JP2002238562A - 遺伝子組換えウサギ及び体細胞核移植を用いた当該遺伝子組換えウサギの作製方法 - Google Patents

遺伝子組換えウサギ及び体細胞核移植を用いた当該遺伝子組換えウサギの作製方法

Info

Publication number
JP2002238562A
JP2002238562A JP2000400468A JP2000400468A JP2002238562A JP 2002238562 A JP2002238562 A JP 2002238562A JP 2000400468 A JP2000400468 A JP 2000400468A JP 2000400468 A JP2000400468 A JP 2000400468A JP 2002238562 A JP2002238562 A JP 2002238562A
Authority
JP
Japan
Prior art keywords
rabbit
embryo
somatic cell
nuclear transfer
cell nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000400468A
Other languages
English (en)
Inventor
Tomoyuki Tokunaga
智之 徳永
Yoshiaki Izaike
義昭 居在家
Seiya Takahashi
清也 高橋
Satoshi Watabe
聡 渡部
Junichi Matsuda
純一 松田
Kazuyoshi Kaminaka
一義 上仲
Hiroaki Maeda
浩明 前田
Chikahide Nozaki
周英 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
National Agricultural Research Organization
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
National Agricultural Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken, National Agricultural Research Organization filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP2000400468A priority Critical patent/JP2002238562A/ja
Publication of JP2002238562A publication Critical patent/JP2002238562A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【課題】 体細胞核移植技術により遺伝子組換えウサギ
を作製する方法を提供する。 【解決手段】 遺伝子組換えウサギを得るために、体細
胞核移植技術によって作出したウサギ体細胞核移植胚
を、自然に受精した卵子と同様な性状を保持するによう
に、発生能に関わる因子を補足することにより得られる
再構築胚を使用することを特徴とする。当該再構築胚を
仮腹ウサギに移植することにより、遺伝子相同組換え等
の高度な遺伝子操作が行われた遺伝子組換えウサギの作
出が可能となる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本願発明は、体細胞核移植法
を用いた遺伝子導入ウサギの作製に関するものである。
【0002】
【従来の技術】近年、医薬品等の有用タンパク質生産の
方法として、遺伝子組換え動物の応用が進められてい
る。遺伝子組換え動物とは、遺伝子組換え技術を用いて
その動物本来の遺伝子情報とは異なる遺伝情報を導入さ
れた動物であり、その導入遺伝子およびそれによって発
現する形質が子孫に受け継がれるように人工的に創出さ
れた動物である。遺伝子組換え動物の作出は、1980年に
Gordonらが発生工学という手法を用いてマウスではじめ
てその成功を報告し(1)、その後、他の動物でも相次い
で成功が報告された(2)。現在、遺伝子組換え動物作出
の方法として、前核内注入法、胚性幹細胞(Embryonic
Stem cell:ES細胞)を用いる方法、体細胞核移植を
用いる方法の大きく分けて3つの方法が開発されてい
る。
【0003】上記の方法を説明する前に、まず、いずれ
の方法にしても、動物個体の発生のメカニズムに従っ
て、遺伝子操作、胚操作が実施されているため、哺乳動
物の一般的な胚発生について述べる。簡単な胚発生の進
行を図1に示す。動物個体の発生は、成熟した未受精卵
子と精子が受精することによって開始される。つまり受
精によって胚発生を開始、新生児出生として発生を完結
させる“発生能”を獲得することになる。未受精卵子は
卵巣卵胞内で成熟し、第二減数分裂中期で停止した状態
で排卵される。受精は卵管の膨大部で通常行われる。受
精した卵子は精子由来の雄性前核(核相=1n)、及び
卵子由来の雌性前核(核相=1n)を形成し、やがて2
つの前核が融合し核相2nの正常二倍体となる。その
後、卵割と呼ばれる分裂を繰り返し、2細胞期、4細胞
期、8細胞期へ進む。一般に8細胞期以降からコンパク
ションと呼ばれる、割球が密に結合し割球の境界がわか
りにくい形態を示す桑実胚期(8−128細胞期)を経
て、胚盤胞へ成長する。胚盤胞は胚胞と呼ばれる腔を持
った形態を示し、栄養外胚葉と呼ばれる将来胎盤形成に
あずかる外側の一層の細胞と、将来、胎児を形成する内
部細胞塊と呼ばれる内側の細胞よりなる。胚盤胞期まで
発生した胚はその後、だんだん体積を増大させ、卵子は
透明帯と呼ばれる膜に包まれているが、この膜を破って
透明帯の外に脱出する。この透明帯を破った胚は、脱出
胚盤胞と呼ばれる。この脱出胚盤胞は、子宮まで卵管よ
り移動しており、子宮壁に“着床”する。この着床した
胚は胎盤を形成し、“受胎”が成立する。この受胎した
胚は、分化・増殖を続け、様々な組織・器官を形成(器
官形成期)し、出生に至る。
【0004】このように動物個体は、精子と卵子が受精
してできた一個の細胞から分裂を繰り返し、それぞれの
細胞が予め決められたプログラムに従って、分化成熟
し、各組織へと発達しながら一個体として形成される。
従って、動物の遺伝形質を変え、さらに子孫への伝達を
可能にするためには、受精前もしくは受精直後の細胞に
対して遺伝子操作する必要がある。
【0005】遺伝子組換え動物作出法の概略は図2に示
す通りである。まず遺伝子操作をinvitroまたは胚に直
接操作を加え遺伝子組換え卵子(胚)を得る。この遺伝
子操作を加えた胚を用意した仮腹となる雌動物(レシピ
エント)に胚移植を実施する。レシピエントより出生し
た新生児もしくは、その子供より遺伝子組換え動物が得
られる。以下、これまでに確立された遺伝子組換え動物
の作出方法について、概略(図3参照)、長所及び短所
について詳述する。
【0006】まず、前核内注入法であるが、この方法
は、直接、受精卵の前核内に外来遺伝子を注入する方法
である。導入する遺伝子は目的遺伝子を発現させるため
に必要なプロモーター等をすべて備えた遺伝子として導
入され、プロモーターの選択によって目的臓器での外来
遺伝子の発現調節が可能である。有用タンパク質産生遺
伝子組換え動物も、この手法にならって作製され、目的
タンパク質を乳汁中、尿中に産生させることができる。
この方法の長所は操作が簡便であり、1〜10%というあ
る程度、安定した確率で遺伝子組換え動物を得られるこ
とにある。一方、短所としては、前核内に注入した外来
遺伝子の染色体へのランダムな挿入に依存した方法であ
るため、外来遺伝子の導入コピー数、導入部位を制御で
きず、得られた遺伝子組換え動物の外来遺伝子の発現は
様々である。従って、この方法では、遺伝子相同組換え
のような高度な動物ゲノムの遺伝子操作を行うことはで
きない。
【0007】ここで、高度な遺伝子操作とは、例えば、
ゲノム上の目的遺伝子を相同組換え技術を用いて変異
または欠損させ、形質発現を抑制・欠損させるノックア
ウト型(機能喪失型)、目的遺伝子の、特にプロモー
ター下流に外来遺伝子を挿入し、目的遺伝子の特異性に
従って外来遺伝子を発現させるノックイン型、宿主の
目的遺伝子を異なる形質を示す他の遺伝子と交換するジ
ーン・リプレイスメント型、または特定部位を狙わず
に、あるリポーター遺伝子をプロモーターなしの状態で
染色体にランダムに導入し、ゲノム上の適当な遺伝子内
(またはプロモーターのすぐ後)に組み込まれた細胞の
みを選択する遺伝子トラッピング型などがある。
【0008】次に胚性幹細胞(Embryonic Stem cell:
ES細胞)を用いる方法を説明する。ES細胞は胚盤胞
期の内部細胞塊から分離された細胞で(3,4)、その特徴
としては、全ての個体を構成する細胞に分化可能な全能
性の細胞であること、正常2倍体細胞であること、増殖
性が高いことがある。ES細胞を用いる方法の長所は増
殖性が高いため、in vitroで動物ゲノムに対して遺伝子
相同組換え等の高度な遺伝子操作が行えることにある。
一方、短所はマウス以外の動物では遺伝子組換え動物作
出可能なES細胞が確立されていないことにある。
【0009】次に、体細胞核移植法は近年開発された技
術で、未受精卵子の核を体細胞の核に置換し、受精を経
ずに人為的に受精の刺激を模倣する処理を与え、発生を
開始させ産仔を得る方法である。本方法で得られた産仔
の核は、核を提供した細胞と同一であるため、得られた
産仔は体細胞クローンと呼ばれる。本方法の長所は、E
S細胞と同様に増殖性の高い体細胞であれば、動物ゲノ
ムに対して遺伝子相同組換え等を実施した遺伝子組換え
動物が作製できること、また得られる産仔はすべて用い
た体細胞のクローンであり、導入した外来遺伝子も胚や
動物を操作する以前に遺伝子組換え体細胞で解析し、発
現等の予測が可能であることである。一方、短所として
は、技術自体が完成されたものでなく、産仔数が少な
く、また全ての動物種において実施可能でないことであ
る。本方法については、本願発明の本質に関わるもので
あるため、その詳細を後述する。
【0010】体細胞核移植は1997年にクローン羊“ドリ
ー”の誕生の報告が最初の成功例である(5)。本成功の
報告により、初めて分化をとげた体細胞よりクローン動
物が作製できることが明らかになり、また動物ゲノムの
遺伝子操作が可能な細胞がES細胞以外に見出されたと
いう意味でも画期的であった。本技術は、受精卵由来の
細胞(割球)での核移植技術を発展させたものであるの
でそれらを合わせて、説明する。体細胞核移植の概略を
図4に示す。核移植のポイントは「ドナー核を未受精卵
子の核と同様な未分化の状態に戻すこと(“初期化”と
呼ばれている)」、及び「受精によって獲得する“発生
能”を、精子を介さずに人工的に与えること(“活性
化”と呼ばれている)」が重要である。特にクローン羊
“ドリー”の誕生までは、受精卵胚由来の細胞と比較し
て、体細胞は分化が進んでおり、“初期化”することは
不可能であると考えられていた。クローン羊“ドリー”
を誕生させたWilmutらは成功の鍵として体細胞核のドナ
ーとして用いられる体細胞の細胞周期をレシピエントの
未受精卵子の細胞周期と同調させることで、“初期化”
が体細胞においても同様に行われたと述べている。ヒツ
ジを含め、ウシ、ヤギ、マウス、ブタ等でもこの方法で
体細胞クローンの成功を収めている(6-9)。特記すべき
点は、体細胞核移植技術の開発によって、これまでマウ
ス以外で作製不可能であった遺伝子相同組換え等の高度
な遺伝子組換え動物の作出が可能になったことにある。
【0011】表1にこれまで説明してきた遺伝子組換え
動物作製法別の作製実績と可能な遺伝子操作について示
す。
【表1】
【0012】
【発明が解決しようとする課題】前述の如く、高度な遺
伝子操作が行われた遺伝子組換え動物を作製するために
は、体細胞核移植の技術は必須な技術となる。ところ
で、ウサギは中型の動物で、飼育管理が容易であり、ま
た妊娠期間が1ヶ月と短く、多産性であることから、有
用タンパク質生産のための遺伝子組換え動物としてひろ
く利用されている。ウサギにおける核移植研究は、1988
年にSticeらが受精卵由来の細胞でクローンウサギの誕
生を報告し(10)、その後、幾つかの研究室が報告してい
る(11,12)。しかし体細胞クローン研究については、in
vitroでの発生についての報告はあるものの(13)、in vi
voでの発生、体細胞クローン産仔の誕生の報告はない。
ウサギの体細胞核移植技術が完成されるか、またはそれ
に代わる方法が確立されないかぎりウサギにおける高度
な遺伝子操作が行われた遺伝子組換えウサギの作出は不
可能である。
【0013】ウサギの体細胞核移植が成功しない原因と
しては、種差による卵子の性状の違い、及び最適な核移
植条件の違いなどが第一に考えられる。また、体細胞ク
ローン作出に成功した動物種においても、発生学的な観
点からも、妊娠後期の流産が高発する、過大児として出
生する傾向があるなど、手法自体が成熟したものではな
い(14)。マウス、ブタでの最初の体細胞クローンにおい
ては、“初期化”のプロセスに更に工夫を加えることに
よって成功したという事実もあり(15,16)、ウサギにお
いても今後の体細胞核移植技術の進歩を待つしか解決の
方法はないと考えられた。次に考えられる原因として
は、種差による着床、妊娠の違いがある。ウサギが最も
他の哺乳動物と異なる点として、“産後発情”があるこ
と、何らかの原因で妊娠が自然消滅することがあるこ
と、また、死んだ胎児を流産する多くの哺乳動物と異な
り、ウサギは胎児と胎盤を子宮の壁をとおして“再吸
収”することが挙げられる(17)。
【0014】これらの事実から、ウサギは多産性の動物
であるものの、同時に環境の変化など様々な要因で胚の
発生が消滅しやすい動物であることが言える。実際、Ma
urerは、2−4細胞期胚を72および96時間培養後、移植
を行った結果、生存胎児こそ得られているものの、生存
率は低く、ウサギ胚は体外で培養しただけで、移植後の
受胎率が極めて低いことを示している(18)。またMoore
らは、ウサギ胚は他の哺乳動物種胚とは異なって、透明
帯をもたない胚は、移植しても産仔に発生しないことを
示している(19)。従って、多くの作製行程を必要とする
体細胞核移植によって再構築された胚は、スタートとな
る体細胞の性状、上述の核移植の行程などを経るうち
に、自然に受精した卵子(受精卵)と比較して明らかに
着床、妊娠の行程で消滅しやすい胚であると考えられ
る。このようにウサギは他の動物と比較して仔ウサギを
得にくい動物と考えられる。遺伝子組換え操作を実施し
た体細胞を用いる場合は、更に仔ウサギが得られる効率
は減少するものと考えられる。以上述べてきたように、
高度な遺伝子操作が行われた遺伝子組換えウサギを得る
ためには、現在の体細胞核移植の技術では遂行すること
ができず、新たな技術開発が切望される。
【0015】
【課題を解決するための手段】本願発明者等は、鋭意検
討の結果、体細胞核移植技術によって作出したウサギ体
細胞核移植胚が受精卵と同様な性状を保持する系を開発
することによって、高度な遺伝子操作が行われた遺伝子
組換えウサギを作出する系を完成するに至った。
【0016】本願発明は、ウサギの選択、ドナー核提供
細胞の選別及び遺伝子導入、卵子の採取、体細胞核移植
による体細胞核移植胚の作製、卵子・体細胞核移植胚の
培養系、並びに体細胞核移植胚が受精卵と同様な性状を
保持する系、得られる再構築胚の仮腹ウサギへの移植、
並びに当該仮腹ウサギからの産仔さらにその子孫の産生
を主たる技術的要件とし、以下、発明を完成させるため
のそれぞれの要件を概説する。
【0017】
【発明の実施の形態】本発明に使用されるウサギはニュ
ージーランド・ホワイト、ダッチ、日本白色種等のカイ
ウサギ種であれば、これらの単種でも、異品種間の交配
ウサギであってもいずれでも構わない。ただし、染色体
数は2n=44であることが要件となる。
【0018】体細胞核移植のドナー核を提供する体細胞
は、ウサギ由来の正常2倍体細胞であることが必要であ
る。体細胞の種類は正常2倍体細胞であれば特に限定さ
れない。しかし遺伝子組換え細胞を得るには、遺伝子組
換え等の操作が必要で、細胞を長期に渡って、生体より
分離後、in vitroで培養する必要があるため、その期間
中に細胞が損傷を受け、正常2倍体細胞の要件を逸脱す
る可能性がある。従って、本発明においては、ウサギ胎
児由来の線維芽細胞もしくは腎細胞、またはウサギ由来
の顆粒層細胞等の増殖速度が早く、増殖性の高い細胞が
好ましい。所望とする形質を有する遺伝子組換えウサギ
を作製するために、体細胞の核に対して外来遺伝子を導
入する等の遺伝子操作を行う。外来遺伝子を導入する方
法としては、エレクトロポレーションやリポフェクショ
ン等を分離した細胞に対して行うなど、一般的な遺伝子
導入方法が適用可能である。
【0019】本発明に用いるウサギ未受精卵子及び受精
卵子は、ホルモン投与による過排卵処理によって得る。
未受精卵子については排卵処理のためのホルモン投与よ
り、12時間目から16時間目までに採卵し、13時間
目から26時間目の間に体細胞核移植の操作を終了す
る。受精卵子は、本発明の要件として、1細胞期から胚
盤胞期の卵子を用いる必要がある。未受精卵子はアクチ
ンのネットワーク(“細胞骨格”と呼ぶ)によって形態
を保っている。除核は卵子に微小なピペットを用いて未
受精卵子の核と共に周りの細胞質を吸い込み、ちぎり取
るような操作によって実施するが、そのままでは細胞骨
格を無理矢理壊してしまうため、卵子が崩壊してしま
う。従って除核のポイントは、あらかじめ未受精卵子の
細胞骨格がない状態にすることにある。細胞骨格を消失
させることで、卵子は柔らかい餅のような状態になり、
ピペットによって卵子を崩壊させることなく容易に核を
含んだ細胞質をちぎり取ることが可能となる。この細胞
骨格の消失は、サイトカラシンを用いることで実施でき
る。
【0020】本発明の要件の1つである体細胞核移植胚
は、Sticeらが実施したドナー核として未受精卵由来細
胞による核移植法に準じて作製される。Sticeらの方法
では、ドナー核提供細胞と、除核未受精卵子の細胞融合
によってドナー核の移植が行われているが、ドナー核を
直接除核未受精卵子に移植する方法など、本発明におい
ては未受精卵子の核とドナー核が置換されることが重要
であり、いずれの方法でも構わない。
【0021】ドナー核提供細胞と除核未受精卵子を融合
させることで核移植を実施する場合、市販の装置を用い
た電気融合法により融合させることができる。
【0022】卵子の“活性化”刺激は電気的方法、薬剤
処理法が一般に用いられているが、本発明では特に方法
に規定はない。但し、活性化のタイミングは、排卵処理
後、18時間から26時間目に実施する。
【0023】ウサギの受精卵子、体細胞核移植胚は適当
な血清を添加した培養液で胚盤胞期まで培養することが
可能である。本発明においては、CELGROSSER-H(住友製
薬)を用いることが好ましく、また添加する血清は、ロ
ットによる差を回避するため、Gibco BRL 社のKNOCKOUT
Serum Replacementを用いる。
【0024】本発明の重要な要件は、体細胞核移植技術
により作出したウサギ体細胞核移植胚を、自然に受精し
た卵子と同様な性状を保持することであることである。
つまり本発明は、発生を完結するために必要で、ウサギ
体細胞核移植胚に不足している“因子”を補足するシス
テムに関するものである。ここで述べた“因子”とは、
成熟した未受精卵子が受精することによって獲得する
“発生能”に関わる因子のことである。この因子を補足
する方法は、以下の方法で実施可能である(図5)。
【0025】1つ目の方法は、受精卵と体細胞核移植胚
の各割球(細胞)同士を混ぜ合わせキメラ胚を構築する
方法である(図5上)。この場合、受精卵由来細胞と体
細胞核移植胚由来細胞の間の相互作用によって受精卵の
もつ“発生能”に関する因子が補足される。キメラ胚の
作製方法は、両胚同士を混ぜ合わせる集合キメラ法と、
どちらかの胚にバラバラにされた他方の細胞を注入する
注入キメラ法がある。またドナー胚−注入細胞の組み合
わせは、受精卵子、体細胞核移植胚のどちらの組み合わ
せでも構わない。2つ目の方法は、体細胞核移植胚の核
を除核した受精卵子内に注入する方法、つまり受精卵の
核を体細胞核移植胚の核に置換する方法である(図5
中)。本方法では、直接、体細胞核移植胚由来の核に受
精卵子の細胞質が作用することになる。3つ目の方法は
受精卵子の細胞質もしくは精製された因子を体細胞核移
植胚に注入または培養液に添加し作用させる方法である
(図5下)。この3つのいずれかの方法により、体細胞
核移植技術により作出したウサギ体細胞核移植胚に、自
然に受精した卵子と同様な性状を保持させたウサギ再構
築胚の作製が可能となる。
【0026】実際に、本願発明者らは、受精卵と体細胞
核移植胚の割球をキメラ化し、得られたキメラ胚を仮腹
ウサギに移植、その胎児を解析した結果、体細胞に導入
した外来遺伝子を胎児及び胎盤から検出し、本発明を完
成するに至った。これらの方法はいずれの方法もウサギ
胚においては技術的な見地より困難であり、予見し実
施、証明することは難しい。また本発明者らの発明の完
成によって、ウサギ体細胞核移植胚のin vivoでの分化
・増殖能が初めて明らかにされた。
【0027】本発明は、遺伝子相同組換え等の高度な遺
伝子操作が行われた遺伝子組換えウサギの作製方法であ
る。遺伝子組換え動物を用いた医薬品等の生産システム
を完成させるためには、安定した確率、しかもある程度
以上の高率なシステムで、つまり最低1%以上の効率で
直接又は間接的に外来遺伝子の形質を持つ遺伝子組換え
動物を作出することが要件となる。本発明のキメラ胚由
来胎児の解析結果によれば、体細胞核移植胚数に対して
2.6%という高率で、胎児より導入遺伝子が検出され
た。また本発明の完成によって初めて、遺伝子組換えウ
サギ体細胞核移植由来の細胞のin vivoでの分化・増殖
が証明された。かくして本発明により、実際に高度な遺
伝子組換えウサギの作出が可能となった。
【0028】以下、実施例にそって本発明をさらに詳細
に説明するが、これら実施例は本発明の範囲を限定する
ものではない。
【0029】
【実施例】実施例の概略を図6に示す。 《実施例1:GFP遺伝子導入をした核移植ドナー細胞
の調製》核移植ドナー細胞はウサギの胎児線維芽細胞を
用いた。この線維芽細胞にCAGプロモーター(20)調節
下のGFP(Green Fluorescence Protein)遺伝子(21)
とPGKプロモーター(22)調節下のピューロマイシン耐
性遺伝子(23)を繋いだコンストラクト(図7)をELECTR
O CELL MANIPULATOR 600(BTX)を用いてエレクトロポレ
ーションにより導入した。遺伝子導入後、72時間目より
培地にピューロマイシンを1μg/mlになるように添加
し、遺伝子導入細胞を選別した。選別された細胞は、正
常の線維芽細胞と同様な形態を維持し、かつGFP蛋白
質の蛍光が認められた(図8)。
【0030】《実施例2:未受精卵の採卵》未受精卵は
日本白色種メスウサギにFSHを0.5U/bodyで皮下に12
時間間隔で5回投与し、最終FSH投与12時間後にhC
Gを100U/bodyで静脈内投与することで過排卵させた。
hCG投与後15−16時間目に麻酔下、温めた0.3%
ウシ血清を含むPBS(PBS/0.3%FBS)を卵管よ
り潅流し成熟未受精卵を採卵した。採卵後、ヒアルロニ
ダーゼ処理及びピペッティングにより卵丘細胞を卵子よ
り除去した。卵子は体細胞核移植の操作中は、M2液内
で保持した。
【0031】《実施例3:除核》未受精卵子をサイトカ
ラシンDが最終濃度5μg/ml入ったM2液に15分さらし
た後、マイクロマニュピレーター下で、直径30μmの尖
ったピペットで透明帯を破り、極体と未受精卵子核(メ
タフェースプレート)を周りの細胞質と共に除去した。
除核は、吸引した細胞質をアクリジンオレンジ(5μg/m
l)にて染色し、除核の確認を行った。
【0032】《実施例4:ドナー細胞の注入》ドナー細
胞は、GFP遺伝子を導入したウサギ胎児由来線維芽細
胞と、コントロールとして非遺伝子導入の細胞を用い
た。ドナー細胞は数世代培養後、血清飢餓(0.5%FB
S in D-MEM)または、コンフルエントの状態で長期培
養にてG1/G0期に同調した(約90%)。0.1%トリ
プシン液にて細胞を剥がし、マイクロマニュピレーター
下で、除核未受精卵の囲卵腔内にドナー細胞を注入し
た。
【0033】《実施例5:除核未受精卵とドナー細胞の
融合及び活性化》除核未受精卵とドナー細胞の融合は、
電気的誘導によって行った。0.3Mマンニトール, 0.1mM
塩化カルシウム, 0.1mM塩化マグネシウム(融合培地溶
液:FM溶液)中で1mm間隔の白金線の張ったチャンバ
ーを用いて実施した。電気刺激はhCG投与後22時間目
に、マイクロマニュピレーター下、室温で、300V(3kV/c
m)、100μsのパルスを1回(ELECTRO CELL MANIPULATOL2
00,BTX)与えることによって行った。融合効率は約70%
であった。活性化は融合後、実体顕微鏡下、30分目に
FM溶液中で、100V(1kV/cm)、100μsのパルスを連続
して3回与えることによって行った。
【0034】《実施例6:体細胞核移植胚の培養》得ら
れた体細胞核移植胚は、次の操作まで5%KSR(KNOC
KOUT Serum Replacement, Gibco BRL)を添加したCELGR
OSSER-H(住友製薬)(CG溶液)中で、38.5℃、5%
炭酸ガス培養器内で培養した。
【0035】《実施例7:受精卵の採卵》受精卵は日本
白色種メスウサギにFSHを0.5U/bodyで皮下に12時間
間隔で5回投与し、最終FSH投与12時間後にhCGを
30U/bodyで静脈内投与し、オスウサギと交配させた。
交配24時間目に麻酔下、温めた0.3%ウシ血清を含むP
BS(PBS/0.3%FBS)を卵管より潅流し受精卵を
採卵した。採卵した受精卵は操作まで、CG溶液中で培
養した。
【0036】《実施例8:体細胞核移植胚と受精卵によ
るキメラ胚の作製》活性化後、約3.5日培養した体細胞
核移植胚(桑実胚期)の透明帯を、マイクロマニュピレ
ーター下、マイクロナイフでカットし、ピペッティング
により割球を分離した。4細胞期又は8細胞期に達した
受精卵の囲卵腔内に、サイトカラシンD 5μg/ml, コ
ルセミド 0.1μg/ml に15分さらした割球を、マイクロ
マニュピレーター下で1から5個、30〜40μmの先の尖
ったピペットで注入することでキメラ胚を作製した。
【0037】《実施例9:キメラ胚の偽妊娠雌ウサギへ
の移植》実施例8で作製したキメラ胚を、偽妊娠雌ウサ
ギ(日本白色種)に移植した。偽妊娠の誘導は受精卵を
採取するため交配させた同時期に、該当メスウサギにh
CGを30U/body 投与することによって行った。移植は
卵管内に約5〜20個ずつ胚を注入した。
【0038】《実施例10:胎児の採取およびPCRサ
ンプルの調製》胎生15日目に、子宮より胎児を採材し
た。その際に正常に発育中の胚と発育が遅れているもし
くは退後している胚に分けて採材した。正常発育胚は、
更に胎盤と胎児に分けた。材料は、生理食塩液1mlを加
え、POLYTRON(KINEMATICA AG LITTAU)によりホモジネー
トにした。このホモジネート 100μlよりWizard Genomi
c DNA Purification kit (Promega)によりDNAを抽出
した。抽出したDNAは100μlの蒸留水に溶解した。
【0039】《実施例11:PCR解析》DNAサンプ
ル1μlより、体細胞核移植胚のドナー細胞に起因する
GFP遺伝子の検出をPCRにより行った。アンチセン
スプライマーとして5'-TTCTCGTTGGGGTCTTTGCTCAG-3'、
センスプライマーとして5'-TAAACGGCCACAAGTTCAGCGTGT-
3'の配列をもつオリゴDNAを用いた。PCRは30μ
lスケール下、まず、95℃で9分、続いて、94℃で60
秒、55℃で60秒、及び72℃で60秒を35サイクル行い、最
後に72℃で5分の条件で実施し、PCR反応産物の10μ
lを電気泳動した。
【0040】《実施例12:ウサギ体細胞核移植胚のin
vitroにおける発育成績》表2に体細胞核移植胚のin v
itroでの胚盤胞期までの発育成績を示す。培養細胞をド
ナー細胞として用いた場合、GFP遺伝子導入細胞をド
ナー細胞として用いた場合、どちらも胚の卵割は80%程
度であった。胚盤胞胚への発生率は20%程度であった。
図9及び10にそれぞれ胚盤胞胚の写真を示す。GFP
遺伝子導入細胞をドナー細胞として、体細胞核移植を行
った胚は、すべての細胞でGFPの蛍光が認められた。
【0041】
【表2】
【0042】《実施例14:キメラ胚)図11にキメラ
胚の写真を示す。体細胞核移植胚由来細胞を注入した受
精卵はキメラを形成し、in vitroの培養では殆どの操作
胚が胚盤胞胚まで発育した。体細胞核移植胚由来細胞の
胚での分布は様々であった。
【0043】《実施例15:ウサギ体細胞核移植胚−ウ
サギ受精卵キメラ胚の移植成績》表3に出産結果を示
す。7個の核移植桑実胚より26個のキメラ胚を作製
し、2匹の仮腹メスウサギに移植した結果、2匹のウサ
ギが受胎し、2匹の胚操作由来の仔ウサギが得られた。
【0044】
【表3】
【0045】《実施例16:ウサギ体細胞核移植胚−ウ
サギ受精卵キメラ胚の胎生15日目における体細胞核移
植胚由来遺伝子のPCR解析成績》表4に解析結果を示
す。39個の核移植桑実胚より236個のキメラ胚を作
製し、11匹の仮腹メスウサギに移植した結果、6匹の
ウサギが受胎し、27個の正常発育胚、16個の退後胚
が得られた。これらをPCR解析(図12)した結果、
1羽の胎児、2個の胎盤中にGFP遺伝子陽性のシグナ
ルが認められた。また2個の退後胚中にもGFP遺伝子
陽性のシグナルが認められた。
【0046】
【表4】
【0047】
【発明の効果】本発明により、体細胞核移植技術を用い
た高度な遺伝子操作が行われた遺伝子組換えウサギの作
出が可能となった。本方法を用いて作出される遺伝子組
換えウサギより医薬品等の有用物質を生産することが可
能となる。
【0048】〔参考文献〕 1) Gordon, J. et al.: Genetic transformation of mo
use embryos by microinjection of purified DNA., Pr
oc. Natl. Acad. Sci. USA, 77:7380-7384, 1980 2) Hammer, R. et al.: Production of transgenic rab
bits, sheep and pigs by microinjection., Nature, 3
15:680-683, 1985 3) Evans, M.J. et al.: Establishment in culture of
pluripotential cellsfrom mouse embryos., Nature,
292, 154, 1981 4) Bradley, A. et al.: Formation of germ-Line chim
eras from embryo-derived teratocarcinoma cell line
s., Nature, 309, 255, 1984 5) Wilmunt, I. et al.: Viable offspring derived fr
om fetal and adult mammalian cells., Nature, 385,
810-813, 1997 6) Kato, Y. et al.: Eight caves cloned from somati
c cells of a single adult., Science, 282: 2095-209
8, 1998 7) Baguisi A. et al.: Production of goats by somat
ic cell nuclear transfer., Nat. Biotechnol. 17, 45
6-461, 1999 8) Ogura A. et al.: Birth of mice after nuclear tr
ansfer by electrofusion using tail tip cells., Mol
Reprod Dev 2000 Sep;57(1):55-9 9) Betthauser J. et al.: Production of cloned pigs
from in vitro systems.Nat Biotechnol., 2000 Oct;1
8(10):1055-9. 10) Steven L. et al.: Nuclear Reprogramming in Nuc
lear Transplant Rabbit, Embryos. Biology of Reprod
uction 39, 657-664 (1988) 11) Yang X. et al.: Nuclear totipotency of culture
d rabbit morulae to support full-term development
following nuclear transfer., Biol Reprod. 1992 Oc
t;47(4):636-643. 12) Tsunoda Y. et al.: Nuclear Transplantation of
8-16-cell Embryos intoEnucleated Oocytes in the Ra
bbit., Japanese Journal of Zootechnical Science, V
ol. 60, No.9 846-851 September 1989 13) Mitalipov S.M.: Development of nuclear transfe
r and parthenogeneticrabbit embryos activated with
inositol 1, 4, 5-Trisphate., Biology of Reproduct
ion 60, 821-827 (1999) 14) 角田幸雄ら、:体細胞クローン動物, J.Reprod. De
v. 45:j61-j64,1999 15) Wakayama T. et al.: Full-term development of m
ice from enucleated oocytes injected with cumulus
cell nuclei., Nature. 394, 369-374,1998 16) Onishi A. et al.: Pig cloning by microinjectio
n of fetal fibroblastnuclei., Science. 2000 Aug 1
8;289(5482):1188-90. 17) Anne McBride 斎藤慎一郎訳: ウサギの不思議な生
活(1998)p110-111 株式会社晶文社 18) Maurer R.R.(1978) In Methods in Mammalian Repr
oduction (J.C. Danieled), pp.259-272, Academic Pre
ss, New York 19) Moore N. W. et al.(1968) J. Reprod. Fert., 17
p527-531 20) Miyazaki J. et al.: Expression vector system b
ased on the chicken beta-actin promoter directs ef
ficient production of interleukin-5., Gene 1989 Ju
l 15;79(2):269-277. 21) Ikawa M. et al.: A rapid and non-invasive sele
ction of transgenic embryos before implantation us
ing green fluorescent protein (GFP)., FEBS Lett. 1
995 Nov 13;375(1-2):125-128. 22) Adra C. N.: Cloning and expression of the mous
e pgk-1 gene and the nucleotide sequence of its pr
omoter., Gene. 1987;60(1):65-74. 23) Gomez Lahoz E. et al. : Use of puromycin N-ace
tyltransferase (PAC) as a new reporter gene in tra
nsgenic animals., Nucleic Acids Res. 1991 Jun 25;1
9(12):3465.
【図面の簡単な説明】
【図1】 哺乳類の発生を示す。
【図2】 遺伝子組換え動物作出方法の概略を示す。
【図3】 従来の遺伝子組換え動物の作出方法を示す。
【図4】 体細胞核移植の概略を示す。
【図5】 体細胞核移植技術により作出したウサギ再構
築胚を、自然に受精した卵子と同様な性状を保持するシ
ステムの概要を模式図として示す。
【図6】 ウサギ体細胞核移植胚−ウサギ受精卵キメラ
胚の作製方法及び遺伝子改変動物作出方法の概略図を示
す。
【図7】 遺伝子組換えウサギ体細胞作製に用いた導入
遺伝子(コンストラクト)を示す。図中、略語は以下の
とおりである。CAGp:CAGプロモーター、PGK
p:ホスホグリセレートリナーゼ−1(phosphoglycera
te linase-1)プロモーター、pac:ピューロマイシ
ン遺伝子、GFP gene:GFP遺伝子、p(A):ポリ
Aシグナル。
【図8】 GFP遺伝子を導入したウサギ胎児由来繊維
芽細胞(a:明視野像、b:GFP蛍光観察像)を示す
写真。
【図9】 未遺伝子導入のウサギ胎児由来体細胞をドナ
ー細胞として用いて核移植を行うことによって得られた
体細胞核移植胚の活性化処理後144時間目の胚(脱出
胚盤胞)を示す写真。
【図10】 GFP遺伝子導入のウサギ胎児由来体細胞
をドナー細胞として用いて核移植を行うことによって得
られた体細胞核移植胚の活性化処理後144時間目の胚
(脱出胚盤胞)を示す写真(a:明視野観察像、b:G
FP蛍光観察像、C:Hoehst33342による核染色像)。
【図11】 キメラ胚作製のin vitro観察像(a:キメ
ラ胚作製に用いた4−8細胞期の受精卵、b:キメラ胚
作製に用いた体細胞核移植胚(桑実胚期、GFP蛍光観
察)、c:キメラ胚作製当日のキメラ胚像(GFP蛍光
観察)、d:キメラ胚作製後、3日目のキメラ胚像(明
視野観察)、e:キメラ胚作製後、3日目のキメラ胚像
(GFP蛍光観察))を示す写真。
【図12】 ウサギ体細胞核移植胚-ウサギ受精卵キメ
ラ胚の胎生15日目における体細胞核移植胚由来遺伝子
のPCR解析像を示す写真。 NTCK1_1, NTCK1_2,KTC21_2:実験No.(移植メスの区
分)を示す。 MW:分子量マーカー Nega.:ネガティブコントロール Posi.:ポジティブコントロール(2列目以降10コピ
ーのcDNA) En:胎児のサンプルNo.(nは胎盤の番号と一致す
る) Pn:胎盤のサンプルNo. Tn:退後胚のサンプルNo. ・:PCR陽性サンプル 矢印:PCR産物電気泳動位置
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:91) C12R 1:91) (72)発明者 高橋 清也 茨城県つくば市並木2−10−1 202棟306 号 (72)発明者 渡部 聡 茨城県つくば市並木2−8 122棟105号 (72)発明者 松田 純一 熊本県熊本市龍田弓削1−31−2 (72)発明者 上仲 一義 熊本県菊池郡西合志町須屋字みずき台3649 ガーデンコートみずき台G棟202号 (72)発明者 前田 浩明 熊本県熊本市壺川1−1−12 栄久ハイツ (72)発明者 野崎 周英 熊本県熊本市武蔵ヶ丘5−26−1 Fターム(参考) 4B024 AA01 BA80 CA04 DA02 EA04 FA10 GA14 GA18 HA01 4B065 AA90X AA90Y AB01 AC10 BA03 CA24 CA44

Claims (16)

    【特許請求の範囲】
  1. 【請求項1】 ウサギ由来未受精卵子の核が、当該未受
    精卵子とは異なる遺伝情報を有するウサギ由来体細胞の
    核(ドナー核)で置換されたウサギ由来体細胞核移植
    胚。
  2. 【請求項2】 当該体細胞がウサギ由来の正常2倍体細
    胞である請求項1記載の体細胞核移植胚。
  3. 【請求項3】 当該正常2倍体細胞がウサギ胎児由来の
    線維芽細胞もしくは腎細胞、またはウサギ由来の顆粒層
    細胞から選ばれる請求項2に記載の体細胞核移植胚。
  4. 【請求項4】 当該ドナー核が、所望の形質を発現させ
    るよう遺伝子操作が行われることを特徴とする請求項1
    から3のいずれかに記載の体細胞核移植胚。
  5. 【請求項5】 請求項1から4に記載の体細胞核移植胚
    にウサギ自然受精卵子由来の発生に関わる因子が補足さ
    れることにより構築されるウサギ由来再構築胚。
  6. 【請求項6】 当該因子を補足するために、 a)受精卵子と体細胞核移植胚の割球細胞同士を混合、 b)受精卵子の核を体細胞核移植胚の核で置換、または c)受精卵子の細胞質もしくは精製された当該因子を体
    細胞核移植胚に注入または培養液に添加のいずれかが行
    われる請求項5記載の再構築胚。
  7. 【請求項7】 請求項5または6に記載の再構築胚が移
    植された仮腹ウサギ。
  8. 【請求項8】 請求項7に記載の仮腹ウサギから産出さ
    れる産仔、またはその子孫であり、前記ドナー核の遺伝
    情報を有することを特徴とする遺伝子組換えウサギ。
  9. 【請求項9】 体細胞核移植技術を用いた遺伝子組換え
    ウサギ作製方法において、 a)ウサギ由来未受精卵子の核を、当該未受精卵子とは
    異なる遺伝情報を有するウサギ由来体細胞の核(ドナー
    核)で置換することによりウサギ由来体細胞核移植胚を
    得る工程、及び b)a)の体細胞核移植胚を仮腹ウサギに移植し、産仔
    またはその子孫を得る工程、からなる遺伝子組換えウサ
    ギの作製方法。
  10. 【請求項10】 前記体細胞核移植胚に、ウサギ受精卵
    子由来の発生に関わる因子を補足することによりウサギ
    再構築胚を構築し、当該再構築胚を仮腹ウサギに移植す
    るすることを特徴とする請求項9に記載の作製方法。
  11. 【請求項11】 受精卵子由来の発生に関わる因子を補
    足するために、 a)受精卵子と体細胞核移植胚の割球細胞同士を混合し
    キメラ胚を再構築する方法、 b)受精卵子の核を体細胞核移植胚の核で置換する方
    法、または c)受精卵子の細胞質もしくは精製された当該因子を体
    細胞核移植胚に注入または培養液に添加し作用させる方
    法のいずれかの方法が行われる請求項10記載の作製方
    法。
  12. 【請求項12】 当該キメラ胚を作製するために、 a)受精卵子及び体細胞核移植胚を混合させる集合キメ
    ラ法、または b)受精卵子または体細胞核移植胚のいずれかの胚に、
    バラバラにされた他方の細胞を注入する注入キメラ法の
    いずれかが行われる請求項11記載の作製方法。
  13. 【請求項13】 前記体細胞がウサギ由来の正常2倍体
    細胞である請求項9に記載の作製方法。
  14. 【請求項14】 当該正常2倍体細胞がウサギ胎児由来
    の線維芽細胞もしくは腎細胞、またはウサギ由来の顆粒
    層細胞から選ばれる請求項13に記載の作製方法。
  15. 【請求項15】 前記ドナー核が、所望の形質を発現さ
    せるよう遺伝子操作が行われることを特徴とする請求項
    9から14のいずれかに記載の作製方法。
  16. 【請求項16】 前記受精卵子が1細胞期から胎盤胞期
    の卵子である請求項10から12のいずれかに記載の作
    製方法。
JP2000400468A 2000-12-28 2000-12-28 遺伝子組換えウサギ及び体細胞核移植を用いた当該遺伝子組換えウサギの作製方法 Pending JP2002238562A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000400468A JP2002238562A (ja) 2000-12-28 2000-12-28 遺伝子組換えウサギ及び体細胞核移植を用いた当該遺伝子組換えウサギの作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400468A JP2002238562A (ja) 2000-12-28 2000-12-28 遺伝子組換えウサギ及び体細胞核移植を用いた当該遺伝子組換えウサギの作製方法

Publications (1)

Publication Number Publication Date
JP2002238562A true JP2002238562A (ja) 2002-08-27

Family

ID=18865058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400468A Pending JP2002238562A (ja) 2000-12-28 2000-12-28 遺伝子組換えウサギ及び体細胞核移植を用いた当該遺伝子組換えウサギの作製方法

Country Status (1)

Country Link
JP (1) JP2002238562A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312772A (ja) * 2006-04-28 2007-12-06 Shionogi & Co Ltd ヒトtpo受容体の膜貫通部位を有するキメラtpo受容体導入ノックイン非ヒト哺乳動物
JPWO2016140353A1 (ja) * 2015-03-04 2018-01-25 株式会社医療実験用大動物供給事業準備会社 安定した表現型を示す疾患モデルブタおよびその作製方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6010025934, Biol. Reprod., 1999, 60, p.821−827 *
JPN6010025935, 日本畜産学会第97会大会講演要旨, 200003, p.118 *
JPN6010025937, Biol. Reprod., 1996, 54, p.100−110 *
JPN6010062036, Science, 278(1997), p.2130−2133 *
JPN6010062037, Nature, 405(2000.6), p.1066−1069 *
JPN6010062038, Nature, 380(1996), p.64−66 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007312772A (ja) * 2006-04-28 2007-12-06 Shionogi & Co Ltd ヒトtpo受容体の膜貫通部位を有するキメラtpo受容体導入ノックイン非ヒト哺乳動物
JPWO2016140353A1 (ja) * 2015-03-04 2018-01-25 株式会社医療実験用大動物供給事業準備会社 安定した表現型を示す疾患モデルブタおよびその作製方法
US11246299B2 (en) 2015-03-04 2022-02-15 Pormedtec Co., Ltd. Disease model pig exhibiting stable phenotype, and production method thereof

Similar Documents

Publication Publication Date Title
Roh et al. In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts
KR20010040370A (ko) 성체의 체세포 핵으로 재구성된 탈핵 난모세포로부터의동물의 전기간 발달
US7598082B1 (en) Process of mammalian cell reprogramming through production of a heterokaryon
JP4095898B2 (ja) 人工染色体を含むトランスジェニック動物のクローニング
Iannaccone et al. Preimplantation and postimplantation development of rat embryos cloned with cumulus cells and fibroblasts
Skrzyszowska et al. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning
Cho et al. Development potential of transgenic somatic cell nuclear transfer embryos according to various factors of donor cell
US20040148648A1 (en) Method and system for utilizing somatic cell nuclear transfer embryos as cell donors for additional nuclear transfer
JPWO2005011371A1 (ja) 核移植卵、単為発生胚および単為発生哺乳動物の作出方法
WO2010134076A1 (en) Method and system for somatic cell nuclear transfer
JP2002238562A (ja) 遺伝子組換えウサギ及び体細胞核移植を用いた当該遺伝子組換えウサギの作製方法
Matsuda et al. Production of transgenic chimera rabbit fetuses using somatic cell nuclear transfer
JP2005528095A (ja) 哺乳類種における核移植に使用するための細胞株を選択する方法
US20060277616A1 (en) Method for cloning of the rat by nuclear transfer
Conner Transgenic mouse production by zygote injection
CA2336437A1 (en) A process of cell reprogramming through production of a heterokaryon
EP3120700A1 (en) Microinjection into a cell's nucleus following somatic cell nuclear transfer
Moreira et al. Intracytoplasmic sperm injection (ICSI)-mediated transgenesis in mice
JPH0614945A (ja) 豚の繁殖方法
AU771102B2 (en) Cell reprogramming
WO2002019811A2 (en) Generation of transgenic animals using nuclear transfer and oocytes at the germinal vesicle stage
WO2000065035A1 (en) Telophase enucleated oocytes for nuclear transfer
WO2005032245A1 (en) Method of producing transgenic pigs expressing green fluorescent protein
Stice et al. Current successes in cloning mammalian embryos
Spell et al. Somatic cell cloning in the beef industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329