JP5358430B2 - Vapor deposition material and optical thin film obtained therefrom - Google Patents

Vapor deposition material and optical thin film obtained therefrom Download PDF

Info

Publication number
JP5358430B2
JP5358430B2 JP2009509292A JP2009509292A JP5358430B2 JP 5358430 B2 JP5358430 B2 JP 5358430B2 JP 2009509292 A JP2009509292 A JP 2009509292A JP 2009509292 A JP2009509292 A JP 2009509292A JP 5358430 B2 JP5358430 B2 JP 5358430B2
Authority
JP
Japan
Prior art keywords
vapor deposition
lanthanum
niobium
deposition material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009509292A
Other languages
Japanese (ja)
Other versions
JPWO2008123575A1 (en
Inventor
修平 高橋
金雄 小坂
均 岡田
Original Assignee
富士チタン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士チタン工業株式会社 filed Critical 富士チタン工業株式会社
Priority to JP2009509292A priority Critical patent/JP5358430B2/en
Publication of JPWO2008123575A1 publication Critical patent/JPWO2008123575A1/en
Application granted granted Critical
Publication of JP5358430B2 publication Critical patent/JP5358430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、基材上に光学薄膜を形成するための蒸着材料及びそれを用いて形成される光学薄膜に関し、特に、可視及び近紫外域を透過させ、かつ、高屈折率を有する光学薄膜を形成するための蒸着材料及びそれを用いて形成される光学薄膜に関する。   The present invention relates to a vapor deposition material for forming an optical thin film on a substrate and an optical thin film formed using the same. The present invention relates to an evaporation material for forming and an optical thin film formed using the same.

本明細書において光学薄膜とは、光の波長程度の厚みをもつ膜において発生する光の干渉現象を応用し、反射防止や増反射等の機能を付与させるよう形成した薄膜のことをいう。
このような光学薄膜は、所望の光学的機能を発現させるべく予め設計された膜構成に基づき、基材上に単層膜、あるいは二〜百層程度の積層膜を設けることにより形成される。これにより、カメラレンズ、眼鏡レンズ等の光学部材に対し、反射防止、増反射、狭波長帯域の光フィルタリング、偏光制御等の光学的機能を付与することができる。このような光学薄膜の形成方法には、真空蒸着法やスパッタ法があるが、成膜速度やコストの点で優れた真空蒸着法が用いられることが多い。真空蒸着法では、ボートやるつぼ等の容器に装填された蒸着材料を真空中で抵抗加熱や電子ビーム加熱等の加熱手段により気化することで、基材上に膜を形成する。その加熱手段に応じて、真空蒸着法は、さらに抵抗加熱蒸着法と電子ビーム蒸着法とに区分されることがある。うち、電子ビーム蒸着法は、原理的に高融点や低蒸気圧の材料をも蒸着させることができるため、よく用いられている。なお、蒸着材料とは、真空蒸着法において成膜するのに用いられる蒸着源のことをいい、形成される膜の屈折率における高低の程度に応じて、高屈折率材料、中屈折率材料、及び低屈折率材料と分類されることが一般的である。
一方、ある特定の屈折率材料のみを用いた場合であっても、成膜条件の変更によって形成される膜の屈折率を所望の値に設定する、具体的には材料よりも低い屈折率を有する膜とすることは可能である。例えば、高屈折材料を用い、意図的に中屈折率の膜が形成されるよう成膜条件を設定した場合(緻密性を緩める)であれば、得られた膜は中屈折率相当であっても、その充填密度は小さく大気中の水分を吸収しやすくなり、そのため屈折率の変動が大きく、またその変動が収まるまでに長時間を要することとなる。その点で、膜の屈折率は、成膜条件の設定によってではなく、適当な材料の選択・組み合わせによって決定されるのが通常である。
高屈折率材料、特に屈折率が2.1以上であって可視域を透過させる膜を形成することができる材料としては、チタン、ニオブまたはタンタルの酸化物、あるいはこれらの酸化物から構成される多元系酸化物や、チタンとジルコニウムの二元系酸化物が公知である。なお、本明細書において「多元系酸化物」とは、二以上の金属元素が含まれる混合酸化物、複合酸化物や固溶体酸化物等のことをいう。
しかしながら、チタン、ニオブまたはタンタル系の材料を用いて形成した膜は、可視域における光透過性には問題がないものの近紫外波長域では吸収が大きく、近紫外域においても使用される光学部材には適用することが難しい。
また、蒸着材料は、その材料がもつ融点および蒸気圧に応じて、材料固体が溶融を経ずに直接気化する(昇華性)材料、溶融して間もなく気化する(半溶融性)材料、溶融状態を経た後気化する(溶融性)材料の三種類に分類することができる。これらのうち、蒸着過程を最も安定なものとすることができるのは溶融性材料である。溶融によって容器の内壁を鋳型とした柱状の溶融プールが形成されることにより平滑な蒸発面が得られ、その蒸発面によって材料蒸気の発生速度(蒸発速度)を制御しやすくなり、均一かつ均質な膜を形成させやすくなるためである。
上記したチタンとジルコニウムとの二元系酸化物は、昇華性ないし半溶融性の材料であり、これを用いては均一かつ均質な膜を形成させることが難しい。
そこで、近紫外域に吸収のない添加物を上記したチタン、ニオブまたはタンタル系の材料に所定量添加した組成の多元系材料とすれば、上記した課題を解決する可能性が残されているといえる。
しかしながら、多元系材料は、真空蒸着法を用いた場合、各成分の蒸気圧が異なることに起因し、材料の組成(各成分の比)通りには蒸発しないのが一般的である。すなわち蒸発した蒸気の組成は、材料の組成とは必ずしも一致しない。よって、蒸着時間や蒸着回数とともにその材料組成が変化し、伴って形成された膜組成も変化するため、所望の特性を有する膜を多数回連続して作製することが困難な場合が多い。このことは、光フィルター等の膜層数が多い成膜操作の様に、容器に一度装填した蒸着材料をなるべく使い尽くすよう、材料の補給回数を極力少なくすることが必要とされる場合に特にいえることである。なお、本明細書では、一度容器に蒸着材料を装填した後、次に補給するまでになされる複数回に亘る蒸着を「連続蒸着」と呼ぶ。なお、溶融性材料であっても、蒸着時間や蒸着回数とともにその材料組成が変化するような多元系材料の場合は、連続蒸着に適さない。
一方、多元系の膜は、複数の加熱蒸発源を用い、各元素成分となる蒸着材料を独立して蒸発させることにより形成すること(多元蒸着)も可能である。しかしながら、多元蒸着は、所望の膜組成を得るための蒸着条件の最適化が難しく、またコストも高いため、研究用途以外ではほとんど用いられていないのが実情である。
したがって、光学薄膜に係る多くの文献には様々な多元系膜の例示がされているものの、真空蒸着法を用いた場合、実際上、連続蒸着により一定した特性を有する多元系の膜を作製することは容易でない。
近年、特許文献1及び2ではチタン及びランタンの二元系酸化物、特許文献3ではチタン及びサマリウムの二元系酸化物が開示されている。これらは、いずれも上掲した課題が解決された、すなわち、近紫外域での吸収のない膜を形成することができ、溶融性を有し、連続蒸着が可能な高屈折率材料であるとされている。ただし、これらの材料であっても、それを用いて形成される光学薄膜の特性、さらには材料が成膜時に示す挙動の面において、以下に掲げる課題が残されている。
まず、第1の課題として光学薄膜の特性において、特許文献1の材料では、最大でも2.1程度の屈折率の膜しか形成することができず、高屈折率材料の屈折率としては十分に高い値とはいえなかった。さらには、近紫外(短波長)から可視部を通じて近赤外(長波長)に亘る波長領域において吸収がない(透明)といいながら、吸収のない最短波長は可視部に近い約360nmであった。また、特許文献2及び3の材料では、屈折率では2.1を超える高い膜を形成することができるものの、特許文献1と同様、吸収のない最短波長はやはり可視部に近い約360nmであり、十分に近紫外域の光を透過させる(吸収がない)ことはできなかった。このように、屈折率が2.1を超える程度に高く、可視域のみならず近紫外域の光を透過させる膜を形成するための蒸着材料はこれまで知られていなかった。
さらに、第2の課題として、材料が成膜時に示す挙動における問題点を成膜方法と併せて以下に述べる。特許文献1〜3の蒸着材料のいずれも、真空蒸着のうちでも電子ビーム蒸着が主として用いられている。溶融性の蒸着材料を用いた電子ビーム蒸着による成膜は、一般的に次のようにされる。まず、前処理として蒸着材料を電子ビーム加熱により溶融することによって溶融プールを形成する。次いで、その溶融プールに再度電子ビームを照射し材料蒸気を発生させることにより、基材上に膜を形成する。成膜時において電子ビームを溶融プールに照射し続けた際、同じ溶融性材料であっても、(1)ビームによる熱がビーム照射点から溶融プール全体に適度に拡散し平滑な蒸発面を保つため、蒸発速度を容易に制御することができ、結果的に所望の特性を有する膜を容易に形成することができる材料、(2)ビーム照射点近傍にのみ熱が集中し蒸着時間とともに溶融プールが凹状等に変形し平滑な蒸発面を保てなくなるため、蒸発速度の制御が難しくなり、また、頻繁な補給が余儀なくされる材料、とがある。特許文献1〜3の材料は、いずれも後者(2)に該当し、材料の補給頻度をなるべく低減させるように連続蒸着させようとすれば、熱の集中を回避するために蒸着操作中に電子ビームの照射位置を適宜変更しながら成膜する等の特別な対策が必要であった。また、たとえこのような対策を講じたとしても、溶融プールに与えられている熱分布状態が変動しやすく、結局、蒸発速度を制御することが難しかった。以上のように、電子ビーム操作上の特別な対策をしなくとも、所望の高屈折率の膜を容易に形成させることができる多元系の蒸着材料は、これまで知られていなかった。
特許2720959号公報 特開2002−226967号公報 特開2000−180604号公報
In this specification, the optical thin film refers to a thin film formed by applying a light interference phenomenon generated in a film having a thickness of about the wavelength of light to provide functions such as antireflection and increased reflection.
Such an optical thin film is formed by providing a single-layer film or a laminated film of about 2 to 100 layers on a base material based on a film configuration designed in advance to develop a desired optical function. Thereby, optical functions such as antireflection, increased reflection, narrow wavelength band optical filtering, and polarization control can be imparted to optical members such as camera lenses and spectacle lenses. As a method for forming such an optical thin film, there are a vacuum vapor deposition method and a sputtering method, but a vacuum vapor deposition method excellent in terms of film formation speed and cost is often used. In the vacuum vapor deposition method, a film is formed on a substrate by vaporizing a vapor deposition material loaded in a container such as a boat or a crucible by a heating means such as resistance heating or electron beam heating in a vacuum. Depending on the heating means, the vacuum deposition method may be further divided into a resistance heating deposition method and an electron beam deposition method. Among them, the electron beam evaporation method is often used because a material having a high melting point or a low vapor pressure can be deposited in principle. The vapor deposition material refers to a vapor deposition source used to form a film in a vacuum vapor deposition method. Depending on the level of the refractive index of the film to be formed, a high refractive index material, a medium refractive index material, And is generally classified as a low refractive index material.
On the other hand, even when only a specific refractive index material is used, the refractive index of the film formed by changing the film formation conditions is set to a desired value, specifically, a refractive index lower than that of the material is set. It is possible to make it a film. For example, if the film forming conditions are set so that a medium refractive index film is intentionally formed using a high refractive material (relaxation is reduced), the obtained film is equivalent to the medium refractive index. However, the packing density is small and it is easy to absorb moisture in the atmosphere. Therefore, the refractive index fluctuates greatly, and it takes a long time for the fluctuation to settle. In this respect, the refractive index of the film is usually determined not by setting the film forming conditions but by selecting and combining appropriate materials.
A material having a high refractive index, particularly a material having a refractive index of 2.1 or more and capable of forming a film that transmits the visible region, is composed of an oxide of titanium, niobium, or tantalum, or an oxide thereof. Multi-component oxides and binary oxides of titanium and zirconium are known. In the present specification, the “multi-element oxide” refers to a mixed oxide, a composite oxide, a solid solution oxide, or the like containing two or more metal elements.
However, a film formed using a titanium, niobium or tantalum-based material has no problem with the light transmittance in the visible region, but has a large absorption in the near ultraviolet wavelength region, and is an optical member used in the near ultraviolet region. Is difficult to apply.
In addition, depending on the melting point and vapor pressure of the material, the vapor deposition material is a material in which the material solid vaporizes directly without melting (sublimation), a material that melts and vaporizes soon (semi-melting), a molten state It can be classified into three types of materials that are vaporized (melting) after passing through. Among these, it is a meltable material that can make the vapor deposition process most stable. By forming a column-shaped molten pool with the inner wall of the container as a mold by melting, a smooth evaporation surface is obtained, and the evaporation surface makes it easy to control the generation rate (evaporation rate) of the material vapor, making it uniform and homogeneous This is because it becomes easier to form a film.
The above-mentioned binary oxide of titanium and zirconium is a sublimable or semi-meltable material, and it is difficult to form a uniform and homogeneous film using this.
Therefore, if a multi-component material having a composition in which a predetermined amount of an additive that does not absorb in the near-ultraviolet region is added to the above-described titanium, niobium, or tantalum-based material, the possibility of solving the above-described problems remains. I can say that.
However, multi-component materials generally do not evaporate according to the composition of the material (ratio of each component) due to the difference in vapor pressure of each component when the vacuum deposition method is used. That is, the composition of the evaporated vapor does not necessarily match the composition of the material. Therefore, the material composition changes with the deposition time and the number of depositions, and the film composition formed changes accordingly, so that it is often difficult to continuously produce a film having desired characteristics many times. This is especially true when it is necessary to reduce the number of times the material is replenished as much as possible so that the vapor deposition material once loaded in the container is used up as much as possible, such as a film forming operation with a large number of film layers such as an optical filter. That is true. In the present specification, the vapor deposition performed a plurality of times after the vapor deposition material is once loaded into the container and then replenished is referred to as “continuous vapor deposition”. Note that even a meltable material is not suitable for continuous vapor deposition in the case of a multi-component material whose material composition changes with the vapor deposition time and the number of vapor depositions.
On the other hand, a multi-element film can be formed by using a plurality of heating evaporation sources and independently evaporating vapor deposition materials as elemental elements (multi-element vapor deposition). However, in the multi-source deposition, it is difficult to optimize the deposition conditions for obtaining a desired film composition, and the cost is high.
Therefore, although many documents relating to optical thin films exemplify various multi-element films, when a vacuum evaporation method is used, a multi-element film having practically constant characteristics is produced by continuous evaporation. It is not easy.
In recent years, Patent Documents 1 and 2 disclose binary oxides of titanium and lanthanum, and Patent Document 3 discloses binary oxides of titanium and samarium. These are all high-refractive-index materials that have solved the above-mentioned problems, that is, can form a film that does not absorb in the near-ultraviolet region, have meltability, and can be continuously deposited. Has been. However, even with these materials, the following problems remain in terms of the characteristics of the optical thin film formed using the materials, and the behavior of the materials at the time of film formation.
First, as a first problem, in the characteristics of the optical thin film, the material of Patent Document 1 can form only a film having a refractive index of about 2.1 at the maximum, which is sufficient as a refractive index of a high refractive index material. It was not a high value. Furthermore, although there is no absorption (transparent) in the wavelength region from the near ultraviolet (short wavelength) to the near infrared (long wavelength) through the visible part, the shortest wavelength without absorption was about 360 nm close to the visible part. . In addition, although the materials of Patent Documents 2 and 3 can form a film having a refractive index higher than 2.1, as in Patent Document 1, the shortest wavelength without absorption is still about 360 nm close to the visible part. It was not possible to transmit light in the near ultraviolet region sufficiently (no absorption). Thus, a deposition material for forming a film having a refractive index higher than 2.1 and transmitting light in the near ultraviolet region as well as the visible region has not been known so far.
Further, as a second problem, problems in the behavior of the material during film formation will be described below together with the film formation method. In any of the vapor deposition materials of Patent Documents 1 to 3, electron beam vapor deposition is mainly used in vacuum vapor deposition. Film formation by electron beam vapor deposition using a meltable vapor deposition material is generally performed as follows. First, as a pretreatment, the deposition material is melted by electron beam heating to form a molten pool. Next, the molten pool is irradiated again with an electron beam to generate a material vapor, thereby forming a film on the substrate. When the melt pool is continuously irradiated with an electron beam during film formation, (1) the heat from the beam is appropriately diffused from the beam irradiation point to the entire melt pool to maintain a smooth evaporation surface even if the melt material is the same. Therefore, the evaporation rate can be easily controlled, and as a result, a material that can easily form a film having desired characteristics. The material is deformed into a concave shape and the like, and a smooth evaporation surface cannot be maintained, so that it is difficult to control the evaporation rate, and there is a material that requires frequent replenishment. The materials of Patent Documents 1 to 3 correspond to the latter (2), and if continuous vapor deposition is performed so as to reduce the replenishment frequency of the material as much as possible, electrons are deposited during the vapor deposition operation in order to avoid heat concentration. It was necessary to take special measures such as film formation while appropriately changing the irradiation position of the beam. Further, even if such measures are taken, the heat distribution state given to the molten pool is likely to fluctuate, and eventually it is difficult to control the evaporation rate. As described above, a multi-component deposition material capable of easily forming a desired high-refractive-index film without special measures for electron beam operation has not been known so far.
Japanese Patent No. 2720959 JP 2002-226967 A JP 2000-180604 A

本発明の目的は、上記した問題点をすべて解消した、すなわち、溶融性であって連続蒸着が可能であり、電子ビーム蒸着法を用いたとしても蒸発速度を容易に制御することができ、従来よりも広い波長範囲、特に近紫外域の光を透過させることができ、かつ、高屈折率を有する光学薄膜を成膜するための蒸着材料、それを用いて得られる光学薄膜及びその光学薄膜の製造方法を提供することにある。
本発明者らは、様々な成分の組合せの蒸着材料について鋭意検討した結果、ニオブ及びランタンの二元系酸化物から成る蒸着材料に着目するに至った。さらに、この成分の組合せによる蒸着材料から生成する蒸気の組成は、従来から知られているような単に各成分の蒸気圧によって必ずしも決定されるわけではないことが明らかとなり、特定範囲のニオブとランタンの組成比から構成される蒸着材料及びそれらを用いて形成した光学薄膜においてのみ、上記した問題点をすべて解消することができることを見出し、本発明を完成するに至った。
The object of the present invention is to solve all the above-mentioned problems, that is, it is meltable and can be continuously evaporated, and the evaporation rate can be easily controlled even when using an electron beam evaporation method. Vapor deposition material for forming an optical thin film having a higher refractive index that can transmit light in a wider wavelength range, particularly in the near-ultraviolet region, an optical thin film obtained using the same, and an optical thin film of the optical thin film It is to provide a manufacturing method.
As a result of intensive studies on vapor deposition materials having various combinations of components, the present inventors have come to focus on vapor deposition materials composed of binary oxides of niobium and lanthanum. Furthermore, it becomes clear that the composition of the vapor generated from the vapor deposition material by this combination of components is not necessarily determined simply by the vapor pressure of each component as conventionally known. The present inventors have found that all of the above-mentioned problems can be solved only with a vapor deposition material having a composition ratio of 1 and an optical thin film formed using these materials, and the present invention has been completed.

本発明は、以下の発明に係る。
1.ニオブ及びランタンの二元系酸化物、又はこれに加えるに金属ニオブ及び/又は金属ランタンとから成る蒸着材料であって、該蒸着材料中のニオブとランタンのモル比が25:75〜90:10であることを特徴とする蒸着材料。
2.ニオブとランタンのモル比が35:65〜60:40である上記1に記載の蒸着材料。
3.焼結体または溶融体である上記1または2に記載の蒸着材料。
4.酸化ランタンの含有率が5重量%以下である上記1〜3のいずれかに記載の蒸着材料。
5.上記1〜4に記載の蒸着材料を用い、真空蒸着法によって形成することを特徴とする光学薄膜の製造方法。
6.真空蒸着法が電子ビーム蒸着法である上記5に記載の光学薄膜の製造方法。
7.成膜中において電子ビームの照射位置を固定する上記6に記載の光学薄膜の製造方法。
8.上記5〜7に記載の製造方法により得られた光学薄膜。
本発明の蒸着材料は、ニオブ及びランタンの二元系酸化物から成り、該ニオブとランタンのモル比が25:75〜90:10であることを特徴としている。ここに、「ニオブ及びランタンの二元系酸化物」とは、酸化ニオブと酸化ランタンとの混合物、ニオブ及びランタンの複合酸化物、この複合酸化物が二種以上混合された混合物、ニオブ及びランタンの複合酸化物と酸化ニオブとの混合物、ニオブ及びランタンの複合酸化物と酸化ランタンとの混合物、ニオブ及びランタンの固溶体酸化物、等、ニオブ及びランタン並びに酸素から構成されるすべての物質をいう。
ここでの酸化ランタン、酸化ニオブやニオブ及びランタンの複合酸化物は、酸化ランタン(III)(La)、酸化ニオブ(V)(Nb)やLaNbO、LaNbO、LaNb、LaNb14、LaNb19のような通常の雰囲気において化学的に最も安定な酸化物の他、LaOのような亜酸化ランタン、NbO、Nb、NbOのような亜酸化ニオブやLaNb12のような亜酸化状態の複合酸化物、といった亜酸化物であってもよい。このような亜酸化物、あるいは亜酸化物を含む蒸着材料(以下、まとめて「亜酸化物蒸着材料」という。)は、酸素含有率がより小さい材料であるため、成膜時及びその前処理としての溶融時に酸素ガスの脱離が生じにくい。そのため、蒸着中における蒸着装置内の雰囲気圧力を制御しやすく、所望の特性を有する膜を形成させ易い。本発明における亜酸化物蒸着材料としては、既述したLaNb12の他、NbO+LaNbO、NbO+LaNbOやNbO+LaNbO+LaNbOのような構成の二元系酸化物を例示することができる。
本発明の第二の蒸着材料は、a)ニオブ及びランタンの二元系酸化物と、b)金属ニオブ及び/又は金属ランタンとから成る蒸着材料であって、該蒸着材料中のニオブとランタンのモル比が25:75〜90:10であることを特徴としている。ここでの「ニオブ及びランタンの二元系酸化物」の定義は、前記したとおりである。このような第二の蒸着材料の構成としては、Nb+La、La+Nb、Nb+La+Nb、Nb+LaO、Nb+LaNbO、Nb+LaNb12、Nb+LaNbO+LaNbO、Nb+LaNbO+LaNb12、Nb+NbO+LaNbO+LaNbOやNb+NbO+NbO+LaNbO+LaNbOを例示することができる。なお、以下において、このような金属ニオブ及び/又は金属ランタンを含有している蒸着材料を「金属含有蒸着材料」と呼称する。金属含有蒸着材料も、亜酸化物蒸着材料と同様に酸素含有率がより小さい材料であるため、前記した理由から、所望の特性を有する膜を形成させ易い。
なお、本発明の蒸着材料は、既述した本発明の効果を損なわない程度、すなわちニオブ及びランタンの二元系酸化物に対して5mol%までであれば、ニオブ及びランタンの酸化物以外の材料が添加されることを妨げるものではない。このような材料としては、酸化アルミニウム、酸化ガドリニウム、酸化ジスプロシウム、酸化イッテルビウム等を挙げることができる。
ニオブとランタンのモル比が25:75〜90:10の範囲を外れる材料は、この蒸着時間や蒸着回数に伴うモル比の変化が大きいため、連続蒸着に適さない。また、ニオブのモル分率が90モル%を超える材料では十分に近紫外域の光を透過させることが難しく、一方、25モル%を下回る材料では十分に高い屈折率の膜を形成することが難しい。
さらには、ニオブとランタンのモル比が35:65〜60:40であれば、連続蒸着によって逐次形成される膜の屈折率及び光波長域の変動が極めて小さくなり、より長時間及び多数回にわたり一定の特性を有する膜を作製することができ好適である。特に、屈折率の変動は0.01程度に抑えることができる。
また、本発明の蒸着材料は、その形態を特に限定するものではないが、原料粉体そのものや混合物よりは、顆粒やタブレット等の成型体の形状としたものが望ましい。粉体であると蒸着時における材料の取り扱いが良くない上、材料のスプラッシュ(飛散)が起こり易く、所望の光学特性の膜を形成することが難しくなるためである。また成型体のサイズは、0.1〜10mm程度のものであると連続蒸着時における材料の補給がしやすいため望ましい。さらには、成型体の焼成を経て得られる焼結体や粉体あるいは成型体の溶融を経て得られる溶融体であることが望ましい。焼成を経ていない成型体では、その見かけ密度が十分に大きくないために蒸着時の材料の溶融によって著しくかさが減少し、材料の補給を頻繁に行わなければならなくなるためである。
さらに、本発明の蒸着材料は、LaやLaOといった酸化ランタンの含有率が5重量%以下であることが望ましい。酸化ランタンは吸湿性が大きく、含有率が5重量%を超えると、空気中の水分と反応してより低密度の水酸化ランタンに化学変化し、成型体、焼結体あるいは溶融体であれば、それが膨張し崩れて粉状になってしまうためである。このような粉状のみならず水酸化ランタンが多く含まれる蒸着材料をそのまま蒸着に用いれば、加熱の際に材料のスプラッシュが発生するだけでなく著しい水分の放出が起こり、形成された膜に物理的欠陥が生じ、かつ、蒸着装置の保守の点からも好ましくない。
本発明の蒸着材料は、例えば次のような方法で製造することができる。
焼結体であれば、出発原料として酸化ニオブ(V)及び酸化ランタン(III)の粉体を用い、それらを所定の比率で混合し、得られる混合物粉体を造粒及び/または成型することにより0.1〜10mm程度のサイズの成型体とした後、大気中、真空中あるいはアルゴン等の不活性ガス中で所定の温度で焼成することにより製造することができる。また、溶融体であれば、混合物粉体あるいはその成型体を所定の温度で溶融することにより製造することができる。なお、焼成温度及び溶融温度は、蒸着材料を構成するニオブとランタンのモル比によってもその最適な温度が異なってくるが、焼成温度であれば概ね900〜1700℃、溶融温度であれば概ね1350〜1900℃とするのが適当である。
なお、亜酸化物蒸着材料を製造する場合には、出発原料として酸化ニオブ(V)及び/または酸化ランタン(III)に加えて金属ニオブ及び/または金属ランタンを用いればよい。このような構成の原料とすれば、焼成あるいは溶融時において金属と酸化物とを化学反応させることができ、亜酸化物蒸着材料を製造することができる。あるいは、出発原料として酸化ニオブ(V)及び/または酸化ランタン(III)に代えて亜酸化ニオブ及び/または亜酸化ランタンを用いてもよい。また、酸化ニオブ(V)及び酸化ランタン(III)のみを出発原料として用いて製造した蒸着材料を脱酸素化することによっても製造することができる。脱酸素化の方法としては、例えば水素等の還元性ガス下での加熱処理を挙げることができる。
また、金属含有蒸着材料を製造する場合においても、出発原料の構成は亜酸化物蒸着材料の場合と同様である。ただし、亜酸化物蒸着材料の場合とは異なる製造条件を適用する(例えば、焼成時において、焼成温度をやや低めに、あるいは焼成時間を短めとする)ことにより、金属自体を残存させた状態で製造を完了させる。このようにして金属含有蒸着材料を製造することができる。なお、ニオブ及びランタンの二元系酸化物の蒸着材料に金属ニオブ及び/または金属ランタンを添加し、場合によってはさらに焼成あるいは溶融することによっても製造することができる。
以上に述べた本発明の蒸着材料を用いることにより、可視光全域はもとより360nmより短波長域である近紫外域をも透過させることができ、かつ、波長450nm付近において屈折率2.15〜2.35、好ましくは2.20〜2.35程度の高屈折率を有する光学薄膜を形成することができる。
一方、本発明の光学薄膜の製造方法は、本発明の蒸着材料を用い、真空蒸着法によって形成することを特徴とする。本発明での「真空蒸着法」には、この方法に成膜加工上の補助手段が追加されたイオンプレーティング法やイオンアシスト法も含まれる。本発明の蒸着材料のような高融点の材料を蒸着させるには、真空蒸着のうちでも電子ビーム蒸着法を採用することが好適である。また、電子ビーム蒸着法を用いたとしても、ビームによって材料に与えられる熱がビーム照射点から材料全体に適度に拡散し、蒸着時間を経ても平滑な蒸発面を保つため、蒸発速度を容易に制御することができる。その結果、所望の特性を有する光学薄膜を容易に製造することができる。また、蒸着材料の補給頻度をより低くすることができるため、より長時間及び多数回にわたり連続蒸着させることができる。さらに、本発明の蒸着材料を用いた場合は、電子ビーム操作上の特別な対策を必要としなくとも、例えば、成膜中において電子ビームの照射位置を固定したとしても、所望の光学薄膜を容易に製造することができる。なお、このときの電子ビームの照射位置は、例えば蒸着材料を円筒型の容器に装填する場合であれば、その容器の中心部であることが好適である。
このように、電子ビーム蒸着法を用いたとしても蒸発速度を容易に制御し、かつ、連続蒸着させることは、蒸着材料をニオブとランタンという特定の元素の組合せで構成することにより達成することができる。
The present invention relates to the following inventions.
1. A vapor deposition material comprising a binary oxide of niobium and lanthanum, or in addition to metal niobium and / or metal lanthanum, wherein the molar ratio of niobium to lanthanum is 25:75 to 90:10. The vapor deposition material characterized by being.
2. 2. The vapor deposition material according to 1 above, wherein the molar ratio of niobium and lanthanum is 35:65 to 60:40.
3. 3. The vapor deposition material according to 1 or 2 above, which is a sintered body or a melt.
4). 4. The vapor deposition material according to any one of 1 to 3, wherein the content of lanthanum oxide is 5% by weight or less.
5. A method for producing an optical thin film, which is formed by a vacuum vapor deposition method using the vapor deposition material described in any one of 1 to 4 above.
6). 6. The method for producing an optical thin film as described in 5 above, wherein the vacuum vapor deposition method is an electron beam vapor deposition method.
7). 7. The method for producing an optical thin film as described in 6 above, wherein the irradiation position of the electron beam is fixed during film formation.
8). The optical thin film obtained by the manufacturing method of said 5-7.
The vapor deposition material of the present invention is composed of a binary oxide of niobium and lanthanum, and the molar ratio of niobium and lanthanum is 25:75 to 90:10. Here, “binary oxide of niobium and lanthanum” means a mixture of niobium oxide and lanthanum oxide, a composite oxide of niobium and lanthanum, a mixture of two or more of these composite oxides, niobium and lanthanum All materials composed of niobium, lanthanum, and oxygen, such as a mixture of the above complex oxide and niobium oxide, a mixture of niobium and lanthanum oxide and lanthanum oxide, a solid solution oxide of niobium and lanthanum, and the like.
Here, lanthanum oxide, niobium oxide, a composite oxide of niobium and lanthanum are lanthanum oxide (III) (La 2 O 3 ), niobium oxide (V) (Nb 2 O 5 ), La 3 NbO 7 , LaNbO 4 , In addition to oxides that are chemically most stable in ordinary atmospheres such as LaNb 3 O 9 , LaNb 5 O 14 , LaNb 7 O 19 , lanthanum oxide such as LaO, NbO 2 , Nb 2 O 3 , NbO Suboxides such as niobium suboxide and suboxide composite oxides such as LaNb 7 O 12 may also be used. Such suboxides or vapor deposition materials containing suboxides (hereinafter collectively referred to as “suboxide vapor deposition materials”) are materials having a smaller oxygen content. Oxygen gas is unlikely to desorb during melting. Therefore, it is easy to control the atmospheric pressure in the vapor deposition apparatus during vapor deposition, and it is easy to form a film having desired characteristics. As a suboxide vapor deposition material in the present invention, in addition to LaNb 7 O 12 described above, binary oxides having a configuration such as NbO + LaNbO 4 , NbO 2 + LaNbO 4 and NbO 2 + La 3 NbO 7 + LaNbO 4 are exemplified. be able to.
The second vapor deposition material of the present invention is a vapor deposition material comprising a) a binary oxide of niobium and lanthanum, and b) metal niobium and / or metal lanthanum, the niobium and lanthanum in the vapor deposition material. The molar ratio is 25:75 to 90:10. The definition of “binary oxide of niobium and lanthanum” here is as described above. The structure of such second deposition material, Nb + La 2 O 3, La + Nb 2 O 5, Nb + La + Nb 2 O 5, Nb + LaO, Nb + LaNbO 4, Nb + LaNb 7 O 12, Nb + La 3 NbO 7 + LaNbO 4, Nb + La 3 NbO 7 + LaNb Examples include 7 O 12 , Nb + NbO 2 + La 3 NbO 9 + LaNbO 4 and Nb + NbO + NbO 2 + La 3 NbO 9 + LaNbO 4 . Hereinafter, such a vapor deposition material containing niobium metal and / or metal lanthanum is referred to as a “metal-containing vapor deposition material”. Since the metal-containing vapor deposition material is also a material having a smaller oxygen content like the suboxide vapor deposition material, it is easy to form a film having desired characteristics for the reasons described above.
The vapor deposition material of the present invention is a material other than niobium and lanthanum oxides as long as the effects of the present invention described above are not impaired, that is, up to 5 mol% with respect to the binary oxides of niobium and lanthanum. Is not prevented from being added. Examples of such materials include aluminum oxide, gadolinium oxide, dysprosium oxide, ytterbium oxide, and the like.
A material in which the molar ratio of niobium to lanthanum falls outside the range of 25:75 to 90:10 is not suitable for continuous vapor deposition because the molar ratio varies greatly with the vapor deposition time and the number of vapor depositions. Moreover, it is difficult to transmit light in the near-ultraviolet region sufficiently with a material having a molar fraction of niobium exceeding 90 mol%, while a film having a sufficiently high refractive index can be formed with a material lower than 25 mol%. difficult.
Furthermore, if the molar ratio of niobium and lanthanum is 35:65 to 60:40, the variation of the refractive index and the light wavelength region of the film successively formed by continuous vapor deposition becomes extremely small, and it takes a long time and many times. A film having certain characteristics can be manufactured, which is preferable. In particular, the refractive index variation can be suppressed to about 0.01.
Further, the form of the vapor deposition material of the present invention is not particularly limited, but a material in the form of a molded body such as a granule or a tablet is preferable to the raw material powder itself or a mixture. This is because if the material is a powder, the material is not handled well during vapor deposition, and splashing of the material is likely to occur, making it difficult to form a film with desired optical characteristics. Further, it is desirable that the size of the molded body is about 0.1 to 10 mm because the material can be easily replenished during continuous vapor deposition. Furthermore, it is desirable to be a sintered body obtained by firing the molded body, or a melt obtained by melting the powder or the molded body. This is because the apparent density of the molded body that has not been baked is not sufficiently large, so that the material is remarkably reduced by melting of the material at the time of vapor deposition, and the material must be replenished frequently.
Furthermore, the vapor deposition material of the present invention desirably has a content of lanthanum oxide such as La 2 O 3 or LaO of 5% by weight or less. Lanthanum oxide has a high hygroscopicity, and when the content exceeds 5% by weight, it reacts with moisture in the air and chemically changes to a lower density lanthanum hydroxide. This is because it expands and collapses and becomes powdery. If a vapor deposition material containing a large amount of lanthanum hydroxide as well as this powder is used for vapor deposition as it is, not only will splash of the material occur during heating, but also significant moisture will be released, and the formed film will be physically This is undesirable from the standpoint of maintenance of the vapor deposition apparatus.
The vapor deposition material of the present invention can be produced, for example, by the following method.
In the case of a sintered body, niobium oxide (V) and lanthanum oxide (III) powders are used as starting materials, mixed at a predetermined ratio, and the resulting mixture powder is granulated and / or molded. Can be produced by firing at a predetermined temperature in the air, in a vacuum, or in an inert gas such as argon. Moreover, if it is a molten body, it can manufacture by fuse | melting mixture powder or its molded object at predetermined temperature. The optimum firing temperature and melting temperature differ depending on the molar ratio of niobium and lanthanum constituting the vapor deposition material. The firing temperature is generally 900 to 1700 ° C., and the melting temperature is roughly 1350. It is appropriate that the temperature is ˜1900 ° C.
In addition, when manufacturing a suboxide vapor deposition material, in addition to niobium oxide (V) and / or lanthanum oxide (III) as a starting material, metal niobium and / or metal lanthanum may be used. By using such a raw material, the metal and the oxide can be chemically reacted during firing or melting, and a suboxide vapor deposition material can be produced. Alternatively, niobium oxide and / or lanthanum oxide may be used instead of niobium oxide (V) and / or lanthanum oxide (III) as a starting material. Moreover, it can manufacture also by deoxygenating the vapor deposition material manufactured using only niobium oxide (V) and lanthanum oxide (III) as a starting material. Examples of the deoxygenation method include a heat treatment under a reducing gas such as hydrogen.
In the case of producing a metal-containing vapor deposition material, the structure of the starting material is the same as that of the suboxide vapor deposition material. However, in a state where the metal itself remains by applying production conditions different from those of the suboxide vapor deposition material (for example, a slightly lower firing temperature or a shorter firing time during firing). Complete manufacturing. In this way, a metal-containing vapor deposition material can be produced. In addition, it can manufacture also by adding metal niobium and / or a metal lanthanum to the vapor deposition material of the binary system oxide of niobium and lanthanum, and also baking or melting depending on the case.
By using the vapor deposition material of the present invention described above, not only the entire visible light region but also the near ultraviolet region which is shorter than 360 nm can be transmitted, and the refractive index of 2.15 to 2 in the vicinity of the wavelength of 450 nm. An optical thin film having a high refractive index of about .35, preferably about 2.20 to 2.35 can be formed.
On the other hand, the method for producing an optical thin film of the present invention is characterized in that it is formed by a vacuum vapor deposition method using the vapor deposition material of the present invention. The “vacuum vapor deposition method” in the present invention includes an ion plating method and an ion assist method in which an auxiliary means for film formation processing is added to this method. In order to deposit a high melting point material such as the deposition material of the present invention, it is preferable to employ the electron beam deposition method among the vacuum depositions. Even if the electron beam evaporation method is used, the heat given to the material by the beam is appropriately diffused from the beam irradiation point to the entire material, and the evaporation surface is maintained even after the evaporation time, so that the evaporation rate can be facilitated. Can be controlled. As a result, an optical thin film having desired characteristics can be easily manufactured. Moreover, since the replenishment frequency of vapor deposition material can be made lower, it can be continuously vapor-deposited for a long time and many times. Furthermore, when the vapor deposition material of the present invention is used, a desired optical thin film can be easily obtained even if the electron beam irradiation position is fixed during film formation, for example, without requiring special measures for electron beam operation. Can be manufactured. In addition, the irradiation position of the electron beam at this time is preferably the central portion of the container, for example, when a vapor deposition material is loaded into a cylindrical container.
Thus, even if the electron beam evaporation method is used, the evaporation rate can be easily controlled and continuous evaporation can be achieved by configuring the evaporation material with a specific element combination of niobium and lanthanum. it can.

図1は実施例1で得られた蒸着材料のX線回折パターンである。
図2は実施例1における成膜終了後の溶融プールの状態を示す写真である。
図3は比較例3における成膜終了後の溶融プールの状態を示す写真である。
図4は比較例4における成膜終了後の溶融プールの状態を示す写真である。
1 is an X-ray diffraction pattern of the vapor deposition material obtained in Example 1. FIG.
FIG. 2 is a photograph showing the state of the molten pool after film formation in Example 1.
FIG. 3 is a photograph showing the state of the molten pool after completion of film formation in Comparative Example 3.
FIG. 4 is a photograph showing the state of the molten pool after completion of film formation in Comparative Example 4.

以下に本発明の実施例について説明するが、本発明はこれに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

酸化ニオブ(V)と酸化ランタン(III)の粉体を重量比32.9:67.1(ニオブとランタンのモル比は、37.5:62.5)で混合し、その粉体混合物を1〜3mmの顆粒状に造粒し、大気中で1300℃×4時間焼成することにより、顆粒状の蒸着材料を得た。当該材料は図1に示すX線回折パターンからLaNbO及びLaNbOと同定された。
この蒸着材料を装填した銅製のハースライナー(るつぼ)を市販の真空蒸着装置内にセットし、装置内を1.0×10−3Paになるまで排気した後、蒸着材料を電子ビーム加熱により溶融し溶融プールを形成した。次いで、全圧が1.0×10−2Paになるように酸素を導入し、再度、電子ビームを溶融プールの中心部にのみ照射し、材料蒸気を発生させ、予め装置内にセットし300℃に加熱していた基材上に、成膜速度0.9nm/秒で物理的膜厚が250nmになるまで成膜した。この成膜を基材のみを交換しつつ蒸着材料は一切補給することなく4回行った。得られた各々の膜について、波長450nmにおける屈折率を分光光度計により、また、ニオブとランタンのモル比をICP−MS組成分析により求めた。結果を表1〜2に示すが、成膜回数によらず屈折率及びモル比は一様であり、また、いずれの膜も285nmから可視域までに吸収は認められなかった。この285nmのように、可視域側から紫外域側に波長を短くしていったときに膜の光吸収が起こり始め、分光透過率が急激に下降の一途をたどり始めるときの波長を、以降「最短透過波長」と呼ぶ。一方、図2には上記の成膜終了後の蒸着材料(溶融プール)の写真を示すが、溶融プールの中心部にのみ電子ビームを照射したにもかかわらず、平滑な蒸発面が保たれていることが分かる。
なお、波長450nmにおける屈折率の算出方法は、次のとおりである。
・市販の分光光度計により分光透過率を測定し、分光曲線を得る。
・その分光曲線とSELLMEIERの分散式を用い、屈折率を算出する。
・なお、SELLMEIERの分散式は、光の波長と屈折率との関係を求める目的でよく使われる式であり、次式で表される。
・n=SQRT[1+A/(1+B/λ)]
・ここで、nは屈折率、λは波長であり、AとBは波長と屈折率との関係を決定する係数である。また「SQRT」は、上式[ ]部の平方根を計算することを表す。
A powder of niobium oxide (V) and lanthanum oxide (III) was mixed at a weight ratio of 32.9: 67.1 (molar ratio of niobium and lanthanum was 37.5: 62.5), and the powder mixture was mixed. Granulated materials were obtained by granulating into 1 to 3 mm granules and firing in air at 1300 ° C. for 4 hours. The materials were identified as La 3 NbO 7 and LaNbO 4 from the X-ray diffraction pattern shown in FIG.
The copper hearth liner (crucible) loaded with this vapor deposition material is set in a commercially available vacuum vapor deposition apparatus, the inside of the apparatus is evacuated to 1.0 × 10 −3 Pa, and then the vapor deposition material is melted by electron beam heating. And a molten pool was formed. Next, oxygen is introduced so that the total pressure becomes 1.0 × 10 −2 Pa, and again, an electron beam is irradiated only on the central portion of the molten pool to generate material vapor, which is set in the apparatus in advance. Films were formed on a substrate heated to 0 ° C. at a film formation rate of 0.9 nm / second until the physical film thickness reached 250 nm. This film formation was carried out four times without replacing any vapor deposition material while exchanging only the substrate. About each obtained film | membrane, the refractive index in wavelength 450nm was calculated | required with the spectrophotometer, and the molar ratio of niobium and lanthanum was calculated | required by the ICP-MS composition analysis. The results are shown in Tables 1 and 2, and the refractive index and the molar ratio are uniform regardless of the number of film formation, and no absorption was observed from 285 nm to the visible region. As the wavelength of 285 nm, when the wavelength is shortened from the visible region side to the ultraviolet region side, the light absorption of the film starts to occur, and the wavelength at which the spectral transmittance starts to decrease rapidly is hereinafter referred to as “ This is called “shortest transmission wavelength”. On the other hand, FIG. 2 shows a photograph of the vapor deposition material (molten pool) after completion of the above film formation, but a smooth evaporation surface is maintained even though the electron beam is irradiated only at the center of the melt pool. I understand that.
In addition, the calculation method of the refractive index in wavelength 450nm is as follows.
-Measure the spectral transmittance with a commercially available spectrophotometer to obtain a spectral curve.
The refractive index is calculated using the spectral curve and the SELLMEIER dispersion formula.
The SELLMEIER dispersion formula is often used for the purpose of obtaining the relationship between the wavelength of light and the refractive index, and is expressed by the following formula.
N = SQRT [1 + A / (1 + B / λ 2 )]
Where n is the refractive index, λ is the wavelength, and A and B are coefficients that determine the relationship between the wavelength and the refractive index. “SQRT” represents calculating the square root of the above [] part.

酸化ニオブ(V)、酸化ランタン(III)及び金属ニオブの粉体を重量比45.5:46.5:8.0(ニオブとランタンのモル比は、60.0:40.0)で混合し、その粉体混合物を1〜3mmのタブレット状に成型し、真空中で1600℃×4時間焼成することにより、タブレット状の蒸着材料を得た。当該材料はX線回折パターンからLaNbO及びNbOと同定された。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、成膜回数によらず屈折率及びモル比は一様であり、最短透過波長は305nmであった。
Niobium oxide (V), lanthanum oxide (III) powder and metallic niobium powder were mixed at a weight ratio of 45.5: 46.5: 8.0 (molar ratio of niobium and lanthanum was 60.0: 40.0). And the powder mixture was shape | molded into 1-3 mm tablet shape, and the tablet-shaped vapor deposition material was obtained by baking at 1600 degreeC * 4 hours in a vacuum. The material was identified as LaNbO 4 and NbO from the X-ray diffraction pattern.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. The results are shown in Tables 1 and 2, and the refractive index and the molar ratio were uniform regardless of the number of film formations, and the shortest transmission wavelength was 305 nm.

酸化ニオブ(V)と酸化ランタン(III)の粉体を重量比80.3:19.7(ニオブとランタンのモル比は、83.3:16.7)で混合し、その粉体混合物を1〜3mmのタブレット状に成型し、大気中で1200℃×4時間焼成することにより、タブレット状の蒸着材料を得た。当該材料はX線回折パターンからLaNb14と同定された。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、成膜回数によらず屈折率及びモル比は一様であり、最短透過波長は330nmであった。
A powder of niobium oxide (V) and lanthanum oxide (III) was mixed at a weight ratio of 80.3: 19.7 (molar ratio of niobium and lanthanum was 83.3: 16.7), and the powder mixture was mixed. The tablet-shaped vapor deposition material was obtained by shape | molding into a 1-3 mm tablet shape, and baking at 1200 degreeC * 4 hours in air | atmosphere. The material was identified as LaNb 5 O 14 from the X-ray diffraction pattern.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. Although a result is shown to Tables 1-2, a refractive index and molar ratio were uniform irrespective of the frequency | count of film-forming, and the shortest transmission wavelength was 330 nm.

酸化ニオブ(V)と酸化ランタン(III)の粉体を重量比25.9:74.1(ニオブとランタンのモル比は、30.0:70.0)で混合し、その粉体混合物を1〜3mmの顆粒状に造粒し、大気中で1500℃×4時間焼成することにより、顆粒状の蒸着材料を得た。当該材料はX線回折パターンからLaNbO及びLaNbOと同定された。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、成膜回数によらず屈折率及びモル比は一様であり、最短透過波長は270nmであった。
A powder of niobium oxide (V) and lanthanum oxide (III) was mixed at a weight ratio of 25.9: 74.1 (molar ratio of niobium and lanthanum was 30.0: 70.0). Granulated materials were obtained by granulating into 1 to 3 mm granules and firing in the air at 1500 ° C. for 4 hours. The material was identified as La 3 NbO 7 and LaNbO 4 from the X-ray diffraction pattern.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. The results are shown in Tables 1 and 2, and the refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 270 nm.

酸化ニオブ(V)、酸化ランタン(III)及び酸化アルミニウムの粉体を重量比44.3:54.3:1.4(ニオブとランタンのモル比は、50.0:50.0)で混合し、その粉体混合物を1〜3mmの顆粒状に造粒し、大気中で1500℃×4時間焼成することにより、顆粒状の蒸着材料を得た。当該材料はX線回折パターンからLaNbOと同定された。なお、酸化アルミニウムは微量のために同定されなかったものと考えられる。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、成膜回数によらず屈折率及びモル比は一様であり、最短透過波長は290nmであった。
Powders of niobium oxide (V), lanthanum oxide (III) and aluminum oxide were mixed at a weight ratio of 44.3: 54.3: 1.4 (molar ratio of niobium and lanthanum was 50.0: 50.0). Then, the powder mixture was granulated into 1 to 3 mm granules and fired in the atmosphere at 1500 ° C. for 4 hours to obtain granular deposition materials. The material was identified as LaNbO 4 from the X-ray diffraction pattern. In addition, it is thought that the aluminum oxide was not identified due to a trace amount.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. The results are shown in Tables 1 and 2, and the refractive index and molar ratio were uniform regardless of the number of film formations, and the shortest transmission wavelength was 290 nm.

酸化ニオブ(V)、酸化ランタン(III)及び金属ニオブの粉体を重量比26.8:68.5:4.7(ニオブとランタンのモル比は、37.5:62.5)で混合し、その粉体混合物を1〜3mmのタブレットに成型し、真空中で1300℃×3時間焼成することにより、タブレット状の蒸着材料を得た。当該材料はX線回折パターンからLaNbO、LaNbO及びNbと同定された。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、成膜回数によらず屈折率及びモル比は一様であり、最短透過波長は290nmであった。
Niobium oxide (V), lanthanum oxide (III) powder and niobium metal powder mixed at a weight ratio of 26.8: 68.5: 4.7 (molar ratio of niobium to lanthanum is 37.5: 62.5) And the powder mixture was shape | molded into the tablet of 1-3 mm, and tablet-shaped vapor deposition material was obtained by baking at 1300 degreeC x 3 hours in a vacuum. The material was identified as La 3 NbO 7 , LaNbO 4 and Nb from the X-ray diffraction pattern.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. The results are shown in Tables 1 and 2, and the refractive index and molar ratio were uniform regardless of the number of film formations, and the shortest transmission wavelength was 290 nm.

酸化ニオブ(V)、酸化ランタン(III)及び金属ニオブの粉体を重量比53.3:21.8:24.9(ニオブとランタンのモル比は、83.3:16.7)で混合し、その粉体混合物を1〜3mmのタブレットに成型し、真空中で1300℃×3時間焼成することにより、タブレット状の蒸着材料を得た。当該材料はX線回折パターンからLaNb、LaNbO、NbO、NbO及びNbと同定された。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、成膜回数によらず屈折率及びモル比は一様であり、最短透過波長は335nmであった。
比較例1
酸化ニオブ(V)と酸化ランタン(III)の粉体を重量比90.4:9.6(ニオブとランタンのモル比は、92.3:7.7)で混合し、その粉体混合物を1〜3mmの顆粒状に造粒し、大気中で1300℃×4時間焼成することにより、顆粒状の蒸着材料を得た。当該材料はX線回折パターンからLaNb14及びNbと同定された。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、成膜回数を重ねるに連れ屈折率は低下、またモル比も変化しており、最短透過波長も365nmと近紫外域の光を十分に透過するとはいえないものであった。
比較例2
酸化ニオブ(V)と酸化ランタン(III)の粉体を重量比16.9:83.1(ニオブとランタンのモル比は、20:80)で混合し、その粉体混合物を1〜3mmの顆粒状に造粒し、大気中で1500℃×4時間焼成することにより、顆粒状の蒸着材料を得た。当該材料はそのX線回折パターンからLaNbO及びLa(酸化ランタン)と同定された。吸湿により質量の増加が見られたが、顆粒体が崩れることはなかった。また、その増加質量から酸化ランタンの含有率を算出したところ、2.5重量%であった。
この蒸着材料を用い、実施例1と同様の方法で成膜することにより得られた各々の膜について、波長450nmにおける屈折率及び最短透過波長、並びにニオブとランタンのモル比を求めた。結果を表1〜2に示すが、最短透過波長は260nmと近紫外域を十分に透過するものの、成膜回数を重ねるに連れ屈折率は増加、またモル比も変化した。
比較例3
以下、本発明の蒸着材料のニオブ原料をチタン原料に換えた場合の比較例を示す。
酸化チタン(IV)、酸化ランタン(III)及び金属チタンの粉体を重量比29.3:68.2:2.5(チタンとランタンのモル比は、50.0:50.0)で混合し、その粉体混合物を1〜3mmの顆粒状に造粒し、真空中で1700℃×5時間焼成することにより、顆粒状の蒸着材料を得た。
この蒸着材料を用い、成膜回数が1回であること以外は実施例1と同様の方法で成膜した。図3には上記の成膜終了後の蒸着材料の写真を示すが、電子ビームを照射した位置が大きく凹んでいることが分かる。1回しか成膜していないにも拘らず、凹みの中心部はハースライナーの底に到達しそうな程度に深く掘られており(中心部の面とハースライナー底面との距離が約3mm)、連続蒸着は全く不可能であった。
比較例4
以下、本発明の蒸着材料のランタン原料をイットリウム原料に換えた場合の比較例を示す。
酸化ニオブ(V)と酸化イットリウム(III)の粉体を重量比44.0:56.0(ニオブとイットリウムのモル比は、40.0:60.0)で混合し、その粉体混合物を1〜3mmの顆粒状に造粒し、真空中で1700℃×4時間焼成することにより、顆粒状の蒸着材料を得た。
この蒸着材料を用い、成膜回数が1回であること以外は実施例1と同様の方法で成膜した。図4には上記の成膜終了後の蒸着材料の写真を示すが、1回しか成膜していないにも拘らず、電子ビームを照射した位置が大きく凹んでおり、さらにはハースライナーの底部の一部が露出していることが分かる。比較例3と同様、連続蒸着は全く不可能であった。
比較例5
大気中で1200℃×4時間焼成すること以外は実施例4と同様の方法により、顆粒状の蒸着材料を得た。当該材料はX線回折パターンからLaNbO、LaNbO及びLaと同定された。吸湿により質量の増加が見られ、顆粒体は、作製から一日後、崩れて粉状に変化した。その増加質量から酸化ランタンの含有率を算出したところ、6.3重量%であった。
この粉状の蒸着材料を装填した銅製のハースライナーを市販の真空蒸着装置内にセットし、装置内を1.0×10−3Paになるまで排気した後、電子ビームにより加熱したところ、材料は激しく飛散したため、成膜を中断した。
Niobium oxide (V), lanthanum oxide (III) powder and metallic niobium powder were mixed at a weight ratio of 53.3: 21.8: 24.9 (molar ratio of niobium to lanthanum was 83.3: 16.7). And the powder mixture was shape | molded into the tablet of 1-3 mm, and tablet-shaped vapor deposition material was obtained by baking at 1300 degreeC x 3 hours in a vacuum. The material was identified as LaNb 3 O 9 , LaNbO 4 , NbO 2 , NbO and Nb from the X-ray diffraction pattern.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. The results are shown in Tables 1 and 2, and the refractive index and the molar ratio were uniform regardless of the number of film formation, and the shortest transmission wavelength was 335 nm.
Comparative Example 1
A powder of niobium oxide (V) and lanthanum oxide (III) was mixed at a weight ratio of 90.4: 9.6 (molar ratio of niobium and lanthanum was 92.3: 7.7), and the powder mixture was mixed. Granulated materials were obtained by granulating into 1 to 3 mm granules and firing in air at 1300 ° C. for 4 hours. The material was identified as LaNb 5 O 14 and Nb 2 O 5 from the X-ray diffraction pattern.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. The results are shown in Tables 1 and 2. As the number of film formations is increased, the refractive index decreases, the molar ratio also changes, and the shortest transmission wavelength is 365 nm, and it cannot be said that the light in the near ultraviolet region is sufficiently transmitted. It was a thing.
Comparative Example 2
A powder of niobium oxide (V) and lanthanum oxide (III) was mixed at a weight ratio of 16.9: 83.1 (molar ratio of niobium and lanthanum was 20:80). Granules were granulated and fired in the atmosphere at 1500 ° C. for 4 hours to obtain a granular deposition material. The material was identified as La 3 NbO 7 and La 2 O 3 (lanthanum oxide) from its X-ray diffraction pattern. Although an increase in mass was observed due to moisture absorption, the granules did not collapse. Moreover, it was 2.5 weight% when the content rate of the lanthanum oxide was computed from the increase mass.
Using this vapor deposition material, the refractive index at the wavelength of 450 nm, the shortest transmission wavelength, and the molar ratio of niobium and lanthanum were determined for each film obtained by film formation in the same manner as in Example 1. The results are shown in Tables 1 and 2. Although the shortest transmission wavelength is 260 nm and sufficiently transmits in the near ultraviolet region, the refractive index increased and the molar ratio changed as the number of film formation was repeated.
Comparative Example 3
Hereinafter, comparative examples when the niobium raw material of the vapor deposition material of the present invention is replaced with a titanium raw material will be shown.
Powders of titanium (IV) oxide, lanthanum oxide (III) and titanium metal were mixed at a weight ratio of 29.3: 68.2: 2.5 (molar ratio of titanium and lanthanum was 50.0: 50.0). Then, the powder mixture was granulated into 1 to 3 mm granules and fired in vacuum at 1700 ° C. for 5 hours to obtain granular deposition materials.
Using this vapor deposition material, a film was formed in the same manner as in Example 1 except that the number of film formation was one. FIG. 3 shows a photograph of the vapor deposition material after the film formation, and it can be seen that the position irradiated with the electron beam is greatly recessed. The center of the dent is dug deep enough to reach the bottom of the hearth liner (the distance between the center surface and the bottom of the hearth liner is about 3 mm), even though the film was formed only once. Continuous vapor deposition was impossible at all.
Comparative Example 4
Hereinafter, comparative examples when the lanthanum raw material of the vapor deposition material of the present invention is replaced with an yttrium raw material will be shown.
A powder of niobium oxide (V) and yttrium oxide (III) was mixed at a weight ratio of 44.0: 56.0 (molar ratio of niobium and yttrium was 40.0: 60.0). Granulated materials were obtained by granulating into 1 to 3 mm granules and firing in vacuum at 1700 ° C. for 4 hours.
Using this vapor deposition material, a film was formed in the same manner as in Example 1 except that the number of film formation was one. FIG. 4 shows a photograph of the vapor deposition material after completion of the film formation described above, although the position irradiated with the electron beam is greatly recessed despite the fact that the film was formed only once. It can be seen that a part of is exposed. Similar to Comparative Example 3, continuous vapor deposition was not possible at all.
Comparative Example 5
A granular vapor deposition material was obtained in the same manner as in Example 4 except that baking was performed in the air at 1200 ° C. for 4 hours. The material was identified as LaNbO 4 , La 3 NbO 7 and La 2 O 3 from the X-ray diffraction pattern. An increase in mass was observed due to moisture absorption, and the granules collapsed and changed to a powder one day after production. When the content of lanthanum oxide was calculated from the increased mass, it was 6.3% by weight.
The copper hearth liner loaded with this powdery vapor deposition material was set in a commercially available vacuum vapor deposition apparatus, the interior of the apparatus was evacuated to 1.0 × 10 −3 Pa, and then heated by an electron beam. The film was interrupted because of severe scattering.

本発明によれば、以下の特徴を有する蒸着材料、それを用いて形成される光学薄膜及びその光学薄膜の製造方法を提供することができる。
1.溶融性であって連続蒸着が可能である。
2.電子ビーム蒸着法を用いたとしても、蒸発速度を容易に制御することができる。即ち、ビームによる熱がビーム照射点から溶融プール全体に適度に拡散し平滑な蒸発面を保つため、蒸発速度を容易に制御することができ、結果的に均一な所望の特性を有する膜を容易に形成することができる。
3.従来よりも広い波長範囲、特に近紫外域の光を透過させることができる。
4.高屈折率を有する光学薄膜を成膜することができる。
ADVANTAGE OF THE INVENTION According to this invention, the vapor deposition material which has the following characteristics, the optical thin film formed using it, and the manufacturing method of the optical thin film can be provided.
1. It is meltable and can be continuously deposited.
2. Even if the electron beam evaporation method is used, the evaporation rate can be easily controlled. That is, the heat generated by the beam is appropriately diffused from the beam irradiation point to the entire molten pool to maintain a smooth evaporation surface, so that the evaporation rate can be easily controlled, resulting in a film having uniform desired characteristics. Can be formed.
3. It is possible to transmit light in a wider wavelength range than in the past, particularly in the near ultraviolet region.
4). An optical thin film having a high refractive index can be formed.

Claims (9)

ニオブ及びランタンの二元系酸化物から成り、該ニオブとランタンのモル比が25:75〜90:10であることを特徴とする蒸着材料。 A vapor deposition material comprising a binary oxide of niobium and lanthanum, wherein the molar ratio of niobium and lanthanum is 25:75 to 90:10. a)ニオブ及びランタンの二元系酸化物と、b)金属ニオブ及び/又は金属ランタンとから成る蒸着材料であって、該蒸着材料中のニオブとランタンのモル比が25:75〜90:10であることを特徴とする蒸着材料。 A vapor deposition material comprising a) a binary oxide of niobium and lanthanum and b) metal niobium and / or metal lanthanum, wherein the molar ratio of niobium and lanthanum in the vapor deposition material is 25:75 to 90:10. The vapor deposition material characterized by being. ニオブとランタンのモル比が35:65〜60:40である請求の範囲第1又は2項に記載の蒸着材料。 The vapor deposition material according to claim 1 or 2, wherein the molar ratio of niobium to lanthanum is 35:65 to 60:40. 焼結体または溶融体である請求の範囲第1〜3項のいずれかに記載の蒸着材料。 The vapor deposition material according to any one of claims 1 to 3, which is a sintered body or a melt. 酸化ランタンの含有率が5重量%以下である請求の範囲第1〜4項のいずれかに記載の蒸着材料。 The vapor deposition material according to any one of claims 1 to 4, wherein the content of lanthanum oxide is 5% by weight or less. 請求の範囲第1〜5項のいずれかに記載の蒸着材料を用い、真空蒸着法によって形成することを特徴とする光学薄膜の製造方法。 A method for producing an optical thin film, which is formed by a vacuum vapor deposition method using the vapor deposition material according to any one of claims 1 to 5. 真空蒸着法が電子ビーム蒸着法である請求の範囲第6項に記載の光学薄膜の製造方法。 The method for producing an optical thin film according to claim 6, wherein the vacuum deposition method is an electron beam deposition method. 成膜中において電子ビームの照射位置を固定する請求の範囲第7項に記載の光学薄膜の製造方法。 The method for producing an optical thin film according to claim 7, wherein the irradiation position of the electron beam is fixed during the film formation. 請求の範囲第6〜8項のいずれかに記載の製造方法により得られた光学薄膜。
The optical thin film obtained by the manufacturing method in any one of Claims 6-8.
JP2009509292A 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained therefrom Active JP5358430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009509292A JP5358430B2 (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained therefrom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007091541 2007-03-30
JP2007091541 2007-03-30
JP2009509292A JP5358430B2 (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained therefrom
PCT/JP2008/056643 WO2008123575A1 (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained from the same

Publications (2)

Publication Number Publication Date
JPWO2008123575A1 JPWO2008123575A1 (en) 2010-07-15
JP5358430B2 true JP5358430B2 (en) 2013-12-04

Family

ID=39831041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009509292A Active JP5358430B2 (en) 2007-03-30 2008-03-27 Vapor deposition material and optical thin film obtained therefrom

Country Status (6)

Country Link
JP (1) JP5358430B2 (en)
KR (1) KR101462294B1 (en)
CN (1) CN101636518B (en)
HK (1) HK1138334A1 (en)
TW (1) TWI382101B (en)
WO (1) WO2008123575A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506737B (en) * 2015-12-28 2018-02-09 常州瞻驰光电科技有限公司 A kind of non-stoichiometric niobium oxide polycrystalline Coating Materials and its growing technology
CN110078504B (en) * 2019-04-26 2020-10-30 清华大学 In-situ synthesized pseudo-binary complex phase rare earth niobate ceramic and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180604A (en) * 1998-12-17 2000-06-30 Oputoron:Kk High refractive index optical thin film material and optical thin film using therewith
JP2002226967A (en) * 2000-12-29 2002-08-14 Merck Patent Gmbh Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same
JP2005031297A (en) * 2003-07-10 2005-02-03 Asahi Techno Glass Corp Transparent substrate with antireflection film for liquid crystal display device
JP2005154885A (en) * 2003-03-26 2005-06-16 Mitsubishi Heavy Ind Ltd Material for thermal barrier coating
JP2006519923A (en) * 2003-02-19 2006-08-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Vapor deposition material for producing high refractive index optical layers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327087B1 (en) * 1998-12-09 2001-12-04 Canon Kabushiki Kaisha Optical-thin-film material, process for its production, and optical device making use of the optical-thin-film material
KR100997068B1 (en) * 2003-10-21 2010-11-30 우베 마테리알즈 가부시키가이샤 Magnesium oxide for vapor deposition
JP2006195301A (en) 2005-01-17 2006-07-27 Konica Minolta Opto Inc Optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180604A (en) * 1998-12-17 2000-06-30 Oputoron:Kk High refractive index optical thin film material and optical thin film using therewith
JP2002226967A (en) * 2000-12-29 2002-08-14 Merck Patent Gmbh Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same
JP2006519923A (en) * 2003-02-19 2006-08-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Vapor deposition material for producing high refractive index optical layers
JP2005154885A (en) * 2003-03-26 2005-06-16 Mitsubishi Heavy Ind Ltd Material for thermal barrier coating
JP2005031297A (en) * 2003-07-10 2005-02-03 Asahi Techno Glass Corp Transparent substrate with antireflection film for liquid crystal display device

Also Published As

Publication number Publication date
TW200848530A (en) 2008-12-16
WO2008123575A1 (en) 2008-10-16
JPWO2008123575A1 (en) 2010-07-15
TWI382101B (en) 2013-01-11
KR20090127365A (en) 2009-12-10
KR101462294B1 (en) 2014-11-14
HK1138334A1 (en) 2010-08-20
CN101636518B (en) 2011-06-08
CN101636518A (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP5169888B2 (en) Composite tungsten oxide target material and manufacturing method thereof
KR20060054000A (en) Vapour-deposition material for the production of layers of high refractive index
EP2029500A1 (en) Procédé de préparation de céramiques, céramiques ainsi obtenues et leurs utilisations notamment comme cible pour pulvérisation cathodique
JP5358430B2 (en) Vapor deposition material and optical thin film obtained therefrom
TW382638B (en) Stabilized vapur-deposition materials based on titanium oxide
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
SK57593A3 (en) Steaming material for production of middle-refracted optical me layerhod of its preparation and its use
JPH07331412A (en) Optical parts for infrared ray and their production
JP3039721B2 (en) Vapor deposition material and method for producing optical thin film using the vapor deposition material
JP5549342B2 (en) Antireflection film and optical member having the same
JP6736066B2 (en) Deposition method
US20140053606A1 (en) Amorphous alloy, molding die, and method for producing optical element
CN101178440A (en) LaTiO3 evaporation material for high refractivity optical film, method of producing the same and use
JP2009062237A (en) Forming material for optical thin film and method of forming optical thin film
JP2010180431A (en) Vapor deposition material, optical thin film and production method therefor
JP5783613B2 (en) Magnetron coating module and magnetron coating method
JP3160309B2 (en) Thin film formation method
JP5426136B2 (en) Tantalum oxide vapor deposition material, production method thereof, and production method of tantalum oxide vapor deposition film
JP6645012B2 (en) Evaporation material
Clapham The production and properties of thin films of lead monoxide
JP6443222B2 (en) Vapor deposition material and molded body thereof
JPH0641729A (en) Material for vapor deposition
WO2003023084A1 (en) Fluoride sputtering target and method for preparation thereof
JP2004204320A (en) Vapor deposition method and vapor deposition apparatus
JP2009235564A (en) Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250