WO2000065035A1 - Telophase enucleated oocytes for nuclear transfer - Google Patents
Telophase enucleated oocytes for nuclear transfer Download PDFInfo
- Publication number
- WO2000065035A1 WO2000065035A1 PCT/CA2000/000483 CA0000483W WO0065035A1 WO 2000065035 A1 WO2000065035 A1 WO 2000065035A1 CA 0000483 W CA0000483 W CA 0000483W WO 0065035 A1 WO0065035 A1 WO 0065035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oocyte
- polarbody
- nucleus
- oocytes
- activated
- Prior art date
Links
- 210000000287 oocyte Anatomy 0.000 title claims abstract description 144
- 238000012546 transfer Methods 0.000 title claims description 29
- 230000016853 telophase Effects 0.000 title description 12
- 238000000034 method Methods 0.000 claims abstract description 67
- 210000001161 mammalian embryo Anatomy 0.000 claims abstract description 21
- 210000001082 somatic cell Anatomy 0.000 claims abstract description 13
- 238000010367 cloning Methods 0.000 claims abstract description 7
- 210000004940 nucleus Anatomy 0.000 claims description 49
- 210000004027 cell Anatomy 0.000 claims description 40
- 210000004508 polar body Anatomy 0.000 claims description 38
- 210000000805 cytoplasm Anatomy 0.000 claims description 17
- 238000011161 development Methods 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 230000009261 transgenic effect Effects 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 230000002759 chromosomal effect Effects 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 6
- 210000005000 reproductive tract Anatomy 0.000 claims description 6
- 210000000801 secondary oocyte Anatomy 0.000 claims description 6
- 210000000349 chromosome Anatomy 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 5
- 210000003754 fetus Anatomy 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 5
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 claims description 5
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 4
- 230000007910 cell fusion Effects 0.000 claims description 3
- 238000000520 microinjection Methods 0.000 claims description 3
- 241000124008 Mammalia Species 0.000 abstract description 8
- 230000004927 fusion Effects 0.000 description 20
- 241000283690 Bos taurus Species 0.000 description 19
- 230000007159 enucleation Effects 0.000 description 17
- 230000004913 activation Effects 0.000 description 13
- 230000018109 developmental process Effects 0.000 description 13
- 210000002257 embryonic structure Anatomy 0.000 description 11
- 230000031864 metaphase Effects 0.000 description 11
- 210000001109 blastomere Anatomy 0.000 description 10
- 210000002950 fibroblast Anatomy 0.000 description 10
- 230000001605 fetal effect Effects 0.000 description 9
- 210000002459 blastocyst Anatomy 0.000 description 6
- 230000035800 maturation Effects 0.000 description 6
- 108010077544 Chromatin Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 210000003483 chromatin Anatomy 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 4
- 230000018199 S phase Effects 0.000 description 4
- 210000001771 cumulus cell Anatomy 0.000 description 4
- 238000002406 microsurgery Methods 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 210000002308 embryonic cell Anatomy 0.000 description 3
- 239000012894 fetal calf serum Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 210000000633 nuclear envelope Anatomy 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000008672 reprogramming Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 241000242764 Aequorea victoria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 230000010337 G2 phase Effects 0.000 description 1
- 101150066002 GFP gene Proteins 0.000 description 1
- 102000011961 Maturation-Promoting Factor Human genes 0.000 description 1
- 108010075942 Maturation-Promoting Factor Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241000242583 Scyphozoa Species 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- GBOGMAARMMDZGR-UHFFFAOYSA-N UNPD149280 Natural products N1C(=O)C23OC(=O)C=CC(O)CCCC(C)CC=CC3C(O)C(=C)C(C)C2C1CC1=CC=CC=C1 GBOGMAARMMDZGR-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000029803 blastocyst development Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- GBOGMAARMMDZGR-JREHFAHYSA-N cytochalasin B Natural products C[C@H]1CCC[C@@H](O)C=CC(=O)O[C@@]23[C@H](C=CC1)[C@H](O)C(=C)[C@@H](C)[C@@H]2[C@H](Cc4ccccc4)NC3=O GBOGMAARMMDZGR-JREHFAHYSA-N 0.000 description 1
- GBOGMAARMMDZGR-TYHYBEHESA-N cytochalasin B Chemical compound C([C@H]1[C@@H]2[C@@H](C([C@@H](O)[C@@H]3/C=C/C[C@H](C)CCC[C@@H](O)/C=C/C(=O)O[C@@]23C(=O)N1)=C)C)C1=CC=CC=C1 GBOGMAARMMDZGR-TYHYBEHESA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000008175 fetal development Effects 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010449 nuclear transplantation Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/873—Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
Definitions
- the present invention relates to an improved method for obtaining an enucleated host oocyte for transferring nuclei from embryonic, germinal and somatic cells with the objective of cloning or multiplying mammals, and to a method of reconstituting an animal embryo.
- the technique of nuclear transfer has been widely used to multiply embryos by transferring blastomere nuclei from early-stage embryos into enucleated oocytes. This technique enables an increase in the yield of embryos produced from parents of top genetic value, enabling to accelerate the annual genetic gain within an animal population. Nuclear transfer has also been used with nuclei from cell lines derived from embryonic (Campbell et al., 1996, Na ture 380: 64-66) , .fetal and adult tissue ( ilmut et al., 1997, Na ture 385:810-813) .
- nuclear transfer from cell lines enables not only the production of a larger number of genetically identical offspring but also an opportunity for modifying the genetic characteristic of cells in vi tro prior to the production of live offspring, enabling the production of transgenic mammals.
- the use of cells from adult animals for nuclear transfer, either directly or through previous in vi tro passage, enable the multiplication (cloning) of animals of known phenotypes.
- the nuclear transfer technique requires a donor nucleus to provide the genetic material of choice and a host oocyte to provide the cytoplasm that plays a role in reprogramming the nucleus to support embryo development.
- a donor nucleus to provide the genetic material of choice
- a host oocyte to provide the cytoplasm that plays a role in reprogramming the nucleus to support embryo development.
- three main steps are required to reconstruct an oocyte by nuclear transfer.
- host oocytes need to be enucleated to remove all nuclear genetic material. This step is usually performed by microsurgical removal of the chromosomes from either a metaphase plate or pronuclei.
- donor nuclei need to be introduced into the oocyte (nuclear transfer) . This step is normally obtained by fusing the membranes of the nuclear donor cell and the host oocyte.
- nuclear transfer can also be obtained by traversing the oocytes plasma membrane and microinjecting the nucleus directly into the host cytoplasm.
- non-activated host oocytes need awakening from their meiotic arrest (oocyte activation) .
- This step can be achieved by exposing the oocyte to a physical stimulus, such as temperature changes or an electric shock, or exposing the oocyte to chemical agents, such as ethanol or exogenous calcium.
- a physical stimulus such as temperature changes or an electric shock
- chemical agents such as ethanol or exogenous calcium
- mice In mice, oocyte enucleation was performed after fertilization by visualizing and removing the pronuclei by microsurgery. This enucleation technique is less efficient in other mammals due to the higher density of cytoplasm resulting in poor visualization of pronuclei. Moreover, attempts to use pronuclear-stage enucleated oocytes led invariably to poor developmental rates when using cleavage stage blastomeres as nuclear donors. Improved development after nuclear transfer was achieved initially in sheep (Willadsen, S . 1986, Na ture 320: 63-65) and later in other mammals using host oocytes that had not been activated at the time of fusion.
- Willadsen (Willadsen, S.1986, Na ture 320: 63-65) proposed an enucleation procedure in which sheep oocytes were blindly divided into halves either containing or not the first polarbody. To avoid a large loss of cytoplasm during enucleation, this procedure was later improved by using a DNA vital stain (Bisbenzimide; Hoechst) and ultraviolet (UV) irradiation to check whether the Mil plate after removal of small portions of cytoplasm.
- a DNA vital stain Bisbenzimide; Hoechst
- UV ultraviolet
- oocyte enucleation The most common procedure of oocyte enucleation is to expose secondary oocytes to bisbenzimide, blindly remove a cytoplasmic fragment surrounding the first polarbody and then expose the oocyte to UV to ascertain whether enucleation was correctly performed. On average this procedure correctly enucleates between 60 to 80 percent of oocytes. Another possible limitation of this procedure is that oocytes are exposed both to UV irradiation and Hoechst 33342 that have been shown to have detrimental effects on the cytoplasm (Smith, L. 1993 J. Reprod. Fert . 99:39-44) .
- MPF a cellular activity that is responsible for maintaining the chromatin condensed without a nuclear envelop.
- MPF When blastomere interphase-stage nuclei containing decondensed chromatin are introduced into an Mil oocyte, MPF leads to a rapid breakdown of the nuclear membrane and premature chromosome condensation (PCC) .
- PCC is believed to be detrimental only when induced during the DNA synthesis stage (S-phase) of cell cycle. This is particularly problematic when using donor nuclei from blastomeres since these undergo S-phase for most time in between cell divisions.
- S-phase DNA synthesis stage
- enucleated oocytes that have been activated or aged before fusion to nuclear donor cells have lower levels of MPF and, therefore, do not cause PCC.
- nuclei from an embryonic cell line supported significantly higher yield of blastocyst development and more 30d pregnancies when fused to enucleated oocytes 4 h before activation.
- mice significantly more embryos reconstructed with cumulus cell nuclei developed to the blastocyst stage by exposing the donor nucleus to Mil cytoplasm for between 1 and 6 h before activation
- One aim of the present invention is to provide an improved method for obtaining an enucleated host oocyte for transferring nuclei from embryonic, germinal and somatic cells with the objective of cloning or multiplying mammals.
- Another aim of the present invention is to provide an improved method of reconstituting a non- human embryo.
- a method of preparing an enucleated host oocyte for transferring nuclei from embryonic, germinal or somatic cells which comprises the steps of: a) activating oocyte by artificial means; and b) enucleating the activated oocyte when the activated oocyte is undergoing the expulsion of a second polarbody or when the activated oocyte has recently expelled second polarbody (Tel- II); and c) transferring nuclei from embryonic, germinal or somatic cells into the enucleated oocyte of step b) , wherein embryonic cells are cultured prior to nuclei transfer.
- the germinal or somatic cells are cultured prior to nuclei transfer.
- the oocyte of step a) has a first polarbody and the artificial means is chemical means, such as ethanol or ionomycin.
- Step b) may be performed after oocytes are cultured for a period of time sufficient to allow for extrusion of a second polarbody.
- Step b) may be performed with oocytes in a medium with cytosqueletal inhibitors.
- Step b) may be effected by microsurgically removing the second polar with about one tenth of the cytoplasm surrounding the second polarbody.
- the preferred oocyte is a secondary (M-II) oocyte .
- a method of reconstituting a non-human embryo which comprises the steps of: a) activating oocyte by artificial means; b) enucleating the activated oocyte when the activated oocyte is undergoing the expulsion of a second polarbody or when the activated oocyte has recently expelled second polarbody (Tel- II); c) transferring a diploid nucleus in the enucleated oocyte to obtain a reconstructed oocyte with a diploid chromosomal content; and d) culturing in vi tro the reconstructed oocyte and/or transferring the reconstructed oocyte into a reproductive tract of a suitable surrogate mother to enable development into a non-human embryo.
- a method for production of a transgenic non-human embryo which comprises the steps of: a) transfecting cultured cells selected from the group consisting of embryonic, germinal and somatic cells with a desired DNA construct; b) activating oocyte by artificial means; c) enucleating the activated oocyte when the activated oocyte is undergoing the expulsion of a second polarbody or when the activated oocyte has recently expelled second polarbody (Tel-II) ; d) transferring a diploid nucleus extracted from the transfected cells of step a) in the enucleated oocyte to obtain a reconstructed oocyte with a diploid chromosomal content; and e) culturing in vi tro the reconstructed oocyte and/or transferring the reconstructed oocyte into a reproductive tract of a suitable surrogate mother to enable development into a non-human embryo.
- the non-human embryo may develop into
- Fig. 1 illustrates a schematic protocol of the technique of telophase enucleation for nuclear transfer.
- the present invention relates to a method of producing embryos by nuclear transplantation from embryonic, germinal and somatic cells lines.
- Nuclear transfer procedures have invariably initiated with the enucleation of host oocyte.
- the enucleation procedure is followed by one of the following: (a) activation followed by fusion; (b) concurrent activation and fusion; or (c) fusion followed by activation.
- the procedure in which oocytes are (a) enucleated, activated and then fused is used mostly for embryonic blastomeres, most techniques applied for further differentiated donor nuclei use the procedure where oocytes are enucleated, (b) fused and activated concurrently or (c) fused and later activated.
- Step 1 involves the activation of secondary (M-II) oocytes by artificial means.
- Step 2 is performed shortly after activation when the oocyte is undergoing the expulsion or recently expelled the second polarbody (Tel-II).
- Step 3 relates to the transfer of a nucleus from any source with the purpose of reconstructing the oocyte with a diploid chromosomal content.
- Oocytes are obtained either in vivo or in vi tro and cultured in maturation medium. After maturation, oocytes are denuded of cumulus cells and those with a first polarbody are parthenogenetically activated by chemical means using ethanol or ionomycin. After activation, oocytes are cultured for a few hours to allow for extrusion of the second polarbody. Step 2 (oocyte enucleation)
- oocytes can be placed in medium with cytosqueletal inhibitors to facilitate microsurgery. Only oocytes with a second polarbody extruded or partially extruded are used. Approximately one tenth of the cytoplasm surrounding the second polar body is microsurgically removed with the second polarbody. Step 3 (nuclear transfer) After enucleation, a single cell containing a diploid nucleus is introduced into the enucleated oocyte either by cell fusion or microinjection (nuclear transfer) . The reconstructed oocyte is then cultured in vitro and/or transferred into the reproductive tract of a suitable surrogate mother to enable further development .
- Follicles with 2 to 8 mm diameter were aspirated from bovine slaughterhouse ovaries. Oocytes with a homogeneous cytoplasm and several layers of cumulus cells were selected and placed in maturation within 1 h from follicular aspiration. At 28 h after maturation oocytes were denuded of cumulus cells and those with a first polarbody were used in the experiment. Oocytes were exposed to 7% ethanol for 5 min, washed and placed in maturation medium for different periods. At 1 h before microsurgery, oocytes were placed in cytochalasin B and positioned for micromanipulation.
- Oocytes undergoing extrusion or already with extruded second polarbodies had 10% of their cytoplasmic volume removed together with the second polarbody. After microsurgery, oocytes were fixed in 10% formalin, stained with 5 ⁇ g Hoechst 33342 and observed under UV epi-fluorescence . Oocytes without any chromatin were considered successfully enucleated. Most oocytes were successfully enucleated when micromanipulated at the times examined (Table 1) . Because the efficiency of this enucleation technique is high, checking of oocytes with DNA stain and UV light is not necessary.
- Bovine secondary oocytes were matured in vi tro and enucleated using the technique described above (telophase enucleation) .
- Morula-stage embryos were disaggregated and individual blastomeres were inserted into the perivitelline space of enucleated oocytes. Fusion between the membranes of blastomeres and oocytes was obtained with an electric pulse that causes fusion between the membranes of the donor and recipient cells.
- the electrical parameters used were double 60 ⁇ sec pulses of 1.5 KVolts per cm. After fusion the embryos were cultured for 7 days in the presence of Menezo's B2 medium supplemented with 10% fetal calf serum.
- Bovine embryo stem (ES)-like cells were obtained from day 8 blastocyst stage embryos produced entirely in vi tro . ICMs were platted onto mitomycin- inactivated mouse fibroblasts. Established ES-like lines were disaggregated by short exposure to trypsin using a narrow pipette. Isolated cells were placed in the perivitelline space of enucleated oocytes and exposed to an electric pulse that causes fusion between the membranes of the donor and recipient cells. The electrical parameters used were double 100 ⁇ sec pulses of 1.5 KVolts per cm. Electrical stimulation was performed as soon as possible after placing the nuclear donor cell in the perivitelline space to obtain better fusion results. After fusion the embryos are cultured for 7 days in the presence of Menezo's B2 medium supplemented with 10% fetal calf serum.
- Bovine embryo stem (ES)-like cells were cultured in medium with 0.5% FCS for 5 days before micromanipulation. As described above, ES-like cells were disaggregated, placed in the perivitelline space of enucleated oocytes and exposed to an electric pulse to cause fusion between the membranes of the donor and recipient cells. After fusion the embryos are cultured for 7 days in the presence of Menezo's B2 medium supplemented with 10% fetal calf serum.
- Bovine fetal fibroblast cells were recovered form day 50 fetuses and passaged in medium D-MEM with 10% FCS. Non-starved fibroblast cells were recovered during growth at 2 days after passaging. Serum starved cells were exposed to medium with 0.5% serum for 5 days before NT. NT was performed as described above.
- Bovine fetal fibroblast cells were recovered form day 50 fetuses and passaged in medium D-MEM with
- the fetal fibroblast cells were transfected with a constructs containing the CMV/eGFP gene
- plasmid pGREEN LANTERN-1 Life Technologies
- This construct contains the reporter gene Green Fluorescence Protein (GFP) from Aequorea victoria jellyfish, which codes for a naturally fluorescent protein requiring no substrate for visualization.
- the GFP used is "humanized” (ie., codon sequence) and mutated to contain threonine at position 65 to enhance fluorescence peaking.
- the advantage of using this fluorescent gene as a reporter being that it yields bright green fluorescence when living or fixed cells are illuminated with blue light and increases our sensitivity of detection.
- the plasmid contains the CMV immediate early enhancer/promoter upstream of the GFP gene, followed by SV40 t-intron and polyadenylation signal. NT was performed as described above.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Environmental Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Developmental Biology & Embryology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MXPA01010905A MXPA01010905A (en) | 1999-04-28 | 2000-04-27 | Telophase enucleated oocytes for nuclear transfer. |
JP2000614372A JP2002542779A (en) | 1999-04-28 | 2000-04-27 | Terminally enucleated oocytes for nuclear transfer |
EP00922386A EP1179053A1 (en) | 1999-04-28 | 2000-04-27 | Telophase enucleated oocytes for nuclear transfer |
KR1020017013848A KR20020008398A (en) | 1999-04-28 | 2000-04-27 | Telophase enucleated oocytes for nuclear transfer |
BR0010588-0A BR0010588A (en) | 1999-04-28 | 2000-04-27 | Nuclear transfer telophase enucleated oocytes |
NZ515159A NZ515159A (en) | 1999-04-28 | 2000-04-27 | Telophase enucleated oocytes for nuclear transfer |
AU42815/00A AU777799B2 (en) | 1999-04-28 | 2000-04-27 | Telophase enucleated oocytes for nuclear transfer |
CA002370385A CA2370385A1 (en) | 1999-04-28 | 2000-04-27 | Telophase enucleated oocytes for nuclear transfer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13146999P | 1999-04-28 | 1999-04-28 | |
US60/131,469 | 1999-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000065035A1 true WO2000065035A1 (en) | 2000-11-02 |
Family
ID=22449596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2000/000483 WO2000065035A1 (en) | 1999-04-28 | 2000-04-27 | Telophase enucleated oocytes for nuclear transfer |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP1179053A1 (en) |
JP (1) | JP2002542779A (en) |
KR (1) | KR20020008398A (en) |
AU (1) | AU777799B2 (en) |
BR (1) | BR0010588A (en) |
CA (1) | CA2370385A1 (en) |
MX (1) | MXPA01010905A (en) |
NZ (1) | NZ515159A (en) |
WO (1) | WO2000065035A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100168A1 (en) * | 2001-04-10 | 2002-12-19 | Changsha Huilin Stemcell Engineering Co. | A method for constructing a cloned mammalian embryo |
WO2003040359A1 (en) * | 2001-11-06 | 2003-05-15 | Shanghai Second Medical University | Preparing somatic embryo by utilizing rabbit oocyte |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107828718B (en) * | 2017-11-28 | 2021-08-13 | 陈子江 | Method for preparing haploid nuclear cells |
CN108823067B (en) * | 2018-07-23 | 2023-08-11 | 中国农业科学院北京畜牧兽医研究所 | Cell enucleation micromanipulation needle and cell enucleation method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997007669A1 (en) * | 1995-08-31 | 1997-03-06 | Roslin Institute (Edinburgh) | Quiescent cell populations for nuclear transfer |
-
2000
- 2000-04-27 NZ NZ515159A patent/NZ515159A/en unknown
- 2000-04-27 WO PCT/CA2000/000483 patent/WO2000065035A1/en active Search and Examination
- 2000-04-27 CA CA002370385A patent/CA2370385A1/en not_active Abandoned
- 2000-04-27 JP JP2000614372A patent/JP2002542779A/en active Pending
- 2000-04-27 MX MXPA01010905A patent/MXPA01010905A/en unknown
- 2000-04-27 EP EP00922386A patent/EP1179053A1/en not_active Withdrawn
- 2000-04-27 BR BR0010588-0A patent/BR0010588A/en not_active IP Right Cessation
- 2000-04-27 AU AU42815/00A patent/AU777799B2/en not_active Ceased
- 2000-04-27 KR KR1020017013848A patent/KR20020008398A/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997007669A1 (en) * | 1995-08-31 | 1997-03-06 | Roslin Institute (Edinburgh) | Quiescent cell populations for nuclear transfer |
Non-Patent Citations (5)
Title |
---|
BAGUISI A, ET AL.: "Production of goats by somatic cell nuclear transfer.", NAT BIOTECHNOL, vol. 17, no. 5, May 1999 (1999-05-01), pages 456 - 461, XP000891364 * |
BORDIGNON,V. & SMITH L.C.: "TELOPHASE ENUCLEATION: AN IMPROVED METHOD TO PREPARE RECIPIENT CYTOPLASTS FOR USE IN BOVINE NUCLEAR TRANSFER", MOLECULAR REPRODUCTION AND DEVELOPMENT, vol. 49, no. 1, January 1998 (1998-01-01), US,NEW YORK, pages 29 - 36, XP000910821 * |
NOUR MS, TAKAHASHI Y: "Preparation of young preactivated oocytes with high enucleation efficiency for bovine nuclear transfer.", THERIOGENOLOGY, vol. 51, no. 3, February 1999 (1999-02-01), pages 661 - 666, XP000934249 * |
SUN F. Z. ET AL.: "NUCLEAR TRANSPLANTATION IN MAMMALIAN EGGS AND EMBRYOS", CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY,ACADEMIC PRESS, NEW YORK, NY,,US, vol. 30, 1995, pages 147 - 166-166A-167-176, XP000921085, ISSN: 0070-2153 * |
WILMUT I ET AL: "VIABLE OFFSPRING DERIVED FROM FETAL AND ADULT MAMMALIAN CELLS", NATURE,GB,MACMILLAN JOURNALS LTD. LONDON, vol. 385, no. 6619, 27 February 1997 (1997-02-27), pages 810 - 813, XP002067035, ISSN: 0028-0836 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100168A1 (en) * | 2001-04-10 | 2002-12-19 | Changsha Huilin Stemcell Engineering Co. | A method for constructing a cloned mammalian embryo |
WO2003040359A1 (en) * | 2001-11-06 | 2003-05-15 | Shanghai Second Medical University | Preparing somatic embryo by utilizing rabbit oocyte |
Also Published As
Publication number | Publication date |
---|---|
CA2370385A1 (en) | 2000-11-02 |
JP2002542779A (en) | 2002-12-17 |
MXPA01010905A (en) | 2002-11-07 |
EP1179053A1 (en) | 2002-02-13 |
BR0010588A (en) | 2003-07-22 |
NZ515159A (en) | 2003-03-28 |
AU4281500A (en) | 2000-11-10 |
AU777799B2 (en) | 2004-10-28 |
KR20020008398A (en) | 2002-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020090722A1 (en) | Pluripotent mammalian cells | |
Fulka Jr et al. | Nuclear transplantation in mammals: remodelling of transplanted nuclei under the influence of maturation promoting factor | |
WO1999005266A2 (en) | Trans-species nuclear transfer | |
Nasr-Esfahani et al. | Development of an optimized zona-free method of somatic cell nuclear transfer in the goat | |
Kragh et al. | Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation | |
WO1996007732A1 (en) | Totipotent cells for nuclear transfer | |
AU2002252076C1 (en) | Cloning of transgenic animals comprising artificial chromosomes | |
JP2002512787A (en) | How to get stem cells | |
Iannaccone et al. | Preimplantation and postimplantation development of rat embryos cloned with cumulus cells and fibroblasts | |
AU777799B2 (en) | Telophase enucleated oocytes for nuclear transfer | |
US20010037513A1 (en) | Method for cloning animals with targetted genetic alterations by transfer of long-term cultured male or female somatic cell nuclei, comprising artificially-induced genetic alterations, to enucleated recipient cells | |
Do et al. | In vitro development of reconstructed bovine embryos and fate of donor mitochondria following nuclear injection of cumulus cells | |
Kono et al. | Thymocyte transfer to enucleated oocytes in the mouse | |
JP2005523685A (en) | Somatic embryonic stem cells and their differentiated progeny | |
Munsie et al. | Novel method for demonstrating nuclear contribution in mouse nuclear transfer | |
Guo et al. | Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer | |
Cheong et al. | Assessment of cytoplasmic effects on the development of mouse embryonic nuclei transferred to enucleated zygotes | |
Fu et al. | Effects of donor cells on in vitro development of cloned bovine embryos | |
Shinozawa et al. | Development of rat tetraploid and chimeric embryos aggregated with diploid cells | |
US20040077077A1 (en) | Novel methods for the production of cloned mammals, mammals cloned according to the methods, and methods of use of same | |
Wang et al. | Effects of different states of sheep fetal fibroblasts as donor cells on the early development in vitro of reconstructed sheep embryos | |
US20040064845A1 (en) | Method of cloning animals | |
Hosaka et al. | Development of reconstituted embryos derived from transgenic embryonic stem cell nuclei | |
Mousai et al. | Effect of epigenetic modification with trichostatin A and S-adenosylhomocysteine on developmental competence and POU5F1–EGFP expression of interspecies cloned embryos in dog | |
JP2002238562A (en) | Gene recombinant rabbit and method for making the gene recombinant rabbit using somatic nuclear transplantation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2370385 Country of ref document: CA Kind code of ref document: A Ref document number: 2370385 |
|
ENP | Entry into the national phase |
Ref document number: 2000 614372 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2001/010905 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020017013848 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 515159 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000922386 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020017013848 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2000922386 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10019375 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1020017013848 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2000922386 Country of ref document: EP |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) |