JP2002231211A - Separator with collector - Google Patents

Separator with collector

Info

Publication number
JP2002231211A
JP2002231211A JP2001018468A JP2001018468A JP2002231211A JP 2002231211 A JP2002231211 A JP 2002231211A JP 2001018468 A JP2001018468 A JP 2001018468A JP 2001018468 A JP2001018468 A JP 2001018468A JP 2002231211 A JP2002231211 A JP 2002231211A
Authority
JP
Japan
Prior art keywords
separator
negative electrode
electrode
current
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001018468A
Other languages
Japanese (ja)
Inventor
Noriaki Hamaya
典明 浜谷
Tadashi Nakano
端 中野
Satoshi Shima
聡 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001018468A priority Critical patent/JP2002231211A/en
Publication of JP2002231211A publication Critical patent/JP2002231211A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a secondary battery using a compact electrode including no collector support. SOLUTION: An electrode group structure for the secondary battery is characterized in that the collector is stuck to the separator and the power is collected by the whole surface in contact with a negative electrode. A positive electrode is wrapped by using the separator with the collector stuck thereto and the negative electrode is stuck to its outside so as to secure the power collection of the negative electrode. When this separator with the collector stuck thereto is used for the electrode of the conventional type, it is formed into a sandwich power collection system from the collector support existing in the negative electrode and the collector stuck to the separator existing in the external circumferential surface part of the negative electrode so that the power collection effective area is increased to be favorable in drawing out a large current. This results in that the compact positive electrode including no collector support can adopt the similar method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池に関する
ものである。
[0001] The present invention relates to a secondary battery.

【0002】[0002]

【従来の技術】二次電池の構成要素として、正極、負
極、セパレーター、電解液等が挙げられる。従来の技術
では、正極、負極ともに集電支持体に活物質、バインダ
ー、導電材等から成るペーストを塗布し、乾燥後、ロー
ルプレス等で圧延して電極を作製している。この正、負
極間にセパレーターを挟み込み電極群として、電池缶に
挿入し、電解液を注入した後、封缶して二次電池が作製
される。円筒型二次電池の場合には捲回式、角型二次電
池の場合には積層式の電極群を構成している。集電支持
体から出たリード線を正極蓋、負極缶に溶接すること
で、電流が外部回路に取り出される構造になっている。
また、集電支持体を用いない場合、正極・負極の端部な
ど一部分を集電体と接する構造などがある。
2. Description of the Related Art Components of a secondary battery include a positive electrode, a negative electrode, a separator, and an electrolyte. In the related art, a paste made of an active material, a binder, a conductive material, and the like is applied to a current collecting support for both a positive electrode and a negative electrode, dried, and then rolled by a roll press or the like to produce an electrode. A separator is sandwiched between the positive and negative electrodes, inserted into a battery can as an electrode group, injected with an electrolytic solution, and then sealed to produce a secondary battery. In the case of a cylindrical secondary battery, a wound type electrode group is formed, and in the case of a square secondary battery, a stacked electrode group is formed. A current is taken out to an external circuit by welding a lead wire coming out of the current collecting support to the positive electrode cover and the negative electrode can.
In the case where a current collecting support is not used, there is a structure in which a portion such as an end of a positive electrode or a negative electrode is in contact with the current collector.

【0003】図9に、従来型の電極群断面図を示す。従
来型の電極群の場合、セパレーター105を有し、正極
101、負極102の内部にある集電支持体からリード
線103と104が出た構造になっている。
FIG. 9 shows a sectional view of a conventional electrode group. In the case of a conventional electrode group, a structure is provided in which a separator 105 is provided and lead wires 103 and 104 are protruded from a current collecting support inside the positive electrode 101 and the negative electrode 102.

【0004】[0004]

【発明が解決しようとする課題】集電支持体を含有しな
い正極や負極を二次電池に使用する場合には、何等かの
方法で正、負極に集電体を設ける必要がある。たとえ
ば、集電支持体を含有しない成形体や焼結体を負極とし
使用する場合、これらの負極の集電方法としては、負極
外周部を集電体で包み込み、集電体から伸びたリード線
を負極缶に溶接する手法が挙げられる。この場合、負極
外周部を集電体で包み込むと、集電体分の体積空間が出
来る。角形電池のように、負極を多数使用する場合に
は、負極1枚毎にこのような集電方法を取ることにな
り、集電体による体積空間ロスが増えることになる。高
容量の二次電池を作製する場合、不利になる。
When a positive electrode or a negative electrode containing no current-collecting support is used for a secondary battery, it is necessary to provide a current collector on the positive and negative electrodes by some method. For example, when a molded body or sintered body that does not contain a current collecting support is used as a negative electrode, a method for collecting the negative electrode is to enclose the outer periphery of the negative electrode with a current collector and extend a lead wire extending from the current collector. To the negative electrode can. In this case, when the outer periphery of the negative electrode is wrapped with the current collector, a volume space for the current collector is formed. When a large number of negative electrodes are used as in a prismatic battery, such a current collecting method is employed for each negative electrode, and the volume space loss due to the current collector increases. This is disadvantageous when producing a high capacity secondary battery.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明はセパレーターに集電体を貼り付け、負極と
接する面全体で集電を取ることを特徴とする二次電池の
電極群構造を提供する。集電体の付着したセパレーター
を使い正極を包み込み、その外側に負極を付着させるこ
とで負極の集電が確保される。さらに、この集電体の貼
り付いたセパレーターを従来型の電極に用いる場合に
は、負極内部に存在する集電支持体と負極外周面部にあ
るセパレーターに付着した集電体からのサンドイッチ集
電方式となり、大電流を取り出す場合、集電有効面積が
増えて有利になる。これらのことは、集電支持体を含有
しない成形体正極に関しても同様な方式を採用すること
ができる。
According to the present invention, there is provided an electrode group structure for a secondary battery, wherein a current collector is attached to a separator and current is collected over the entire surface in contact with the negative electrode. I will provide a. The current collector of the negative electrode is secured by wrapping the positive electrode using a separator to which the current collector is attached and attaching the negative electrode to the outside of the positive electrode. Furthermore, when the separator with the current collector attached thereto is used for a conventional electrode, a sandwich current collection method is used in which the current collector is attached to the current collector support existing inside the negative electrode and the current collector attached to the separator on the outer peripheral surface of the negative electrode. When taking out a large current, the effective current collecting area increases, which is advantageous. For these reasons, a similar method can be adopted for a molded positive electrode that does not contain a current collecting support.

【0006】[0006]

【発明の実施の形態】以下、本発明を図面に示す実施形
態により詳細に説明する。本発明の電極群断面図の例を
図1〜3に示す。図1の電極群では、セパレーター5に
集電体6が貼り付いた構造になっており、その集電体が
集電支持体(導電芯材)を含有しない負極2の面に付着
することにより、負極の集電が確保される。セパレータ
ー5に付着した集電体から伸びたリード線4を示す。図
1には、集電支持体(導電芯材)を含有した正極1と正
極の集電支持体から伸びたリード線3を示す。図2は、
セパレーター5に集電体6が貼り付いた構造になってお
り、その集電体が集電支持体(導電芯材)を含有しない
正極7の面に付着することにより、正極の集電が確保さ
れる。図2には、集電支持体(導電芯材)を含有した負
極8と負極の集電支持体から伸びたリード線9を示す。
図3は、セパレーター5の両面に集電体6が貼り付いた
構造になっており、その集電体が集電支持体(導電芯
材)を含有しない正極7の面と集電支持体(導電芯材)
を含有しない負極2の面に付着することにより、両極の
集電が確保される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments shown in the drawings. Examples of the sectional view of the electrode group of the present invention are shown in FIGS. The electrode group of FIG. 1 has a structure in which a current collector 6 is attached to a separator 5, and the current collector adheres to the surface of the negative electrode 2 which does not include a current collecting support (conductive core material). Thus, current collection of the negative electrode is ensured. The lead wire 4 extending from the current collector attached to the separator 5 is shown. FIG. 1 shows a positive electrode 1 containing a current collecting support (conductive core material) and a lead wire 3 extending from the current collecting support of the positive electrode. FIG.
The current collector 6 is attached to the separator 5, and the current collector adheres to the surface of the positive electrode 7 that does not include the current collecting support (conductive core material), so that the current collection of the positive electrode is ensured. Is done. FIG. 2 shows a negative electrode 8 containing a current collecting support (conductive core material) and a lead wire 9 extending from the current collecting support of the negative electrode.
FIG. 3 shows a structure in which current collectors 6 are attached to both surfaces of a separator 5, and the current collectors are provided on the surface of a positive electrode 7 which does not contain a current collecting support (conductive core material) and a current collecting support ( Conductive core material)
Is attached to the surface of the negative electrode 2 that does not contain, the current collection of both electrodes is secured.

【0007】図4に、セパレーター5に集電体6が付着
した構造図を示す。セパレーターと集電体をプレスする
ことで、集電体付着型セパレーターを作製することがで
きる。本発明で用いる集電体材料は、特に限定されない
が、好ましくは、ニッケル、銅、カーボンなどの導電材
料であり、繊維状、メッシュ状、穴空きシート状等の通
気性を有するものを用いる。集電材料の使用量は、集電
を必要とする電極面積分程度が必要である。本発明で用
いるセパレーターは、特に限定されないが、ポリアミ
ド、ポリプロピレン、ナイロンなどの不織布等が用いら
れる。また、セパレーターの厚みに関しては、プレスに
より集電体がプレス面と反対側に突き出て絶縁が破壊す
ることのない厚みであればよい。プレスにより孔の隙間
にセパレーターが食い込む形でセパレーターと集電体と
が付着する。集電体とセパレーターの付着性を良くする
ために、接着剤などで集電体とセパレーターを仮接着し
た後、プレスして付着させてもよい。また、プレス前の
セパレーター厚みと集電体厚みの総厚みが、プレスする
ことにより薄くできることが特徴である。また、本発明
は、集電体をセパレーターの片面、又は両面、あるいは
部分的に付着させてもよい。
FIG. 4 shows a structural diagram in which a current collector 6 is attached to a separator 5. By pressing the separator and the current collector, a current collector-attached separator can be produced. The current collector material used in the present invention is not particularly limited, but is preferably a conductive material such as nickel, copper, or carbon, and has air permeability such as fibrous, mesh, or perforated sheet. The amount of the current collecting material used needs to be about the area of the electrode that requires current collection. The separator used in the present invention is not particularly limited, but nonwoven fabrics such as polyamide, polypropylene, and nylon are used. Further, the thickness of the separator may be any thickness as long as the current collector does not protrude to the side opposite to the press surface by pressing and the insulation is not broken. The separator and the current collector adhere to each other in such a manner that the separator bites into the gap between the holes by pressing. In order to improve the adhesion between the current collector and the separator, the current collector and the separator may be temporarily adhered with an adhesive or the like, and then pressed and adhered. Further, it is characterized in that the total thickness of the separator thickness and the current collector thickness before pressing can be reduced by pressing. In the present invention, the current collector may be attached to one side, both sides, or a part of the separator.

【0008】集電支持体を含有しない円柱状、板状負極
に集電体付きセパレーターを適用した場合の電極群構成
図を図5と図6に示す。図5の円筒型電極群平面図にお
いて、中空円筒型正極の内周側にセパレーター13、そ
の内側に円柱状の負極12が位置する構造になってい
る。集電体はセパレーターの負極側に貼り付いている。
正極14は、電池缶11に接することで集電が確保され
る。負極はセパレーターに貼り付いている集電体が、負
極外周面に付着することで集電が可能となる。
[0008] Figs. 5 and 6 show the configuration of an electrode group in a case where a separator with a current collector is applied to a columnar or plate-shaped negative electrode containing no current collecting support. In the plan view of the cylindrical electrode group shown in FIG. 5, the separator 13 is located on the inner peripheral side of the hollow cylindrical positive electrode, and the columnar negative electrode 12 is located inside the separator 13. The current collector is attached to the negative electrode side of the separator.
When the positive electrode 14 is in contact with the battery can 11, current collection is secured. As for the negative electrode, the current collector attached to the separator adheres to the outer peripheral surface of the negative electrode, so that the current can be collected.

【0009】また、図6角型電極群断面図において、板
状電極を用いた正、負極積層タイプの場合、最外部負極
22Aの片面は電池缶21に接していて、もう一方の片
面がセパレーター23に付着した集電体に接することに
より集電が確保される。内部に位置する負極22Bにつ
いては、正極を包み込んだセパレーターの負極側に付着
した集電体が、負極22Aの両面に接触した形で集電が
確保される。なお、外部負極22Aと内部負極22Bは
セパレーター23に付着している集電体により、電気的
導通性が確保される。なお、図6は、集電支持体を含有
した正極24と正極のリード線25も示す。
In the sectional view of the hexagonal electrode group shown in FIG. 6, in the case of a positive / negative electrode type using plate electrodes, one surface of the outermost negative electrode 22A is in contact with the battery can 21 and the other surface is a separator. Current collection is ensured by contacting the current collector attached to 23. As for the negative electrode 22B located inside, current collection is ensured in such a manner that the current collector attached to the negative electrode side of the separator enclosing the positive electrode contacts both surfaces of the negative electrode 22A. The external negative electrode 22 </ b> A and the internal negative electrode 22 </ b> B ensure electrical conductivity by the current collector attached to the separator 23. FIG. 6 also shows a positive electrode 24 containing a current collecting support and a positive electrode lead wire 25.

【0010】図5では、円筒状電極群の場合の中心に負
極外周部に正極が配置した図を示したが、円柱状の正極
が中心部にきて、その外周部に中空円筒型負極が配置さ
れた電極群や、さらにその外周部に正、負極が配置され
た正負極多層構造の円筒状電極群にも集電体付着型セパ
レーターが適用可能である。また、板状電極の場合、正
極2枚、負極3枚の電極群を例として示したが、さらに
多くの正負極を使用した多層電極群にも集電体付着型セ
パレーターが適用可能である。
FIG. 5 shows a case in which the positive electrode is disposed at the outer periphery of the negative electrode at the center in the case of the cylindrical electrode group. However, a cylindrical positive electrode comes to the center and a hollow cylindrical negative electrode is provided at the outer periphery. The collector-attached separator can be applied to the arranged electrode group, and further to a cylindrical electrode group having a positive / negative electrode multilayer structure in which positive and negative electrodes are arranged on the outer periphery thereof. In the case of a plate-like electrode, an electrode group having two positive electrodes and three negative electrodes has been described as an example. However, a collector-attached separator can be applied to a multilayer electrode group using more positive and negative electrodes.

【0011】さらに、この応用例として、集電支持体を
有する従来型電極に集電体付着型セパレーターを適用し
た場合の角型電極群構成図を図7に示す。電極内部と電
極外部からの集電が確保されるため、集電効率が向上す
る。図7は、集電支持体を含有した負極31と負極リー
ド線32を示す。高率放電特性を向上させるための改良
策として、円筒型電池の捲回式電極群や角型電池の積層
電極群に適用が可能である。
Further, as an application example, FIG. 7 shows a configuration diagram of a square electrode group when a collector-attached separator is applied to a conventional electrode having a current-collecting support. Since current collection from inside the electrode and from outside the electrode is ensured, current collection efficiency is improved. FIG. 7 shows a negative electrode 31 and a negative electrode lead 32 containing a current collecting support. As an improvement for improving the high rate discharge characteristics, the present invention can be applied to a wound electrode group of a cylindrical battery and a laminated electrode group of a square battery.

【0012】[0012]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれに限定されるものではない。 実施例1 (集電支持体を含有しない角板成形体電極の作製)高周
波溶解炉にて製造された水素吸蔵合金インゴット(La
63重量%とCe7重量%とPr22重量%とNd8重
量%との合計を原子比1.0として、Niを3.75、
Coを0.75、Mnを0.20、Alを0.30)
を、アルゴン中で熱処理し、均一な水素吸蔵合金インゴ
ットを準備した。その合金インゴットを窒素雰囲気中で
粗粉砕した。更に、ブラウンミルで1mm以下になるよ
うに粉砕し、ジェットミル用の原料を得た。更に本発明
では、ジェットミルによりガス圧5.8kgf/cm2、窒素
ガス雰囲気下で水素吸蔵合金を乾式粉砕し、平均粒径6
μm、粒度分布幅1〜30μmの水素吸蔵合金微粉末を
得た。次に、粉砕された微粉末を金型に入れ、成形圧力
6.0ton/cm2で縦幅20mm、横幅10mm、厚み
0.5mmの角板成形体を作製した。成形体の嵩密度は
5.5g/cm3である。この水素吸蔵合金多孔質角板成形
体をポリビニルアルコール5重量%水溶液の中に入れ、
一定時間脱気し、24時間浸漬させて十分にバインダー
水溶液が成形体内部に浸透したことを確認した後、取り
出して真空乾燥させた。バインダー含浸量(固形分)は
成形体重量の約0.3重量%である。この多孔質角板成
形体電極を3枚作製した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Example 1 (Preparation of square plate electrode containing no current collecting support) Hydrogen storage alloy ingot (La)
Assuming that the total of 63% by weight, 7% by weight of Ce, 22% by weight of Pr, and 8% by weight of Nd is an atomic ratio of 1.0, Ni is 3.75;
0.75 for Co, 0.20 for Mn, 0.30 for Al)
Was heat-treated in argon to prepare a uniform hydrogen storage alloy ingot. The alloy ingot was coarsely pulverized in a nitrogen atmosphere. Further, the mixture was pulverized to a size of 1 mm or less with a brown mill to obtain a raw material for a jet mill. Further, in the present invention, the hydrogen storage alloy is dry-pulverized by a jet mill under a gas pressure of 5.8 kgf / cm 2 and a nitrogen gas atmosphere to obtain an average particle diameter of 6 μm.
A hydrogen storage alloy fine powder having a particle size distribution of 1 to 30 μm was obtained. Next, the pulverized fine powder was put in a mold, and a square plate molded body having a vertical width of 20 mm, a horizontal width of 10 mm, and a thickness of 0.5 mm was produced at a molding pressure of 6.0 ton / cm 2 . The bulk density of the molded body is 5.5 g / cm 3 . This hydrogen storage alloy porous square plate compact is put into a 5% by weight aqueous solution of polyvinyl alcohol,
After degassing for a certain period of time and immersing for 24 hours to confirm that the aqueous binder solution had sufficiently penetrated into the inside of the molded product, the molded product was taken out and dried under vacuum. The binder impregnation amount (solid content) is about 0.3% by weight of the molded body weight. Three porous square plate electrodes were produced.

【0013】(集電支持体を含有する正極の作製)次
に、市販の水酸化ニッケル粉と一酸化コバルト粉を重量
比で9:1になるように調合して、Vミキサーで粉体混
合を30分行った後、1%メチルセルロース水溶液と共
によく混練して、ニッケルリード線付きの縦幅20m
m、横幅10mm、厚み1.7mmの発泡ニッケル集電
支持体に塗着させ乾燥により水分を除去した後、プレス
成形して厚み1.2mmの正極を2枚作製した。集電支
持体を含有した正極の電極容量密度は約600mAh/cm3
になるため、正極1枚あたりの設計容量は約144mA
hである。
(Preparation of Positive Electrode Containing Current-Supporting Support) Next, commercially available nickel hydroxide powder and cobalt monoxide powder were mixed at a weight ratio of 9: 1, and the powder was mixed with a V mixer. After 30 minutes, the mixture is well kneaded with a 1% aqueous solution of methylcellulose and has a vertical width of 20 m with a nickel lead wire.
m, a width of 10 mm and a thickness of 1.7 mm were applied to a foamed nickel current collector, dried to remove moisture, and then press-molded to produce two 1.2 mm-thick positive electrodes. The electrode capacity density of the positive electrode containing the current collecting support is about 600 mAh / cm 3
Therefore, the design capacity per positive electrode is about 144 mA
h.

【0014】(集電体付きセパレーターの作製)次に、
縦幅50mm、横幅15mm、厚み0.23mmのポリ
プロピレン製セパレーターと、縦幅42mm、横幅10
mm、厚み0.18mmのニッケルメッシュ(#10
0)を重ね合わせた状態で、プレス圧力6ton/cm2でプ
レスし、ニッケルメッシュとセパレーターを付着させ
た。プレス後の厚みは0.17mmであり、プレス前の
セパレーター+ニッケルメッシュ厚み0.41mmに対
し極端に薄くなることがわかった。また、プレスにより
セパレーターの一部がメッシュ穴部分に食い込むこと
で、付着性が良くなることがわかった。マイクロスコー
プによる表面観察を行った結果、セパレーターとニッケ
ルメッシュがプレスにより潰れた状態になっていること
を確認した。
(Preparation of separator with current collector)
A polypropylene separator having a width of 50 mm, a width of 15 mm and a thickness of 0.23 mm, a width of 42 mm and a width of 10
mm, 0.18 mm thick nickel mesh (# 10
In a state where 0) was overlapped, pressing was performed at a pressing pressure of 6 ton / cm 2 to attach a nickel mesh and a separator. It was found that the thickness after pressing was 0.17 mm, which was extremely thin with respect to the separator plus nickel mesh thickness of 0.41 mm before pressing. In addition, it was found that the adhesion was improved by part of the separator biting into the mesh holes by pressing. As a result of surface observation using a microscope, it was confirmed that the separator and the nickel mesh were crushed by pressing.

【0015】(角形密閉電池の作製)この集電体付着型
セパレーターの集電体付着部が外周側にくるようにして
二つ折りにし、正極を包み込んだ。次に、内寸法で深さ
25mm、横幅12mm、厚み幅4.8mmの角形状の
電池缶を準備した。この中に、上記集電体付着型セパレ
ーターで包み込んだ正極2枚と角板成形体3枚を挿入し
た(図6の角型電極群構造)。正極の設計容量は、28
8mAhである。この時、負極厚みが1.5mm、正極
厚みが3.08mm(集電体付きセパレーター含む)で
あり、電極群の総厚みが4.58mmとなり、電池缶内
に容易に挿入可能であった。電池缶にはまだ厚み方向で
0.22mmの余剰空間が存在するため、その分、正極
あるいは負極厚みを厚くすることが可能である。正極あ
るいは負極厚みを厚くできるということは、その分電池
容量、あるいは電池リザーブを高めることが可能とな
る。7規定の苛性カリ電解液を電池缶に注入した後、電
池の密閉化を計り角形密閉電池を作製した。この電池を
A(設計容量288mAh)とする。
(Preparation of Square Sealed Battery) The current collector-attached separator was folded in two such that the current collector-attached portion was on the outer peripheral side, and the positive electrode was wrapped. Next, a rectangular battery can having an inner size of 25 mm in depth, 12 mm in width, and 4.8 mm in thickness was prepared. Two positive electrodes wrapped with the current collector-attached separator and three square plate molded bodies were inserted therein (square electrode group structure in FIG. 6). The design capacity of the positive electrode is 28
8 mAh. At this time, the thickness of the negative electrode was 1.5 mm, the thickness of the positive electrode was 3.08 mm (including the separator with a current collector), and the total thickness of the electrode group was 4.58 mm, so that the electrode group could be easily inserted into the battery can. Since the battery can still has an extra space of 0.22 mm in the thickness direction, the thickness of the positive electrode or the negative electrode can be increased accordingly. The fact that the thickness of the positive electrode or the negative electrode can be increased allows the battery capacity or the battery reserve to be increased accordingly. After injecting 7N caustic potash electrolyte into the battery can, the battery was sealed to produce a square sealed battery. This battery is assumed to be A (design capacity: 288 mAh).

【0016】比較例1 負極について、実施例1と同様の縦幅20mm、横幅1
0mm、厚み0.5mmの角板成形体を3枚準備した。
正極についても、実施例1と同様のものを2枚準備し
た。次に、縦幅50mm、横幅15mm、厚み0.23
mmのポリプロピレン製セパレーターを二つ折りにし正
極を包み込み、実施例1同様に、正極2枚と従来型負極
電極3枚構造の電極群を電池缶に挿入した。ここで、負
極の集電方法は、電池缶底に繊維状のニッケルを薄く敷
き、電極群を挿入した時に、負極の一端が繊維状のニッ
ケルに接触するようにした。この負極端部集電方式によ
る角型電極群断面図を図8に示す。図8は、電池缶4
1、集電支持体を含有していない負極42A、42B、
セパレーター43、集電支持体を含有した正極44、正
極リード線45、負極端部の集電体46を示す。負極厚
みが1.5mm、正極厚みが3.32mm(セパレータ
ー含む)であり、電極群としての総厚みが4.82mm
となり電池缶への挿入は可能であった。但し、実施例1
で示したような電池缶の厚み方向に余分な空間はできな
かった。7規定の苛性カリ電解液を電池缶に注入した
後、電池の密閉化を計り角形密閉電池を作製した。この
電池をB(設計容量288mAh)とする。
Comparative Example 1 The negative electrode was the same as in Example 1 in a width of 20 mm and a width of 1
Three square plate molded bodies having a thickness of 0 mm and a thickness of 0.5 mm were prepared.
As the positive electrode, two sheets of the same one as in Example 1 were prepared. Next, a vertical width of 50 mm, a horizontal width of 15 mm, and a thickness of 0.23
A 2 mm-thick polypropylene separator was folded and the positive electrode was wrapped, and the electrode group having two positive electrodes and three conventional negative electrodes was inserted into the battery can in the same manner as in Example 1. Here, the method for collecting the negative electrode was such that one end of the negative electrode was in contact with the fibrous nickel when the electrode group was inserted by laying a thin layer of fibrous nickel on the bottom of the battery can. FIG. 8 shows a cross-sectional view of the square electrode group using the negative electrode end current collecting method. FIG. 8 shows the battery can 4
1. Negative electrodes 42A and 42B containing no current collecting support,
Shown are a separator 43, a positive electrode 44 containing a current collecting support, a positive electrode lead wire 45, and a current collector 46 at the negative electrode end. The thickness of the negative electrode was 1.5 mm, the thickness of the positive electrode was 3.32 mm (including the separator), and the total thickness of the electrode group was 4.82 mm.
And insertion into the battery can was possible. However, Embodiment 1
No extra space was created in the thickness direction of the battery can as indicated by. After injecting 7N caustic potash electrolyte into the battery can, the battery was sealed to produce a square sealed battery. This battery is designated as B (design capacity: 288 mAh).

【0017】(電池試験)設計容量288mAhの電池
A、電池Bについて、25℃室温で、充電レート0.2
Cで充電率120%の充電を行い、充電末休止30分
後、放電レート0.2Cで1.0Vカットの充放電を1
00サイクル実施した(充電レート1C=288m
A)。結果を表1に示す。
(Battery Test) For Battery A and Battery B having a designed capacity of 288 mAh, a charge rate of 0.2 at room temperature of 25 ° C.
C at a charge rate of 120%, and 30 minutes after the end of charging, charge / discharge at a discharge rate of 0.2 C and a 1.0 V cut was performed for 1 minute.
00 cycles (charge rate 1C = 288m)
A). Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例1の集電体付着型セパレーターを使
用したニッケル水素二次電池は、初期から設計容量に近
い放電容量が得られ、しかも100サイクル後の容量維
持率((100サイクル目の放電容量/1サイクル目の放
電容量)×100%)も高いのに対し、比較例1の方
は、100サイクル充放電時の放電容量の低下が激し
く、二次電池として満足に機能しなかった。この理由と
して、図8に示した角型電極群構造電池において、最外
部負極42Aは電池缶に直接接触し集電がうまく取れる
のに対し、内部負極42Bは、負極端部集電のみである
ため集電がうまく取れず、負極42Bが機能しないこと
で負極容量が減少し、すなわち電池リザーブの減少に伴
う放電容量のサイクル低下が生じたと考えられる。一
方、実施例1は、セパレーターに付着した集電体が負極
と広い面積で接触し、集電が良好に行われるため、10
0サイクル後の容量維持率が高かったと考えられる。
In the nickel-hydrogen secondary battery using the collector-attached separator of Example 1, a discharge capacity close to the designed capacity was obtained from the beginning, and the capacity retention rate after 100 cycles ((discharge at the 100th cycle) (Capacitance / discharge capacity at the first cycle) × 100%), the discharge capacity of Comparative Example 1 at the time of 100-cycle charge / discharge was drastic, and did not function satisfactorily as a secondary battery. For this reason, in the prismatic electrode group structure battery shown in FIG. 8, the outermost negative electrode 42A is in direct contact with the battery can and current collection can be properly performed, whereas the internal negative electrode 42B is only the negative electrode end current collector. Therefore, it is considered that the current was not collected properly, and the negative electrode 42B did not function, resulting in a decrease in the negative electrode capacity, that is, a decrease in the cycle of the discharge capacity accompanying a decrease in the battery reserve. On the other hand, in Example 1, the current collector adhered to the separator was in contact with the negative electrode over a large area, and the current collection was performed well.
It is considered that the capacity retention rate after 0 cycles was high.

【0020】[0020]

【発明の効果】上述したように、本発明に係る集電体付
着型セパレーターを用いることで、集電支持体を含有し
ない成形体電極を使用した二次電池の作製が可能にな
る。さらに、負極面に集電体が密接することで効率の良
い集電方法が可能となり、充放電サイクルによる放電容
量低下の少ない二次電池が提供できる。
As described above, by using the collector-attached separator according to the present invention, it is possible to manufacture a secondary battery using a molded electrode containing no current-collecting support. Furthermore, an efficient current collection method becomes possible by bringing the current collector into close contact with the negative electrode surface, and a secondary battery with a small decrease in discharge capacity due to charge and discharge cycles can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極群断面図を示す。FIG. 1 shows a sectional view of an electrode group of the present invention.

【図2】本発明の電極群断面図を示す。FIG. 2 shows a sectional view of an electrode group according to the present invention.

【図3】本発明の電極群断面図を示す。FIG. 3 shows a sectional view of an electrode group of the present invention.

【図4】セパレーター5に集電体6が貼り付いた構造図
を示す。
FIG. 4 is a structural view in which a current collector 6 is attached to a separator 5;

【図5】集電支持体を含有しない円柱状負極に集電体付
きセパレーターを適用した場合の円筒型電極群平面図を
示す。
FIG. 5 is a plan view of a cylindrical electrode group when a separator with a current collector is applied to a columnar negative electrode that does not contain a current collecting support.

【図6】集電支持体を含有しない板状負極に集電体付き
セパレーターを適用した場合の角型電極群断面図を示
す。
FIG. 6 is a cross-sectional view of a square electrode group when a separator with a current collector is applied to a plate-shaped negative electrode that does not contain a current collecting support.

【図7】集電支持体を有する従来型電極に集電体付着型
セパレーターを適用した場合の角型電極群構成図を示
す。
FIG. 7 is a configuration diagram of a square electrode group when a collector-attached separator is applied to a conventional electrode having a current-collecting support.

【図8】負極端部集電方式による角型電極群断面図を示
す。
FIG. 8 shows a sectional view of a square electrode group by a negative electrode end current collecting method.

【図9】従来型の電極群断面図を示す。FIG. 9 is a sectional view of a conventional electrode group.

【符号の説明】[Explanation of symbols]

1 集電支持体(導電芯材)を含有した正極 2 集電支持体(導電芯材)を含有していない負極 3 正極の集電支持体から伸びたリード線 4 セパレーターに付着した集電体から伸びたリード
線 5 集電体の付着したセパレーター 6 セパレーターに付着した集電体 7 集電支持体(導電芯材)を含有しない正極 8 集電支持体(導電芯材)を含有した負極 9 負極の集電支持体から伸びたリード線 11 電池缶 12 集電支持体を含有していない負極 13 集電体が付着したセパレーター 14 集電支持体を含有していない正極 21 電池缶 22A 最外部負極 22B 内部に位置する負極 23 集電体が付着したセパレーター 24 集電支持体を含有した正極 25 正極のリード線 31 集電支持体を含有した負極 32 負極リード線 41 電池缶 42A 集電支持体を含有していない最外部負極 42B 集電支持体を含有していない内部負極 43 セパレーター 44 集電支持体を含有した正極44 45 正極リード線 46 負極端部の集電体 101 集電支持体(導電芯材)を含有した正極 102 集電支持体(導電芯材)を含有した負極 103 集電支持体から伸びたリード線 104 集電支持体から伸びたリード線 105 セパレーター
1 Positive electrode containing current collecting support (conductive core material) 2 Negative electrode not containing current collecting support (conductive core material) 3 Lead wire extending from current collecting support of positive electrode 4 Current collector adhered to separator 5 Lead wire extending from 5 Current collector adhered to separator 6 Current collector adhered to separator 7 Positive electrode not containing current collecting support (conductive core material) 8 Negative electrode containing current collecting support (conductive core material) 9 Lead wire extending from the current-collecting support of the negative electrode 11 Battery can 12 Negative electrode without current-collecting support 13 Separator with current collector attached 14 Positive electrode without current-collecting support 21 Battery can 22A Outermost Negative electrode 22B Negative electrode located inside 23 Separator to which current collector is adhered 24 Positive electrode containing current collecting support 25 Lead wire of positive electrode 31 Negative electrode containing current collecting support 32 Negative electrode lead 41 Battery can 42 Outermost negative electrode 42B that does not contain a current collecting support 42B Internal negative electrode 43 that does not contain a current collecting support 43 Separator 44 Positive electrode 44 that contains a current collecting support 44 45 Positive electrode lead wire 46 Current collector 101 at negative electrode end 101 Positive electrode containing current supporting body (conductive core material) 102 Negative electrode containing current collecting support (conductive core material) 103 Lead wire extending from current collecting support 104 Lead wire extending from current collecting support 105 Separator

フロントページの続き (72)発明者 島 聡 福井県武生市北府二丁目1番5号 信越化 学工業株式会社磁性材料研究所内 Fターム(参考) 5H017 AA02 AS02 HH05 5H021 AA02 CC04 EE02 EE21 5H022 AA04 CC12 CC19 CC23 5H028 AA05 CC05 CC08 CC11 EE01Continued on the front page (72) Inventor Satoshi Shima 2-5-1, Kitafu, Takefu-shi, Fukui Prefecture Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory F-term (Reference) 5H017 AA02 AS02 HH05 5H021 AA02 CC04 EE02 EE21 5H022 AA04 CC12 CC19 CC23 5H028 AA05 CC05 CC08 CC11 EE01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 集電体が付着していることを特徴とする
電池用セパレーター。
1. A battery separator to which a current collector is attached.
【請求項2】 上記集電体が、通気性を有する形状の導
電材料から得られた請求項1に記載の電池用セパレータ
ー。
2. The battery separator according to claim 1, wherein the current collector is obtained from a conductive material having a shape having air permeability.
【請求項3】 請求項1または請求項2に記載の集電体
付きセパレーターを使用した二次電池。
3. A secondary battery using the separator with a current collector according to claim 1 or 2.
JP2001018468A 2001-01-26 2001-01-26 Separator with collector Pending JP2002231211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001018468A JP2002231211A (en) 2001-01-26 2001-01-26 Separator with collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001018468A JP2002231211A (en) 2001-01-26 2001-01-26 Separator with collector

Publications (1)

Publication Number Publication Date
JP2002231211A true JP2002231211A (en) 2002-08-16

Family

ID=18884491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001018468A Pending JP2002231211A (en) 2001-01-26 2001-01-26 Separator with collector

Country Status (1)

Country Link
JP (1) JP2002231211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260412A1 (en) * 2021-06-10 2022-12-15 삼성에스디아이주식회사 Electrode, lithium battery comprising same, and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260412A1 (en) * 2021-06-10 2022-12-15 삼성에스디아이주식회사 Electrode, lithium battery comprising same, and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4792505A (en) Electrodes made from mixed silver-silver oxides
JPH09134726A (en) Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
JP2002279964A (en) Alkaline secondary battery and manufacturing method therefor
JP2002231211A (en) Separator with collector
EP1073134A1 (en) Hydrogen absorbing alloy compact for use as the negative electrode of an alkaline rechargeable battery and method of making same
JP2002025604A (en) Alkaline secondary battery
JP3849478B2 (en) Alkaline storage battery and method of manufacturing the same
JP3893856B2 (en) Square alkaline storage battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP2856437B2 (en) Internal stacked battery
US20070077489A1 (en) Positive electrode for an alkaline battery
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JPS638587B2 (en)
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3670800B2 (en) Method for producing hydrogen storage alloy electrode
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP3534723B2 (en) Sodium sulfur secondary battery
JPS61218067A (en) Electrode for alkaline storage battery
JP3742149B2 (en) Alkaline secondary battery
RU2153737C1 (en) Method for manufacture of electrodes of nickel-hydrogen cell
JP2999542B2 (en) Metal-hydrogen alkaline storage battery
CN1079844A (en) Nickel-Hydrogenized compound alkaline battery and manufacture method thereof
JPH08138680A (en) Electrode base plate for battery and manufacture thereof