JP2002226967A - Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same - Google Patents

Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same

Info

Publication number
JP2002226967A
JP2002226967A JP2001300472A JP2001300472A JP2002226967A JP 2002226967 A JP2002226967 A JP 2002226967A JP 2001300472 A JP2001300472 A JP 2001300472A JP 2001300472 A JP2001300472 A JP 2001300472A JP 2002226967 A JP2002226967 A JP 2002226967A
Authority
JP
Japan
Prior art keywords
titanium
vapor deposition
weight
oxide
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001300472A
Other languages
Japanese (ja)
Other versions
JP5008807B2 (en
Inventor
Uwe Anthes
ウヴェ アンテス、
Martin Friz
マルティン フリツ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of JP2002226967A publication Critical patent/JP2002226967A/en
Application granted granted Critical
Publication of JP5008807B2 publication Critical patent/JP5008807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • C09C1/0021Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0015Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2200/00Compositional and structural details of pigments exhibiting interference colours
    • C09C2200/10Interference pigments characterized by the core material
    • C09C2200/102Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C2220/00Methods of preparing the interference pigments
    • C09C2220/20PVD, CVD methods or coating in a gas-phase using a fluidized bed

Abstract

PROBLEM TO BE SOLVED: To provide a vapor deposition material exhibiting excellent melting and evaporation behaviors, for an optical layer having a high refractive index. SOLUTION: The vapor deposition material for producing the high-refractive- index optical layer consisting of titanium oxide, titanium, and lanthanum oxide under reduced pressure is composed of a sintered mixture having a composition represented by TiOx+z(La2O3) (wherein, x is 1.5 to 1.8 and z is 10 to 65 wt.% on the basis of the total weight of the mixture). The mixture is constituted of 19-65 wt.% lanthanum oxide, 33-74% titanium oxide and 2-7 wt.% titanium. By this method, the use of the optical layer composed of this vapor deposition material as an antireflection layer to be formed on a spectacle lens, a lens for optical tool, and an optical element for laser technology and also as a layer having a preset high refractive index and/or optical absorption characteristics and used for a beam splitter, an interference mirror, a luminescence mirror and a heat insulating filter is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、減圧下に酸化チタ
ン、チタンおよび酸化ランタンの高屈折率光学層を製造
するための蒸着材料、およびその蒸着材料を製造する方
法に関する。
The present invention relates to a vapor deposition material for producing a high refractive index optical layer of titanium oxide, titanium and lanthanum oxide under reduced pressure, and a method for producing the vapor deposition material.

【0002】[0002]

【従来の技術】産業、特に光学産業において、保護層と
してまたは光学的機能の目的で、酸化物層が広く用いら
れている。これらは、腐食および機械的損傷に対する保
護として、またはレンズ、鏡、プリズム、対物レンズ等
のような光学要素(素子)および器具の表面の被覆のた
めに役立つ。さらに、反射を強めるまたは弱めるための
高、中および低屈折率光学層を製造するために酸化物層
が用いられる。用途の最も重要な領域は、眼鏡レンズお
よびカメラレンズ、双眼鏡および光学成分、およびレー
ザー技術用光学部材の上の反射防止層の製造である。さ
らなる用途は、例えば干渉鏡、ビーム・スプリッター、
熱フィルターおよび冷光鏡のための特別の屈折率および
/または特定の光学吸収特性を有する層の製造である。
BACKGROUND OF THE INVENTION In the industry, especially in the optical industry, oxide layers are widely used as protective layers or for optical function purposes. They serve as protection against corrosion and mechanical damage, or for coating the surfaces of optical elements and devices such as lenses, mirrors, prisms, objectives and the like. In addition, oxide layers are used to produce high, medium and low refractive index optical layers to enhance or reduce reflection. The most important areas of application are the manufacture of antireflection layers on spectacle and camera lenses, binoculars and optical components, and optical components for laser technology. Further applications are e.g. interferometers, beam splitters,
The production of layers with special refractive index and / or specific optical absorption properties for heat filters and cold light mirrors.

【0003】DE4208811A1は、減圧下で基材
を蒸着被覆することにより高屈折率光学層を製造するた
めの蒸着材料を開示している。この材料は式La2Ti2
7- x(式中、xは0.3〜0.7)で示される化合物
であり、特に、式La2Ti26.5で示される化合物で
ある。このタイプの蒸着材料は、ランタンおよびチタン
の酸化物ならびに金属チタンを、相当する化学量論比で
混合し、高真空にて融点未満で混合物を焼結することに
より製造される。
[0003] DE 4208811 A1 discloses a vapor deposition material for producing a high refractive index optical layer by vapor coating a substrate under reduced pressure. This material has the formula La 2 Ti 2
It is a compound represented by O 7- x (where x is 0.3 to 0.7), particularly a compound represented by the formula La 2 Ti 2 O 6.5 . This type of vapor deposition material is produced by mixing lanthanum and titanium oxides and metallic titanium in corresponding stoichiometric ratios and sintering the mixture at a high vacuum below its melting point.

【0004】独国特許1228489は、減圧下の酸化
物および/または酸化性物質の蒸着により、光学的目的
で、特にガラス基材上に、実質的に可視波長領域におけ
る吸収が無い薄い酸化物層を製造するための方法を開示
している。所望すれば、蒸着は、酸化性雰囲気下に行う
ことができる。イットリウム、ランタンおよびセリウム
を含む希土類からなる群からの一種または二種以上の元
素および/または酸化物に、酸化物および/または酸化
性物質を蒸着する。ここで出発物質は、混合物として、
または互いに離れて蒸発される。用いられる酸化物およ
び/または酸化性物質は、特にチタンおよび/または酸
化チタンである。
DE 1 288 489 discloses a thin oxide layer substantially free of absorption in the visible wavelength range for optical purposes, in particular on glass substrates, by the deposition of oxides and / or oxidizing substances under reduced pressure. Discloses a method for producing. If desired, the deposition can be performed under an oxidizing atmosphere. An oxide and / or oxidizing material is deposited on one or more elements and / or oxides from the group consisting of rare earths including yttrium, lanthanum and cerium. Where the starting materials are as a mixture,
Or evaporated away from each other. The oxides and / or oxidizing substances used are in particular titanium and / or titanium oxide.

【0005】光学屈折率が約2である高屈折率層の製造
のためには、適当な出発材料の選択は制限される。この
目的のために可能な出発材料は、本質的にチタン、ジル
コニウム、ハフニウムおよびタンタルの酸化物、および
これらの混合系である。高屈折率層に好ましい出発材料
は二酸化チタンである。
[0005] For the production of high refractive index layers having an optical refractive index of about 2, the selection of suitable starting materials is limited. Possible starting materials for this purpose are essentially titanium, zirconium, hafnium and tantalum oxides, and mixtures thereof. A preferred starting material for the high refractive index layer is titanium dioxide.

【0006】酸化チタン以外に、従来技術では、さら
に、酸化タンタル、酸化ジルコニウム、酸化ハフニウム
および硫化亜鉛のような化合物、および酸化物混合物、
例えば、酸化ジルコニウムと酸化チタン、酸化チタンと
酸化プラセオジム、および酸化チタンと酸化ランタンを
用いる。
In addition to titanium oxide, the prior art further comprises compounds such as tantalum oxide, zirconium oxide, hafnium oxide and zinc sulfide, and oxide mixtures,
For example, zirconium oxide and titanium oxide, titanium oxide and praseodymium oxide, and titanium oxide and lanthanum oxide are used.

【0007】これらの物質は、例えば、二酸化チタンは
高屈折率を有し、酸化ハフニウムおよび酸化ジルコニウ
ムは低吸収率を有するという利点がある。これらの既知
の物質の不利な点は、激しい気体発生および、二酸化チ
タンの吹き出し(spitting)、酸化タンタルT
25の場合および酸化チタンと酸化プラセオジムとの
混合物の場合の比較的高い吸収率、および酸化ジルコニ
ウム、二酸化ハフニウムおよび酸化ジルコニウムと二酸
化チタンとの混合物の不完全な溶解、また、例えば硫化
亜鉛の場合のような低い硬度である。酸化チタンと酸化
ランタンの混合物の場合、低い吸収率、気体発生が無い
ことおよび吹き出しが無いこと、ならびに比較的良好な
溶解という利点が達成される。しかしながら、このタイ
プの混合物の屈折率は、二酸化チタンおよび硫化亜鉛の
場合よりもかなり低い。実用的加工の観点から、これら
の物質が、さらに互いに比較的近い、高い融点および沸
点を有することも不利である。均一かつ適切な蒸発速度
を確保するために、蒸着材料が、強度の蒸発が開始する
前に完全に溶解する必要がある。この条件は、蒸着被覆
すべき目的物上に均質かつ均一厚さの層が形成され得る
ために必要である。しかしながら、これは、ジルコニウ
ムおよびハフニウムの酸化物のための実用的使用条件下
の場合には当てはまらず、チタン/ジルコニウム混合酸
化物系の場合に当てはまる。前記物質は、典型的加工条
件下では溶融しないまたは完全には溶融せず、全体が蒸
発することが困難であり、蒸着層において厚さの変化が
生じる。従来技術の目的は、適当な添加剤により基本材
料の融点を低くすることであり、これらの添加剤は、さ
らに、得られる層の屈折率を特定の制限内で変化させ、
屈折率を特定の値に設定するのに役立つ。この目的のた
めの適当な添加剤の選択は、吸収性を無くするという要
求により制限される。従って、対応する添加剤として適
当な唯一の金属酸化物は、可視スペクトル領域から近紫
外線波長領域、すなわち、約320nmまでにおいて吸
収を示さないものである。
These materials have the advantage that, for example, titanium dioxide has a high refractive index and hafnium oxide and zirconium oxide have a low absorption. Disadvantages of these known materials are vigorous gas evolution and titanium dioxide spitting, tantalum oxide T
relatively high absorption in the case of a 2 O 5 and in the case of mixtures of titanium oxide and praseodymium oxide, and incomplete dissolution of zirconium oxide, hafnium dioxide and mixtures of zirconium oxide and titanium dioxide; Low hardness as in the case of In the case of a mixture of titanium oxide and lanthanum oxide, the advantages of low absorption, no gas evolution and no blowing, and relatively good dissolution are achieved. However, the refractive index of this type of mixture is much lower than for titanium dioxide and zinc sulfide. From the point of view of practical processing, it is also disadvantageous that these substances have a high melting point and a boiling point, which are relatively close to each other. In order to ensure a uniform and adequate evaporation rate, the deposited material must be completely dissolved before strong evaporation starts. This condition is necessary so that a layer of uniform and uniform thickness can be formed on the object to be coated by vapor deposition. However, this is not the case under practical use conditions for zirconium and hafnium oxides, but is the case for titanium / zirconium mixed oxide systems. The materials do not melt or do not completely melt under typical processing conditions, are difficult to evaporate entirely, and cause thickness changes in the deposited layer. The purpose of the prior art is to lower the melting point of the base material with suitable additives, which further change the refractive index of the resulting layer within certain limits,
Helps to set the refractive index to a specific value. The choice of an appropriate additive for this purpose is limited by the need to eliminate absorption. Accordingly, the only metal oxides suitable as corresponding additives are those that do not absorb in the visible spectral region to the near ultraviolet wavelength region, ie, up to about 320 nm.

【0008】出発材料としては、前記酸化物は、可視波
長領域において吸収を示さないかわずかな吸収しか示さ
ず、これは対応する光学的用途への基本的必須事項であ
る。しかしながら、酸素欠損、および酸素含量に関して
亜当量の酸化チタン層の付着が、高真空蒸発中に起こ
る。これは、特別の予防手段を用いることなく、これら
の材料の真空蒸発により薄い層を製造すると、可視領域
において高い吸収を有する層が得られることを意味す
る。前記独国特許1228489によると、この問題
は、5×10-5<5×10-4mbarの特定の残留酸素
圧、すなわち酸化性雰囲気を確立して、減圧下に蒸発を
行うことにより解決される。この問題を解決するための
もう一つの可能性は、得られる層を、酸素または空気中
における後調整に付することにある。
As starting materials, the oxides show no or only slight absorption in the visible wavelength range, which is a fundamental requirement for the corresponding optical applications. However, oxygen deficiency and the deposition of sub-equivalent titanium oxide layers with respect to oxygen content occur during high vacuum evaporation. This means that, without using special precautionary measures, the production of thin layers by vacuum evaporation of these materials results in layers having a high absorption in the visible region. According to German Patent 1,288,489, this problem is solved by establishing a specific residual oxygen pressure of 5 × 10 −5 <5 × 10 −4 mbar, ie an oxidizing atmosphere, and performing the evaporation under reduced pressure. You. Another possibility for solving this problem consists in subjecting the resulting layer to postconditioning in oxygen or air.

【0009】前記問題が添加剤の適当な選択または対応
する物質混合物の選択により解決できても、混合系の使
用は、真空蒸着技術においてそれ自体好ましくない。そ
の理由は、混合系は通常調和しないで蒸発する、すなわ
ち、蒸発プロセス中に組成を変えること、および付着層
の組成も対応して変化することである。これは、混合系
が、材料を変化させることなく蒸発および再凝縮する別
々の化学化合物からなる場合、避けることができる。
[0009] Even though the above problems can be solved by the proper choice of additives or the selection of the corresponding substance mixtures, the use of mixed systems is itself not preferred in the vacuum deposition technique. The reason is that the mixed system usually evaporates inconsistently, ie changing the composition during the evaporation process, and the composition of the deposited layer correspondingly. This can be avoided if the mixed system consists of separate chemical compounds that evaporate and re-condense without changing the material.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、最も
高い可能な屈折率および低い吸収率を有する光学層をそ
れから製造することができ、蒸着材料が非常に優れた溶
融および蒸発挙動を示し、気体発生または噴出しを実質
的に起こさず蒸発させることができる、最初に述べたタ
イプの蒸着材料を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical layer having the highest possible refractive index and low absorption, from which the deposited material exhibits very good melting and evaporation behavior. It is an object of the present invention to provide a vapor deposition material of the type mentioned at the outset, which can be evaporated substantially without gas generation or ejection.

【0011】[0011]

【発明を解決するための手段】この目的は、材料が組成
TiOx+z(La23)(xは1.5〜1.8、zは
混合物の合計重量を基準に10〜65重量%)を有する
焼結混合物である発明により達成される。
SUMMARY OF THE INVENTION The object of the present invention is to make the material TiO x + z (La 2 O 3 ) (x is 1.5 to 1.8, z is 10 to 65% by weight based on the total weight of the mixture). This is achieved by the invention which is a sintered mixture having

【0012】[0012]

【発明の実施の形態】本発明の一つの実施態様におい
て、混合物は、酸化ランタン19〜65重量%、酸化チ
タン33〜74重量%およびチタン2〜7重量%を含
む。本発明の特定の実施態様において、混合物は、酸化
ランタン58.9重量%、酸化チタン37.9重量%お
よびチタン3.2重量%からなる。混合物が、酸化ラン
タン63.2重量%、酸化チタン33.9重量%および
チタン2.9重量%からなる実施態様が同様に提案され
る。なお、酸化チタンの下限は38重量%とすることも
できる。
DETAILED DESCRIPTION OF THE INVENTION In one embodiment of the present invention, the mixture comprises 19-65% by weight lanthanum oxide, 33-74% by weight titanium oxide and 2-7% by weight titanium. In a particular embodiment of the invention, the mixture consists of 58.9% by weight of lanthanum oxide, 37.9% by weight of titanium oxide and 3.2% by weight of titanium. An embodiment is likewise proposed in which the mixture consists of 63.2% by weight of lanthanum oxide, 33.9% by weight of titanium oxide and 2.9% by weight of titanium. In addition, the lower limit of titanium oxide can be set to 38% by weight.

【0013】本発明の一つの実施態様において、酸化チ
タンTiO2とチタンとの比が、xが1.5〜1.8の
酸化チタンTiOx中の酸素に関する化学量論を決め
る。酸化チタン:酸化ランタン重量比を、酸化ランタン
を、酸化チタンとチタンの混合物と混合することにより
決めることができる。減圧下に焼結することにより、酸
素に関する混合物の化学量論が変化しないことが確保さ
れる。本発明の蒸着材料は、正確な化学量論組成を有す
る基本化合物チタン酸ランタンと比較して、前記式定義
内の酸素欠損を有する。本発明による蒸着材料中の酸素
欠損の意図的確立のために、減圧下の蒸発中に溶融蒸着
材料の望ましくない吹き出しにつながる酸素のさらなる
放出が、まず生じる。次に、酸素欠損の選択範囲は、真
空蒸発法における通常の加工条件下において吸収を示さ
ない層が自動的に形成されるようなものである。研究に
より、比較的少ない酸化ランタンの添加量でも、溶融お
よび蒸発中の挙動を改良し得ることが示された。本発明
の混合物は、酸素に関して最適の化学量論を設定するこ
とにより、電子線蒸発器において、吹き出しおよび気体
の発生を実質的に起こすことなく、溶融および蒸発させ
ることができる。ここで、得られる層の光学特性が、減
圧下の蒸発中に、残留酸素圧の変化により実質的に影響
を受けないことがわかる。これに対して、酸化チタン
(IV)TiO2の場合および、TiO1.7、Ti35
たはTi47のような亜酸化チタンの場合にも、溶融中
の吹き出しは完全に防止することはできない。本発明の
蒸着材料を用いて製造した層の屈折率は、純粋な酸化チ
タン層の場合よりもわずかに低い。特に、屈折率は、酸
化タンタル、酸化ジルコニウム、酸化ハフニウムまたは
酸化物の混合物、例えば、酸化ジルコニウムと酸化チタ
ン、酸化チタンと酸化プラセオジム、および酸化チタン
と酸化ランタンの層の場合、はっきりと高い。優れた溶
融挙動は、蒸着材料の蒸発のために平坦な溶融表面が確
立され維持されることを可能にする。これにより、被覆
すべき基材上に均一な再生産可能の層厚分布を設定する
ことが可能となる。これは、特に、例えば酸化ハフニウ
ム、酸化ジルコニウムまたは酸化ジルコニウムと酸化チ
タンとの混合物のような溶融挙動の悪い材料を用いる場
合、非常に困難である、または不可能である。
In one embodiment of the present invention, the ratio of titanium oxide TiO 2 to titanium determines the stoichiometry for oxygen in titanium oxide TiO x where x is between 1.5 and 1.8. The weight ratio of titanium oxide: lanthanum oxide can be determined by mixing lanthanum oxide with a mixture of titanium oxide and titanium. Sintering under reduced pressure ensures that the stoichiometry of the mixture with respect to oxygen does not change. The vapor deposition material of the present invention has an oxygen deficiency within the above formula definition as compared to the base compound lanthanum titanate having the correct stoichiometric composition. Due to the deliberate establishment of oxygen vacancies in the deposition material according to the invention, a further release of oxygen, which during evaporation under reduced pressure leads to an undesired blowing of the molten deposition material, firstly takes place. Next, the selection range of oxygen deficiency is such that a layer that does not show absorption under normal processing conditions in vacuum evaporation is automatically formed. Studies have shown that relatively low loadings of lanthanum oxide can improve the behavior during melting and evaporation. By setting the optimal stoichiometry with respect to oxygen, the mixture of the present invention can be melted and vaporized in an electron beam evaporator without substantial blowing and gas generation. Here it can be seen that the optical properties of the resulting layer are not substantially affected by changes in the residual oxygen pressure during evaporation under reduced pressure. On the other hand, in the case of titanium oxide (IV) TiO 2 and also in the case of titanium suboxide such as TiO 1.7 , Ti 3 O 5 or Ti 4 O 7 , blowing during melting cannot be completely prevented. Can not. The refractive index of the layers produced using the vapor deposition material of the present invention is slightly lower than for a pure titanium oxide layer. In particular, the index of refraction is significantly higher for layers of tantalum oxide, zirconium oxide, hafnium oxide or oxides, for example layers of zirconium oxide and titanium oxide, titanium oxide and praseodymium oxide, and titanium oxide and lanthanum oxide. Excellent melting behavior allows a flat melting surface to be established and maintained for evaporation of the deposited material. This makes it possible to set a uniform reproducible layer thickness distribution on the substrate to be coated. This is very difficult or impossible, especially when using materials with poor melting behavior, for example hafnium oxide, zirconium oxide or a mixture of zirconium oxide and titanium oxide.

【0014】本発明のさらなる目的は、吹き出しおよび
気体発生を起こすこと無く、高屈折率の光学層に転化す
ることができる蒸着材料の製造を可能にする方法を提供
することにある。これは、組成TiOx+z(La
23)(xは1.5〜1.8、zは混合物の合計重量を
基準に10〜65重量%)を有する酸化チタン、チタン
および酸化ランタンの混合物を均一に混合し、粒径が1
〜4mmになるように造粒または錠剤化し、続いて減圧
下に焼結する方法により達成される。この方法を実施す
る場合、焼結は、1500〜1600℃の温度で1×1
-4mbarの減圧下に5.5〜6.5時間かけて行
う。
It is a further object of the present invention to provide a method which allows the production of vapor deposited materials which can be converted into high refractive index optical layers without blowing and gassing. This is because the composition TiO x + z (La
2 O 3 ) (x is 1.5 to 1.8, z is 10 to 65% by weight based on the total weight of the mixture), and a mixture of titanium oxide, titanium and lanthanum oxide is uniformly mixed, and the particle size is 1
This is achieved by granulating or tableting to 44 mm, followed by sintering under reduced pressure. When performing this method, sintering is performed at a temperature of 1500-1600 ° C. and 1 × 1.
It is carried out under reduced pressure of 0 -4 mbar for 5.5 to 6.5 hours.

【0015】さらなる目的は、屈折率が高く蒸着材料か
らの吸収が実質的に無い光学層の製造を可能にする方法
を提供することである。これは、被覆すべき基材を清浄
し、乾燥し、蒸着ユニット中の基材ホルダー上に設置
し、蒸着ユニットを1×10-5mbarに減圧し、基材
を280〜310℃に加熱し、1〜2×10-4mbar
の圧力が達成されるまで酸素を蒸着ユニット内に入れ、
スクリーンにより密封された蒸着ユニット内の電子線蒸
発器中で蒸着材料を溶融し、約2200〜2300℃の
その蒸発温度に加熱し、スクリーンを開けた後、基材を
蒸着材料で予め決められた厚さまで被覆する方法により
達成される。500nmの波長において屈折率が2.1
5〜2.25、特に2.20である蒸着材料の光学層が
得られる。このタイプの光学層は普及しており、眼鏡レ
ンズ、光学用具用レンズ、レーザー技術用光学成分の上
の反射防止層として、および、ビーム・スプリッター、
干渉鏡、冷光鏡および防熱フィルター用の予め設定され
た高い屈折率および/または光学吸収特性を有する層と
して用いられる。
A further object is to provide a method which allows the production of an optical layer having a high refractive index and substantially no absorption from the deposited material. This involves cleaning the substrate to be coated, drying it, placing it on a substrate holder in a deposition unit, depressurizing the deposition unit to 1 × 10 −5 mbar and heating the substrate to 280-310 ° C. , 1-2 × 10 -4 mbar
Oxygen into the deposition unit until a pressure of
The material was melted in an electron beam evaporator in a vapor deposition unit sealed by a screen, heated to its evaporation temperature of about 2200-2300 ° C., and after opening the screen, the substrate was predetermined with the vapor deposition material. Achieved by a method of coating to thickness. A refractive index of 2.1 at a wavelength of 500 nm;
An optical layer of the deposited material of 5 to 2.25, in particular 2.20, is obtained. Optical layers of this type are prevalent, as anti-reflective layers on spectacle lenses, lenses for optical tools, optical components for laser technology, and beam splitters,
Used as a layer with preset high refractive index and / or optical absorption properties for interference mirrors, cold light mirrors and thermal filters.

【0016】本発明の蒸着材料を用いて、強力な接着性
を有し、機械的および化学的影響に特に抵抗性のある均
一層厚の均質薄層を、適当な基材上に製造することがで
きる。前述したように、これらの層は高い屈折率を有
し、通常、近紫外線、すなわち約360nmの波長か
ら、可視領域を越えて約7000nmの近赤外までの波
長領域において高い透過率を有する。これらの光学層
は、可視波長領域において実質的に吸収を示さない。
Using the vapor deposition material of the present invention to produce a homogeneous thin layer of uniform thickness with strong adhesion and particularly resistant to mechanical and chemical influences on a suitable substrate. Can be. As mentioned above, these layers have high refractive indices and typically have high transmittance in the near ultraviolet, that is, in the wavelength range from about 360 nm to near infrared at about 7000 nm beyond the visible range. These optical layers exhibit substantially no absorption in the visible wavelength region.

【0017】[0017]

【実施例】本発明を2つの実施例を参照にさらに詳細に
説明するが、これらの実施例は決して本発明の概念を制
限するものではない。
The invention will be described in more detail with reference to two examples, which are in no way limiting of the inventive concept.

【0018】実施例1 酸化ランタン58.9重量%、酸化チタン37.9重量
%およびチタン3.2重量%の混合物を均質混合し、粒
径約1〜4mmまで造粒し、減圧下に約1500℃で6
時間焼成する。焼成生成物は暗黒色である。
EXAMPLE 1 A mixture of 58.9% by weight of lanthanum oxide, 37.9% by weight of titanium oxide and 3.2% by weight of titanium was mixed homogeneously, granulated to a particle size of about 1 to 4 mm, and reduced under reduced pressure to about 1 to 4 mm. 6 at 1500 ° C
Bake for hours. The calcined product is dark black.

【0019】光学層を製造するために、焼結生成物を、
蒸着ユニット内のモリブデンるつぼに導入し、ユニット
の電子線蒸発器に挿入する。例えば、直径25mmおよ
び厚さ1mmの石英ガラスディスクのような被覆すべき
基材を清浄および乾燥し、蒸着ユニット内の基材ホルダ
ーに設置する。蒸着ユニットは、従来技術から公知のユ
ニットであり、図示もせず詳細にも記載しない。1×1
-5mbarの圧力まで蒸発した後、基材を約300℃
の温度に加熱する。次に、酸素を、1〜2×10-4mb
arの圧力が達成されるまで制御弁を介して蒸着ユニッ
トに入れる。蒸着材料を、電子線蒸発器のスクリーン下
に溶融し、蒸発温度2200℃まで加熱する。この蒸発
温度が達成されると直ぐに、スクリーンを開け、基材を
所望の厚さの光学層で被覆する。冷却後、被覆基材を蒸
着ユニットから取り出す。層の透過率を、分光光度計を
用いて決めた。500nmの波長での屈折率2.20
を、透過率曲線から決めた。層の厚さは267nmであ
った。
To produce an optical layer, the sintered product is
It is introduced into a molybdenum crucible in a vapor deposition unit and inserted into the electron beam evaporator of the unit. For example, a substrate to be coated, such as a quartz glass disk having a diameter of 25 mm and a thickness of 1 mm, is cleaned and dried, and placed on a substrate holder in a vapor deposition unit. The vapor deposition unit is a unit known from the prior art, and is not shown or described in detail. 1x1
After evaporating to a pressure of 0 −5 mbar, the substrate is heated to about 300 ° C.
Heat to a temperature of Next, oxygen was added to 1-2 × 10 −4 mb.
Ar enters the deposition unit via a control valve until a pressure of ar is achieved. The deposition material is melted under the screen of the electron beam evaporator and heated to an evaporation temperature of 2200 ° C. As soon as this evaporation temperature is achieved, the screen is opened and the substrate is coated with the desired thickness of the optical layer. After cooling, the coated substrate is taken out of the vapor deposition unit. The transmittance of the layer was determined using a spectrophotometer. 2.20 refractive index at 500 nm wavelength
Was determined from the transmittance curve. The thickness of the layer was 267 nm.

【0020】実施例2 酸化ランタン63重量%、酸化チタン34重量%および
チタン3重量%の混合物を均質混合し、粒径約1〜4m
mまで造粒し、減圧下に約1500℃で6時間焼成す
る。焼成生成物は暗黒色である。
Example 2 A mixture of 63% by weight of lanthanum oxide, 34% by weight of titanium oxide and 3% by weight of titanium was homogeneously mixed, and the particle size was about 1 to 4 m.
and calcined under reduced pressure at about 1500 ° C. for 6 hours. The calcined product is dark black.

【0021】実施例1に記載の方法と同様の方法により
焼結蒸着材料の光学層を製造した。これらの光学層は、
500nmにおける屈折率が2.16であった。光学層
の厚さは271nmであった。層は、可視領域および9
00nmまでの波長において吸収を示さなかった。
An optical layer of a sintered deposition material was manufactured in the same manner as described in Example 1. These optical layers are
The refractive index at 500 nm was 2.16. The thickness of the optical layer was 271 nm. The layers are visible and 9
It showed no absorption at wavelengths up to 00 nm.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591032596 Frankfurter Str. 250, D−64293 Darmstadt,Fed eral Republic of Ge rmany (72)発明者 アンテス、 ウヴェ ドイツ連邦共和国 64271 ダルムシュタ ット メルク カーゲーアーアー内 (番 地なし) (72)発明者 フリツ、 マルティン ドイツ連邦共和国 64271 ダルムシュタ ット メルク カーゲーアーアー内 (番 地なし) Fターム(参考) 2K009 AA02 CC03 DD03 4K029 BA50 BC07 BD00 CA01 DB05 DB21 EA01  ──────────────────────────────────────────────────続 き Continuation of front page (71) Applicant 591032596 Frankfighter Str. 250, D-64293 Darmstadt, Federal Republic of Germany (72) Inventor, Anthes, Uwe, Germany 64271 Darmstadt Merck Inside Kargaea (no address) (72) Inventor, Fritz, Martin, Germany 64271 Darmstadt Merck Inside the car game arc (No address) F-term (reference) 2K009 AA02 CC03 DD03 4K029 BA50 BC07 BD00 CA01 DB05 DB21 EA01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 減圧下に酸化チタン、チタンおよび酸化
ランタンの高屈折率光学層を製造するための蒸着材料で
あって、この材料は組成TiOx+z(La23)(x
は1.5〜1.8、zは混合物の合計重量を基準に10
〜65重量%)を有する焼結混合物であることを特徴と
する蒸着材料。
1. A deposition material for producing a high refractive index optical layer of titanium oxide, titanium and lanthanum oxide under reduced pressure, wherein the material is composed of TiO x + z (La 2 O 3 ) (x
Is 1.5 to 1.8, and z is 10 based on the total weight of the mixture.
(65% by weight).
【請求項2】 混合物が、酸化ランタン19〜65重量
%、酸化チタン33〜74重量%およびチタン2〜7重
量%を含むことを特徴とする、請求項1に記載の蒸着材
料。
2. The vapor deposition material according to claim 1, wherein the mixture contains 19 to 65% by weight of lanthanum oxide, 33 to 74% by weight of titanium oxide and 2 to 7% by weight of titanium.
【請求項3】 混合物が、酸化ランタン58.9重量
%、酸化チタン37.9重量%およびチタン3.2重量
%からなることを特徴とする、請求項2に記載の蒸着材
料。
3. The vapor deposition material according to claim 2, wherein the mixture consists of 58.9% by weight of lanthanum oxide, 37.9% by weight of titanium oxide and 3.2% by weight of titanium.
【請求項4】 混合物が、酸化ランタン63重量%、酸
化チタン34重量%およびチタン3重量%からなること
を特徴とする、請求項2に記載の蒸着材料。
4. The vapor deposition material according to claim 2, wherein the mixture comprises 63% by weight of lanthanum oxide, 34% by weight of titanium oxide and 3% by weight of titanium.
【請求項5】 酸化チタンTiO2とチタンとの比が、
x=1.5〜1.8の酸化チタンTiOx中の酸素に関
する化学量論を決めることを特徴とする、請求項1に記
載の蒸着材料。
5. The method according to claim 1, wherein the ratio of titanium oxide TiO 2 to titanium is:
The vapor deposition material according to claim 1, wherein a stoichiometry for oxygen in titanium oxide TiO x where x = 1.5 to 1.8 is determined.
【請求項6】 酸化チタン:酸化ランタン重量比を、酸
化ランタンを、酸化チタンとチタンの混合物と混合する
ことにより決めることができることを特徴とする、請求
項1に記載の蒸着材料。
6. The vapor deposition material according to claim 1, wherein the weight ratio of titanium oxide: lanthanum oxide can be determined by mixing lanthanum oxide with a mixture of titanium oxide and titanium.
【請求項7】 蒸着材料の光学層が、500nmの波長
において屈折率が2.15〜2.25、特に2.20で
あることを特徴とする、請求項1〜4のいずれかに記載
の蒸着材料。
7. The method according to claim 1, wherein the optical layer of the vapor-deposited material has a refractive index of 2.15 to 2.25, particularly 2.20, at a wavelength of 500 nm. Evaporation material.
【請求項8】 請求項1〜7に記載の蒸着材料を製造す
る方法であって、組成TiOx+z(La23)(xは
1.5〜1.8、zは混合物の合計重量を基準に10〜
65重量%)を有する酸化チタン、チタンおよび酸化ラ
ンタンの混合物を均一に混合し、粒径が1〜4mmにな
るように造粒または錠剤化し、続いて減圧下に焼結する
ことを特徴とする方法。
8. The method for producing a vapor deposition material according to claim 1, wherein the composition TiO x + z (La 2 O 3 ) (x is 1.5 to 1.8, and z is the total weight of the mixture) 10 to 10
(65% by weight), and a mixture of titanium oxide, titanium and lanthanum oxide is uniformly mixed, granulated or tableted to have a particle size of 1 to 4 mm, and then sintered under reduced pressure. Method.
【請求項9】 焼結を、1500〜1600℃の温度で
1×10-4mbarの減圧下に5.5〜6.5時間かけ
て行うことを特徴とする、請求項8に記載の方法。
9. The method according to claim 8, wherein the sintering is performed at a temperature of 1500 to 1600 ° C. under a reduced pressure of 1 × 10 −4 mbar for 5.5 to 6.5 hours. .
【請求項10】 請求項1〜7に記載の蒸着材料の光学
層を製造する方法であって、被覆すべき基材を清浄し、
乾燥し、蒸着ユニット中の基材ホルダー上に設置し、蒸
着ユニットを1×10-5mbarに減圧し、基材を28
0〜310℃に加熱し、1〜2×10-4mbarの圧力
が達成されるまで酸素を蒸着ユニット内に入れ、スクリ
ーンにより密封された蒸着ユニット内の電子線蒸発器中
で蒸着材料を溶融し、約2200〜2300℃のその蒸
発温度に加熱し、スクリーンを開けた後、基材を蒸着材
料で予め決められた厚さまで被覆することを特徴とする
方法。
10. A method for producing an optical layer of a vapor deposition material according to claim 1, wherein the substrate to be coated is cleaned,
After drying, the substrate was placed on a substrate holder in the vapor deposition unit, the pressure of the vapor deposition unit was reduced to 1 × 10 −5 mbar, and
Heat to 0-310 ° C., put oxygen into the evaporation unit until a pressure of 1-2 × 10 −4 mbar is achieved, melt the evaporation material in an electron beam evaporator in the evaporation unit sealed by a screen Heating the material to its evaporation temperature of about 2200 to 2300 ° C., opening the screen, and coating the substrate with a vapor deposition material to a predetermined thickness.
【請求項11】 眼鏡レンズ、光学用具用レンズ、レー
ザー技術用光学要素の上の反射防止層としての、およ
び、ビーム・スプリッター、干渉鏡、冷光鏡および防熱
フィルター用の予め設定された高い屈折率および/また
は光学吸収特性を有する層としての、請求項10に従っ
て製造された光学層の使用。
11. Preset high refractive index as an anti-reflective layer on spectacle lenses, lenses for optical tools, optical elements for laser technology, and for beam splitters, interference mirrors, cold mirrors and thermal filters. Use of an optical layer manufactured according to claim 10 as a layer having optical absorption properties.
JP2001300472A 2000-12-29 2001-09-28 Vapor deposition material for producing high refractive index optical layer and method for producing vapor deposition material Expired - Fee Related JP5008807B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000165647 DE10065647A1 (en) 2000-12-29 2000-12-29 Deposition material for the production of high refractive index optical layers and method for the production of the vapor deposition material
DE10065647.1 2000-12-29

Publications (2)

Publication Number Publication Date
JP2002226967A true JP2002226967A (en) 2002-08-14
JP5008807B2 JP5008807B2 (en) 2012-08-22

Family

ID=7669377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300472A Expired - Fee Related JP5008807B2 (en) 2000-12-29 2001-09-28 Vapor deposition material for producing high refractive index optical layer and method for producing vapor deposition material

Country Status (10)

Country Link
US (1) US6756137B2 (en)
EP (1) EP1219724B1 (en)
JP (1) JP5008807B2 (en)
KR (1) KR100875580B1 (en)
CN (1) CN100457680C (en)
AT (1) ATE502131T1 (en)
CA (1) CA2366177C (en)
DE (2) DE10065647A1 (en)
ES (1) ES2361930T3 (en)
TW (1) TW588113B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123575A1 (en) * 2007-03-30 2008-10-16 Fuji Titanium Industry Co., Ltd. Vapor deposition material and optical thin film obtained from the same
JP2010243601A (en) * 2009-04-01 2010-10-28 Tokai Kogaku Kk Optical member, plastic lens for glasses and method of manufacturing them
KR20100136919A (en) 2009-06-19 2010-12-29 캐논 옵트론 가부시키가이샤 Composition for forming thin film and optical thin film
KR101514090B1 (en) 2006-12-22 2015-04-21 더 트러스티즈 오브 프린스턴 유니버시티 Organic vapor jet deposition using an exhaust

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006036711B3 (en) * 2006-08-05 2008-02-21 Gfe Metalle Und Materialien Gmbh Preparation of oxidic coating material based on refractive metals, useful e.g. for treating cathode tubes, comprises providing oxide powder into a vacuum arc furnace and melting the powder under inert gas atmosphere to a fusion body
CN102401910A (en) * 2010-09-17 2012-04-04 晶炼科技股份有限公司 Method for preparing optical coating material and optical coating material
CN102062881B (en) * 2010-11-25 2012-07-04 福州阿石创光电子材料有限公司 High refractive index evaporation material lanthanum titanate mixture and preparation method thereof
CN102692657A (en) * 2011-03-25 2012-09-26 江苏双仪光学器材有限公司 Multi-layer coating-film new technology of optical part
CN114133226B (en) * 2021-12-30 2022-11-08 苏州晶生新材料有限公司 Optical coating substrate and using method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235803A (en) * 1992-03-19 1994-08-23 Merck Patent Gmbh Vapor-deposition raw material for manufacturing highly refractive optical coating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH391198A (en) * 1958-10-30 1965-04-30 Balzers Patent Beteilig Ag Process for the production of thin oxide layers
JPH11264068A (en) * 1998-03-16 1999-09-28 Canon Inc Material for vacuum deposition and vapor deposited thin film
US6327087B1 (en) * 1998-12-09 2001-12-04 Canon Kabushiki Kaisha Optical-thin-film material, process for its production, and optical device making use of the optical-thin-film material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235803A (en) * 1992-03-19 1994-08-23 Merck Patent Gmbh Vapor-deposition raw material for manufacturing highly refractive optical coating

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514090B1 (en) 2006-12-22 2015-04-21 더 트러스티즈 오브 프린스턴 유니버시티 Organic vapor jet deposition using an exhaust
WO2008123575A1 (en) * 2007-03-30 2008-10-16 Fuji Titanium Industry Co., Ltd. Vapor deposition material and optical thin film obtained from the same
JP5358430B2 (en) * 2007-03-30 2013-12-04 富士チタン工業株式会社 Vapor deposition material and optical thin film obtained therefrom
KR101462294B1 (en) 2007-03-30 2014-11-14 후지 티탄 고교 가부시키가이샤 Vapor deposition material and optical thin film obtained from the same
JP2010243601A (en) * 2009-04-01 2010-10-28 Tokai Kogaku Kk Optical member, plastic lens for glasses and method of manufacturing them
US8746878B2 (en) 2009-04-01 2014-06-10 Tokai Optical Co., Ltd. Optical member, plastic lens for eyeglasses, and method for manufacturing the same
KR20100136919A (en) 2009-06-19 2010-12-29 캐논 옵트론 가부시키가이샤 Composition for forming thin film and optical thin film

Also Published As

Publication number Publication date
DE50115820D1 (en) 2011-04-28
US6756137B2 (en) 2004-06-29
EP1219724A1 (en) 2002-07-03
ATE502131T1 (en) 2011-04-15
CN1365956A (en) 2002-08-28
ES2361930T3 (en) 2011-06-24
KR100875580B1 (en) 2008-12-23
US20020102412A1 (en) 2002-08-01
JP5008807B2 (en) 2012-08-22
CA2366177C (en) 2012-07-10
TW588113B (en) 2004-05-21
CA2366177A1 (en) 2002-06-29
DE10065647A1 (en) 2002-07-04
EP1219724B1 (en) 2011-03-16
KR20020056825A (en) 2002-07-10
CN100457680C (en) 2009-02-04

Similar Documents

Publication Publication Date Title
KR100271510B1 (en) Vapor-depositing material for the production of high-refraction optical coatings
JP3723580B2 (en) Vapor deposition materials for the production of medium refractive index optical coatings
JP2002226967A (en) Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same
US5776847A (en) Stabilized vapour-deposition materials based on titanium oxide
KR101050612B1 (en) Deposition Materials for Making High Refractive Index Optical Layers
US6087014A (en) Optical coatings of medium refractive index
JP2011084819A (en) Vapor-deposition material for use in producing optical layer of high refractive index

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120110

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5008807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees