-03-31 2007-12-26 中国石油化工股份有限公司 Process for preparing cracking catalyst
CN100497175C (en) 2005-10-31 2009-06-10 中国石油化工股份有限公司 Method for raising content of rare earth of ultra stable Y type zeolite
CN101190416B (en) * 2006-12-01 2011-06-15 石大卓越科技股份有限公司 Catalytic cracking catalyst and preparation method thereof
CN101210187B (en) * 2006-12-27 2011-09-14 中国石油化工股份有限公司 Preparing method of catalyst for cracking heavy oil
CN101284243B (en) 2007-04-12 2011-04-20 中国石油化工股份有限公司 Catalytic cracking catalyst
CN101285001B (en) 2007-04-12 2011-11-30 中国石油化工股份有限公司 Catalytic cracking catalyst
TW201029929A (en) * 2008-12-18 2010-08-16 Grace W R & Co Novel ultra stable zeolite Y and method for manufacturing the same
CN101767027B (en) * 2008-12-31 2012-08-29 中国石油化工股份有限公司 Preparation method of cracking catalyst containing ultrastable molecular sieve
CN102029177B (en) 2009-09-28 2012-07-18 中国石油化工股份有限公司 Cracking catalyst and preparation method thereof
CN102133542A (en) * 2010-01-27 2011-07-27 华东理工大学 Compound type cracking catalyst and preparation method thereof
CN103157507B (en) 2011-12-15 2015-05-13 中国石油天然气股份有限公司 Heavy oil catalytic cracking catalyst and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108608A (en) * 1990-08-30 1992-04-09 Kanebo Ltd Method for ion-exchanging of zeolite
JPH0747279A (en) * 1990-12-04 1995-02-21 W R Grace & Co Dual zeolite fluid decomposition catalytic composition for improved gasoline octane
JPH08229405A (en) * 1995-02-27 1996-09-10 Catalysts & Chem Ind Co Ltd Catalyst composition for catalytically cracking hydrocarbon
JP2000514863A (en) * 1996-07-19 2000-11-07 エクソン リサーチ アンド エンジニアリング カンパニー Catalysts for optimal resid cracking of heavy feedstocks.
JP2002241764A (en) * 2001-02-21 2002-08-28 Petroleum Energy Center Fluidized catalytic cracking process for heavy oil

Also Published As

Publication number Publication date
AU2012351266A1 (en) 2014-08-07
SG11201404089RA (en) 2014-10-30
CN103157507A (en) 2013-06-19
JP5941994B2 (en) 2016-06-29
CA2862144A1 (en) 2013-06-20
US9844772B2 (en) 2017-12-19
CN103157507B (en) 2015-05-13
WO2013086767A1 (en) 2013-06-20
US20150080209A1 (en) 2015-03-19
AU2012351266B2 (en) 2016-07-14
CA2862144C (en) 2018-02-13

Similar Documents

Publication Publication Date Title
JP5941994B2 (en) Heavy oil catalytic cracking catalyst and method for producing the same
JP5996667B2 (en) High light yield heavy oil catalytic cracking catalyst and production method thereof
JP5921771B2 (en) Heavy oil high-efficiency catalytic conversion cracking catalyst and production method thereof
JP6054520B2 (en) Phosphorus-containing ultra-stabilized rare earth Y-type molecular sieve and production method
US9840422B2 (en) Magnesium modified ultra-stable rare earth Y-type molecular sieve and preparation method therefor
TWI554604B (en) Catalytic cracking catalyst includes modified Y zeolite and preparation method thereof
JP2015502252A5 (en)
WO2013086768A1 (en) Ultra-stable rare earth y-type molecular sieve and preparation method therefor
CN102019195B (en) Modified Y molecular sieve-containing catalytic cracking catalyst
CN110833850B (en) Catalytic cracking catalyst, preparation method and application thereof
CN1322928C (en) Cracking catalyst for reducing alkene content in catalytically cracked gasoline
CN116265106A (en) Preparation method of catalytic cracking catalyst for high yield of low carbon olefin
JP2023523468A (en) Modified Beta Zeolites, Catalytic Cracking Catalysts and Methods of Making and Using Them
TW202016021A (en) MFI structure molecular sieve rich in mesopore, preparation method therefor, and catalyst containing same and application thereof
TW202237268A (en) Catalytic cracking catalyst, and preparation method and preparation system therefor
CN116689016A (en) Catalytic cracking catalyst for resisting metal pollution and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5941994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250