JP2002226211A - Recovery method for gypsum and magnesium hydroxide and recovery system therefor - Google Patents

Recovery method for gypsum and magnesium hydroxide and recovery system therefor

Info

Publication number
JP2002226211A
JP2002226211A JP2001304064A JP2001304064A JP2002226211A JP 2002226211 A JP2002226211 A JP 2002226211A JP 2001304064 A JP2001304064 A JP 2001304064A JP 2001304064 A JP2001304064 A JP 2001304064A JP 2002226211 A JP2002226211 A JP 2002226211A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
gypsum
particles
crystallization tank
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001304064A
Other languages
Japanese (ja)
Inventor
Kenji Nozaki
賢二 野崎
Hirotaka Isomura
弘隆 磯村
Keiichi Miura
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001304064A priority Critical patent/JP2002226211A/en
Publication of JP2002226211A publication Critical patent/JP2002226211A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a means which recovers high purity magnesium hydroxide from a precipitations of gypsum and magnesium hydroxide. SOLUTION: The gypsum and magnesium hydroxide are formed by adding a quick lime, a slaked lime or slaked lime slurry into a solution introduced into a crystallization vessel by preferably warming up at 30-80 deg.C, the precipitated gypsum is extracted from the bottom of the vessel, on the other, the suspension containing unprecipitated gypsum particles and magnesium hydroxide particles is introduced into a liquid cyclone, then the magnesium hydroxide particles in the upper parts of the cyclone are recovered, moreover the recovery method of the gypsum and magnesium hydroxide is characterized by returning a mixture of the gypsum particles and the magnesium hydroxide in the lower parts of the cyclone to the crystallization vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理溶液から石
膏と水酸化マグネシウムを効果的に分離して回収する方
法と回収装置に関する。本発明の回収方法は脱硫剤とし
て用いられる水酸化マグネシウムの再生工程、または石
油系燃焼灰の処理工程における石膏と水酸化マグネシウ
ムの分離回収方法として好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for effectively separating and recovering gypsum and magnesium hydroxide from a solution to be treated. The recovery method of the present invention is suitable as a method for separating and recovering gypsum and magnesium hydroxide in a step of regenerating magnesium hydroxide used as a desulfurizing agent or a step of treating petroleum-based combustion ash.

【0002】[0002]

【従来の技術】各種の排ガスには硫黄酸化物が含まれて
いる場合が多く、これを除去するために脱硫剤としてM
g(OH)2とCa(OH)2の混合スラリーを利用する方法
が従来知られている。この脱硫方法では、硫黄酸化物を
吸収した混合スラリーを酸性下で空気酸化してMgSO
4とCaSO4(二水石膏)にし、石膏を分離して回収する
一方、MgSO4を含む液に生石灰や消石灰を加えてM
g(OH)2とCaSO4を生成させ、この石膏を分離し、
Mg(OH)2を脱硫剤として再利用する。
2. Description of the Related Art Various types of exhaust gas often contain sulfur oxides, and M is used as a desulfurizing agent to remove sulfur oxides.
A method using a mixed slurry of g (OH) 2 and Ca (OH) 2 is conventionally known. In this desulfurization method, the mixed slurry that has absorbed sulfur oxides is air-oxidized under acidic conditions to form MgSO 4.
4 and CaSO 4 (gypsum), and the gypsum is separated and recovered, while quick lime or slaked lime is added to the liquid containing MgSO 4 to obtain M
g (OH) 2 and CaSO 4 , the gypsum is separated,
Mg (OH) 2 is reused as a desulfurizing agent.

【0003】また、火力発電所や各種工業プラントのボ
イラー等から排出される石油系燃料の燃焼灰を水や硫酸
などで処理し、その浸出スラリーからニッケルスやバナ
ジウムなどの有価金属を回収する方法が知られている
が、有価金属を回収した後の処理方法として、排水に生
石灰を添加して液中の硫酸イオンを石膏に転じて沈澱さ
せ、これを回収する一方、さらに消石灰や消石灰スラリ
ーを加えて液中のマグネシウムイオンを水酸化マグネシ
ウム沈澱として分離することが行われている。
[0003] Further, a method of treating the combustion ash of petroleum fuel discharged from boilers and the like of thermal power plants and various industrial plants with water or sulfuric acid and recovering valuable metals such as nickels and vanadium from the leached slurry. Although it is known, as a treatment method after recovering valuable metals, quick lime is added to wastewater, sulfate ions in the liquid are turned into gypsum and precipitated, and while this is recovered, slaked lime or slaked lime slurry is added. Separation of magnesium ions in the solution by precipitation as magnesium hydroxide has been performed.

【0004】[0004]

【発明が解決しようとする課題】このように石膏および
水酸化マグネシウムの沈澱を生成させ、これを分離回収
する場合、凝集または結晶成長した石膏粒子は槽底に沈
澱するが、微細な石膏粒子は液中に分散し、また水酸化
マグネシウム粒子も微細なために液中に分散しやすく、
従って、槽底から石膏の沈澱物を抜き出しても、液中に
は微細な石膏粒子と水酸化マグネシウム粒子が混在する
ので水酸化マグネシウムを石膏と分離して回収するのが
難しいと云う問題がある。
When gypsum and magnesium hydroxide precipitates are formed and separated and recovered in this way, gypsum particles that have aggregated or crystallized precipitate at the bottom of the tank, but fine gypsum particles do not. Dispersed in liquid, and also easy to disperse in liquid because magnesium hydroxide particles are also fine,
Therefore, even if the gypsum precipitate is extracted from the tank bottom, there is a problem that it is difficult to separate and recover magnesium hydroxide from gypsum because fine gypsum particles and magnesium hydroxide particles are mixed in the liquid. .

【0005】本発明は、従来の処理方法におけるこのよ
うな問題を解決したものであり、晶析槽に液体サイクロ
ンを組み合わせた簡単な手段によって石膏の沈澱と水酸
化マグネシウムの沈澱とを分離性良く回収する方法およ
び装置を提供する。本方法は石膏と水酸化マグネシウム
が沈澱する処理系について広く適用することができ、特
に脱硫剤の処理工程や石油系燃焼灰の処理工程において
好適である。
[0005] The present invention has solved such a problem in the conventional treatment method, and the gypsum precipitate and the magnesium hydroxide precipitate can be easily separated from each other by a simple means combining a crystallization tank with a hydrocyclone. A recovery method and apparatus are provided. This method can be widely applied to a treatment system in which gypsum and magnesium hydroxide are precipitated, and is particularly suitable in a treatment process of a desulfurizing agent and a treatment process of petroleum combustion ash.

【0006】[0006]

【課題を解決する手段】本発明は、(1)硫酸イオンと
マグネシウムイオンを含有する溶液にカルシウム化合物
を加え、この溶液を5〜80℃に加温して石膏と水酸化
マグネシウムを生成させ、これを固液分離して石膏と水
酸化マグネシウムを回収することを特徴とする石膏と水
酸化マグネシウムの回収方法に関する。本方法は(2)
カルシウム化合物を加えた後に、この溶液を30〜80
℃に加温して石膏と水酸化マグネシウムを生成させる回
収方法を含む。
According to the present invention, (1) a calcium compound is added to a solution containing sulfate ions and magnesium ions, and this solution is heated to 5 to 80 ° C. to form gypsum and magnesium hydroxide; The present invention relates to a method for recovering gypsum and magnesium hydroxide, which comprises separating the solid and liquid to recover gypsum and magnesium hydroxide. This method is (2)
After addition of the calcium compound, the solution is
Includes a recovery method that produces gypsum and magnesium hydroxide by heating to ° C.

【0007】上記方法によれば、晶析槽の溶液を5〜8
0℃、好ましくは30〜80℃に加温して晶析温度を高
めることによって消石灰等の溶解度が上がるので消石灰
等を過剰に添加する必要がない。従って、生成物中に混
在する未溶解の消石灰が少なく、水酸化マグネシウムの
純度を高めることができる。さらに、晶析温度が上がる
ので、石膏の生成が促進され、石膏と水酸化マグネシウ
ムの分離効果が向上する。
[0007] According to the above method, the solution in the crystallization tank is 5-8.
By increasing the crystallization temperature by heating to 0 ° C, preferably 30 to 80 ° C, the solubility of slaked lime and the like increases, so that it is not necessary to add slaked lime and the like in excess. Therefore, the amount of undissolved slaked lime mixed in the product is small, and the purity of magnesium hydroxide can be increased. Further, since the crystallization temperature is increased, the formation of gypsum is promoted, and the effect of separating gypsum and magnesium hydroxide is improved.

【0008】また、本発明は、(3)硫酸イオンとマグ
ネシウムイオンを含有する溶液を晶析槽に導き、カルシ
ウム化合物を加えて石膏と水酸化マグネシウムを生成さ
せ、沈澱した石膏を槽底から抜き出し、一方、沈澱しな
い石膏粒子と水酸化マグネシウム粒子を含む懸濁液を液
体サイクロンに導き、サイクロン上部の水酸化マグネシ
ウム微粒子を回収し、さらにサイクロン下部の石膏粒子
と水酸化マグネシウムの混合物を晶析槽に戻すことを特
徴とする石膏と水酸化マグネシウムの回収方法に関す
る。
The present invention also provides (3) a solution containing sulfate ions and magnesium ions, which is introduced into a crystallization tank, a calcium compound is added to form gypsum and magnesium hydroxide, and the precipitated gypsum is extracted from the bottom of the tank. On the other hand, a suspension containing gypsum particles and magnesium hydroxide particles that do not precipitate is led to a liquid cyclone, the magnesium hydroxide fine particles at the upper part of the cyclone are collected, and a mixture of the gypsum particles and magnesium hydroxide at the lower part of the cyclone is crystallized. And a method for recovering gypsum and magnesium hydroxide.

【0009】上記回収方法によれば、粒径が比較的大き
い石膏は晶析槽の底部に沈積するので、これを抜き出し
て回収し、また水酸化マグネシウムなどの微粒子部分は
液体サイクロンに導き、分級して回収するので、粗粒が
多い石膏と微粒子が多い水酸化マグネシウムを効率よく
分離して回収することができる。
According to the above-mentioned recovery method, gypsum having a relatively large particle size is deposited on the bottom of the crystallization tank, so that it is extracted and recovered, and fine particles such as magnesium hydroxide are introduced into a liquid cyclone and classified. Therefore, gypsum having many coarse particles and magnesium hydroxide having many fine particles can be efficiently separated and collected.

【0010】また、本発明の回収方法は、(4)液体サ
イクロンを二段に設け、晶析槽で沈澱しない石膏粒子と
水酸化マグネシウム粒子を含む懸濁液を第一液体サイク
ロンに導き、この第一液体サイクロン下部に集まる平均
粒径約20〜80μmの混合物を晶析槽に戻し、一方、
第一液体サイクロン上部の微粒子を含む懸濁液を第二液
体サイクロンに導き、この第二液体サイクロン上部に凝
集する水酸化マグネシウム微粒子を回収する一方、第二
液体サイクロン下部に集まる平均粒径約2〜20μmの
混合物を晶析槽または晶析槽と第一液体サイクロンに戻
すことを特徴とする回収方法を含む。
In the recovery method of the present invention, (4) a liquid cyclone is provided in two stages, and a suspension containing gypsum particles and magnesium hydroxide particles which do not precipitate in a crystallization tank is led to a first liquid cyclone. The mixture having an average particle size of about 20 to 80 μm collected in the lower part of the first hydrocyclone is returned to the crystallization tank, while
The suspension containing the fine particles at the upper part of the first hydrocyclone is led to the second hydrocyclone, and the magnesium hydroxide fine particles that aggregate at the upper part of the second hydrocyclone are collected, while the average particle size of the particles collected at the lower part of the second hydrocyclone is about 2 μm. A recovery method characterized by returning the mixture of 〜20 μm to the crystallization tank or the crystallization tank and the first hydrocyclone.

【0011】上記回収方法によれば、液体サイクロンを
二段に設け、一段目サイクロンからな回収した粗粒部分
を晶析槽に戻して循環使用し、微粒子部分を第二段目の
サイクロンに導くので、微粒子が多い水酸化マグネシウ
ムを高濃度で回収することができ、かつ石膏との分離効
果が高く、石膏が殆ど混入しない水酸化マグネシウムを
回収することができる。
According to the above-mentioned recovery method, the liquid cyclone is provided in two stages, and the coarse particles collected from the first stage cyclone are returned to the crystallization tank for circulation and used, and the fine particles are guided to the second stage cyclone. Therefore, it is possible to recover magnesium hydroxide having a large amount of fine particles at a high concentration, and it is possible to recover magnesium hydroxide which has a high effect of separating from gypsum and hardly contains gypsum.

【0012】さらに本発明の回収方法は、その適用例と
して、(5)石油系燃焼灰の処理溶液を晶析槽に導き、
該溶液に生石灰、消石灰または消石灰スラリーの何れか
を加えて石膏と水酸化マグネシウムを生成させ、沈澱し
た石膏を槽底から抜き出し、沈澱しない石膏粒子と水酸
化マグネシウム粒子を含む懸濁液を液体サイクロンに導
く回収方法、(6)石油系燃焼灰の処理溶液がニッケル
またはバナジウムを溶媒抽出したラフィネート溶液であ
り、該溶液に消石灰スラリーを加えて石膏と水酸化マグ
ネシウムを生成させ、これを分離回収する方法に関す
る。
Further, as an application example of the recovery method of the present invention, (5) a treatment solution of petroleum-based combustion ash is led to a crystallization tank,
Gypsum and magnesium hydroxide are formed by adding any of quick lime, slaked lime or slaked lime slurry to the solution, the precipitated gypsum is withdrawn from the bottom of the tank, and a suspension containing unprecipitated gypsum particles and magnesium hydroxide particles is subjected to liquid cyclone. (6) The treatment solution of petroleum-based combustion ash is a raffinate solution obtained by extracting nickel or vanadium with a solvent, and slaked lime slurry is added to the solution to produce gypsum and magnesium hydroxide, which are separated and collected. About the method.

【0013】上記回収方法によれば、石油系燃焼灰の処
理溶液、例えば、バナジウムやニッケルを抽出した処理
溶液から石膏と水酸化マグネシウムを効率よく分離して
回収することができる。
According to the above recovery method, gypsum and magnesium hydroxide can be efficiently separated and recovered from a processing solution of petroleum-based combustion ash, for example, a processing solution obtained by extracting vanadium or nickel.

【0014】また本発明の回収方法は、脱硫剤として用
いた水酸化マグネシウムスラリーの処理方法として好適
であり、その適用例として、(7)硫黄酸化物を吸収し
た水酸化マグネシウムスラリーの処理溶液を晶析槽に導
き、沈澱した石膏を槽底から抜き出し、沈澱しない石膏
粒子と水酸化マグネシウム粒子を含む懸濁液を液体サイ
クロンに導く回収方法を含む。さらに、(8)晶析槽の
溶液を30〜80℃に加温して、石膏と水酸化マグネシ
ウムを生成させる上記何れかに記載する回収方法を含
む。
Further, the recovery method of the present invention is suitable as a method for treating a magnesium hydroxide slurry used as a desulfurizing agent. Examples of its application include (7) a treatment solution of a magnesium hydroxide slurry absorbing sulfur oxides. The method includes a recovery method in which the gypsum is led to a crystallization tank, the precipitated gypsum is extracted from the bottom of the tank, and a suspension containing unprecipitated gypsum particles and magnesium hydroxide particles is led to a liquid cyclone. Furthermore, (8) the recovery method according to any of the above, wherein the solution in the crystallization tank is heated to 30 to 80 ° C. to form gypsum and magnesium hydroxide.

【0015】上記回収方法によれば、脱硫剤として用い
た水酸化マグネシウムスラリーについて、脱硫処理によ
って生じた石膏と水酸化マグネシウムとを分離して回収
することができ、回収した水酸化マグネシウムには石膏
が殆ど含まれておらず、従って、これを脱硫剤として再
利用することができる。
According to the above-mentioned recovery method, gypsum and magnesium hydroxide produced by the desulfurization treatment can be separated and recovered from the magnesium hydroxide slurry used as the desulfurizing agent. , And can be reused as a desulfurizing agent.

【0016】さらに本発明は、(9)被処理溶液にカル
シウム化合物を加えて石膏と水酸化マグネシウムを生成
させる晶析槽、晶析槽に連通した液体サイクロン、晶析
槽で沈降しない石膏粒子と水酸化マグネシウム粒子を含
む懸濁液を液体サイクロンに導く送液管路、液体サイク
ロン下部の沈降物を晶析槽に戻す回送管路、液体サイク
ロン上部の微粒子を回収する手段を有することを特徴と
する石膏と水酸化マグネシウムの回収装置に関する。こ
の回収装置は、(10)送液管路、回送管路、晶析槽の
排出管路、および液体サイクロン上部から微粒子回収手
段に通じる排出管路の各管路中に貯槽が介設されている
態様を含む。
The present invention further provides (9) a crystallization tank for adding gypsum and magnesium hydroxide by adding a calcium compound to the solution to be treated, a liquid cyclone communicating with the crystallization tank, and gypsum particles which do not settle in the crystallization tank. It has a liquid feed line for guiding a suspension containing magnesium hydroxide particles to a hydrocyclone, a feed line for returning a sediment at the bottom of the hydrocyclone to the crystallization tank, and means for collecting fine particles at the top of the hydrocyclone. Gypsum and magnesium hydroxide recovery equipment. In this recovery device, (10) storage tanks are provided in each of a liquid sending pipe, a feeding pipe, a discharge pipe of the crystallization tank, and a discharge pipe leading from the upper part of the liquid cyclone to the fine particle collecting means. Includes embodiments that include

【0017】上記回収装置によれば、本発明の回収方法
を効率よく実施することができ、石膏および水酸化マグ
ネシウムを効率よく分離して回収することができる。ま
た、回収した石膏および水酸化マグネシウムの純度が高
い。
According to the above recovery apparatus, the recovery method of the present invention can be carried out efficiently, and gypsum and magnesium hydroxide can be separated and recovered efficiently. Further, the purity of the recovered gypsum and magnesium hydroxide is high.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施形態に基づい
て詳細に説明する。なお、特に示さない限り%は重量%
であり、石膏は二水石膏である。本発明の回収方法を実
施する装置構成の一例を図1に示す。図示する回収装置
には、被処理溶液にカルシウム化合物を加えて石膏と水
酸化マグネシウムを生成させる晶析槽10、晶析槽10
に連通した液体サイクロン11および12、晶析槽10
で沈降しない石膏粒子と水酸化マグネシウム粒子を溶液
と共に液体サイクロンに導く送液管路13、液体サイク
ロン下部の沈降物を晶析槽に戻す回送管路14、液体サ
イクロン上部の微粒子を回収する手段が設けられてお
り、液体サイクロンは二段に設置されている。また晶析
槽10の槽底には石膏を抜き出して回収する手段が設け
られている。さらに各管路には溶液の供給量を調整する
貯槽15が介設されている。なお、晶析槽はドラフトチ
ューブ付きのものが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. Unless otherwise indicated,% is% by weight.
And the gypsum is dihydrate gypsum. FIG. 1 shows an example of an apparatus configuration for implementing the recovery method of the present invention. In the illustrated recovery apparatus, a crystallization tank 10 for adding a calcium compound to the solution to be treated to generate gypsum and magnesium hydroxide, a crystallization tank 10
Cyclones 11 and 12 communicating with the crystallization tank 10
A liquid feed line 13 for guiding gypsum particles and magnesium hydroxide particles that do not settle in the liquid cyclone together with the solution, a feed line 14 for returning the sediment below the liquid cyclone to the crystallization tank, and a means for collecting fine particles above the liquid cyclone. A hydrocyclone is provided in two stages. A means for extracting and recovering gypsum is provided at the bottom of the crystallization tank 10. Further, a storage tank 15 for adjusting the supply amount of the solution is interposed in each pipe. The crystallization tank preferably has a draft tube.

【0019】被処理溶液としては、溶液中で石膏と水酸
化マグネシウムの沈澱が生じるものであれば広く適用す
ることができる。具体的な例としては、硫黄酸化物を吸
収した水酸化マグネシウムスラリーなどの処理溶液、ま
たは石油系燃焼灰を処理した水溶液などが用いられる。
なお、この石油系燃焼灰はタール質燃料、重油、石油コ
ークス、石油ピッチ、アスファルト等の石油系燃料を燃
焼した際に生じる塵灰であり、これを浸出したスラリー
には多量の硫黄分や硫安分が溶出している。
The solution to be treated can be widely applied as long as gypsum and magnesium hydroxide precipitate in the solution. As a specific example, a treatment solution such as a magnesium hydroxide slurry that has absorbed a sulfur oxide, or an aqueous solution that has been treated with petroleum-based combustion ash is used.
Note that this petroleum-based combustion ash is dust ash generated when burning petroleum-based fuels such as tar fuel, heavy oil, petroleum coke, petroleum pitch, and asphalt. Minutes are eluted.

【0020】晶析槽10に導入された被処理溶液(硫酸
イオンとマグネシウムイオンを含有する溶液)に、カル
シウム化合物、例えば、生石灰粉末あるいは消石灰スラ
リーなどを加えて均一に攪拌し、晶析槽内のpHを10
以上、好ましくはpHを10〜12の範囲に調整する。
さらに、晶析槽を加熱して液温を5〜80℃、好ましく
は30〜80℃に加温する。なお、通常は液中のマグネ
シウムおよび硫酸根を十分に沈澱化するため消石灰等を
やや過剰に添加するが、これでは未溶解の消石灰等が残
り、水酸化マグネシウムに混入して不純物になる。本発
明では溶液を加温して晶析温度を高めることにより、消
石灰等の溶解度を上げるので、これらを過剰に添加する
必要がない。このため、生成物中に混在する未溶解の消
石灰が少なく、水酸化マグネシウムの純度を高めること
ができる。さらに、晶析温度が上がるので石膏の生成が
促進され、石膏と水酸化マグネシウムの分離効果が向上
する。
A calcium compound, for example, quicklime powder or slaked lime slurry, is added to the solution to be treated (a solution containing sulfate ions and magnesium ions) introduced into the crystallization tank 10 and uniformly stirred. PH of 10
As described above, the pH is preferably adjusted to the range of 10 to 12.
Further, the crystallization tank is heated to raise the liquid temperature to 5 to 80C, preferably 30 to 80C. Usually, slaked lime or the like is added in a slightly excessive amount to sufficiently precipitate magnesium and sulfate groups in the liquid. However, in this case, undissolved slaked lime and the like remain and become mixed with magnesium hydroxide to become impurities. In the present invention, since the solubility of slaked lime and the like is increased by heating the solution to increase the crystallization temperature, it is not necessary to add these in excess. Therefore, the amount of undissolved slaked lime mixed in the product is small, and the purity of magnesium hydroxide can be increased. Further, since the crystallization temperature is increased, the formation of gypsum is promoted, and the effect of separating gypsum and magnesium hydroxide is improved.

【0021】晶析槽において、液中の硫酸イオンは石灰
と反応して硫酸カルシウム(二水石膏)を生じ、また液中
のマグネシウムイオンは水酸化マグネシウムの微粒子を
生成する。凝集した石膏粒子は槽底に沈澱するので、こ
れを槽底から抜き出し、固液分離して得た石膏ケーキを
硫酸洗浄し、さらに水で洗浄して石膏を回収する。一
方、微細な石膏粒子や水酸化マグネシウム粒子は沈降せ
ず液中に漂うので、この懸濁液を送液管路13を通じて
第一液体サイクロン11に導く。
In the crystallization tank, sulfate ions in the liquid react with lime to form calcium sulfate (gypsum), and magnesium ions in the liquid form fine particles of magnesium hydroxide. Since the agglomerated gypsum particles settle at the bottom of the tank, they are extracted from the bottom of the tank, and the gypsum cake obtained by solid-liquid separation is washed with sulfuric acid and further washed with water to collect gypsum. On the other hand, fine gypsum particles and magnesium hydroxide particles do not settle and float in the liquid, and thus this suspension is led to the first liquid cyclone 11 through the liquid feed pipe 13.

【0022】液体サイクロン11において液中の微細な
粒子はサイクロン上部に集まり、相対的に粗粒な粒子は
サイクロン下部に集まる。水酸化マグネシウム粒子は概
ね石膏粒子よりも微細なので、サイクロン上部には主に
水酸化マグネシウム粒子が凝集し、サイクロン下部には
石膏粒子を主体とし一部に水酸化マグネシウム粒子を含
む混合物が凝集する。このサイクロン下部の混合物を抜
き出し、回送管路14を通じて晶析槽10に戻す。一
方、サイクロン上部の懸濁液を第二液体サイクロン12
に送る。
In the liquid cyclone 11, fine particles in the liquid collect at the upper part of the cyclone, and relatively coarse particles collect at the lower part of the cyclone. Since magnesium hydroxide particles are generally finer than gypsum particles, magnesium hydroxide particles mainly aggregate at the upper part of the cyclone, and a mixture mainly composed of gypsum particles and partially containing magnesium hydroxide particles at the lower part of the cyclone. The mixture at the lower part of the cyclone is withdrawn and returned to the crystallization tank 10 through the feed line 14. On the other hand, the suspension above the cyclone was transferred to the second liquid cyclone 12.
Send to

【0023】第二液体サイクロン12ではさらに微細な
粒子がサイクロン上部に集まり、これより粗粒な粒子が
サイクロン下部に集まる。このサイクロン上部の微粒子
は殆どが水酸化マグネシウムであるので、この懸濁液を
第二液体サイクロン12から抜き出し、固液分離して水
酸化マグネシウムを回収する。第二液体サイクロン12
の下部に凝集する粒子は水酸化マグネシウムと石膏の混
合物であり、これらは第一液体サイクロン11の下部に
凝集するものより微細なので、回送管路14通じてこの
混合物の一部を第一液体サイクロン11に戻し、残部を
晶析槽10に戻す。
In the second hydrocyclone 12, finer particles collect at the upper part of the cyclone, and coarser particles collect at the lower part of the cyclone. Since most of the fine particles in the upper part of the cyclone are magnesium hydroxide, this suspension is extracted from the second liquid cyclone 12, and the solid-liquid separation is performed to recover the magnesium hydroxide. Second hydrocyclone 12
Is a mixture of magnesium hydroxide and gypsum, which are finer than those agglomerated in the lower part of the first hydrocyclone 11, so that a part of this mixture is passed through the circulating duct 14 11 and the rest is returned to the crystallization tank 10.

【0024】サイクロン下部に凝集する混合物の粒子は
石膏が多いので、これを晶析槽10に戻すことにより石
膏粒子の凝集を促して沈澱させ、石膏の回収率を高め
る。また、水酸化マグネシウムは液体サイクロンによっ
て石膏と分離されるので、最終的に石膏の混入量が大幅
に少ない高純度の水酸化マグネシウムを回収することが
できる。なお、連続処理を行う場合には、上記回収装置
の送液管路、回送管路、晶析槽の排出管路、および液体
サイクロン上部から微粒子回収手段に通じる排出管路の
各管路中に貯槽15を介設するのが好ましい。貯槽15
を設けることによって次工程への液体の供給量を調整す
ることができ、連続運転時の分級効果を向上させること
ができる。なお、少量のバッチ処理の場合には貯槽を設
けなくても良い。
Since the mixture particles agglomerated in the lower part of the cyclone are mostly gypsum, the gypsum particles are returned to the crystallization tank 10 to promote the aggregation of the gypsum particles and precipitate, thereby increasing the recovery rate of the gypsum. Further, since magnesium hydroxide is separated from gypsum by the liquid cyclone, high-purity magnesium hydroxide with a significantly reduced amount of gypsum can be finally recovered. In the case of performing the continuous treatment, in each of the liquid feed pipe, the feed pipe, the discharge pipe of the crystallization tank, and the discharge pipe leading from the upper part of the liquid cyclone to the fine particle collecting means, when performing the continuous treatment. It is preferable to interpose a storage tank 15. Storage tank 15
Is provided, the supply amount of the liquid to the next step can be adjusted, and the classification effect at the time of continuous operation can be improved. In the case of a small batch processing, a storage tank may not be provided.

【0025】石油系燃焼灰の処理溶液から溶媒抽出によ
ってバナジウムやニッケルを分離することができるが、
このラフィネート溶液はマグネシウムイオンおよび硫酸
イオンを含むので、これを本発明の方法によって処理す
ることができる。その一例を説明すると、晶析槽10に
このラフィネート溶液と消石灰スラリーを導入して均一
に攪拌し、オーバーフローした後に、槽底の沈澱物を抜
き出し、固液分離して石膏を回収する。一方、晶析槽上
部の懸濁液を第一液体サイクロン11に導き、分級した
後に、サイクロン下部の凝集物を晶析槽10に戻す。こ
の凝集物は概ね平均粒径約20〜80μm、大部分が平
均粒径約50μmの粒子であり、石膏を主体とし一部に
水酸化マグネシウムを含む。さらに、第一液体サイクロ
ン11の上部から懸濁液を抜き出して第二液体サイクロ
ン12に送る。微分級の後、サイクロン下部の凝集物の
一部を第一液体サイクロン11に戻し、残部を晶析槽1
0に戻す。この凝集物は平均粒径約2〜20μm、大部
分が平均粒径約15μmの粒子であり、石膏を主体とし
一部に水酸化マグネシウムを含む。一方、第二液体サイ
クロン上部の懸濁液を抜き出して固液分離することによ
り、濃度約90%以上および平均粒径約2μm程度の水
酸化マグネシウムを回収することができる。
Vanadium and nickel can be separated from the processing solution of petroleum-based combustion ash by solvent extraction.
Since this raffinate solution contains magnesium ions and sulfate ions, it can be treated by the method of the present invention. As an example, the raffinate solution and slaked lime slurry are introduced into the crystallization tank 10 and uniformly stirred. After overflow, the precipitate at the bottom of the tank is extracted, and solid-liquid separation is performed to collect gypsum. On the other hand, the suspension in the upper part of the crystallization tank is guided to the first liquid cyclone 11, and after classification, the aggregates in the lower part of the cyclone are returned to the crystallization tank 10. The agglomerates are generally particles having an average particle size of about 20 to 80 μm, most of which have an average particle size of about 50 μm, and mainly contain gypsum and partially contain magnesium hydroxide. Further, the suspension is extracted from the upper part of the first hydrocyclone 11 and sent to the second hydrocyclone 12. After the differentiation class, a part of the aggregates in the lower part of the cyclone was returned to the first liquid cyclone 11, and the remainder was left in the crystallization tank 1.
Return to 0. The agglomerates are particles having an average particle size of about 2 to 20 μm, mostly having an average particle size of about 15 μm, and mainly contain gypsum and partially contain magnesium hydroxide. On the other hand, magnesium hydroxide having a concentration of about 90% or more and an average particle size of about 2 μm can be recovered by extracting the suspension above the second hydrocyclone and performing solid-liquid separation.

【0026】なお、上記ラフィネート溶液には灰中の硫
安分が溶解したアンモニウムイオンが存在し、さらに溶
媒抽出の際にアンモニアを添加してpHを中性ないし弱
アルカリ性に調整されているので、石膏および水酸化マ
グネシウムを固液分離して回収した際に、その濾液から
アンモニアを回収することができる。このアンモニアは
水蒸気蒸留または単蒸留等の蒸留操作によって回収する
ことができる。
Since the raffinate solution contains ammonium ions in which ammonium sulfate in the ash is dissolved, and the pH is adjusted to neutral or weakly alkaline by adding ammonia during solvent extraction, gypsum is used. When magnesium hydroxide and magnesium hydroxide are recovered by solid-liquid separation, ammonia can be recovered from the filtrate. This ammonia can be recovered by a distillation operation such as steam distillation or simple distillation.

【0027】[0027]

【発明の実施の形態】以下、本発明の回収方法を実施例
によって具体的に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the recovery method of the present invention will be specifically described with reference to examples.

【0028】〔実施例〕図1に示す回収装置を用い、石
油系燃焼灰処理液を晶析槽に導入し、液温を50℃に加
温し、これに消石灰スラリーを加えて均一に攪拌した。
次いで、晶析槽上部の懸濁液を第一液体サイクロンに導
いて約2分稼働した後、サイクロン下部の凝集物を晶析
槽に戻し、サイクロン上部の懸濁液を第二液体サイクロ
ンに導入した。ここで約11時間稼働後、サイクロン上
部の微粒子を回収し、サイクロン下部の凝集物を晶析槽
に戻した。晶析槽の槽底からは沈澱物を回収した。処理
液量および回収物の成分、回収量を表1にまとめて示し
た。なお、液体サイクロンを用いない以外は実施例1と
同様にして石油系燃焼灰処理液から石膏と水酸化マグネ
シウムを回収した(比較例1)。また、晶析槽を加熱せ
ずに沈澱させた(比較例2)。この結果を表1に対比し
て示した。表1の処理結果に示すように、本発明の方法
では回収した石膏の純度が99%以上、水酸化マグネシ
ウムの純度が91%であり、何れも高純度である。一
方、比較例1では石膏の回収量が実施例の約半分であ
り、しかも回収した水酸化マグネシウムの純度が10%
と極めて低い。また、比較例2ではさらに水酸化マグネ
シウムの純度が低い。
[Embodiment] Using the recovery apparatus shown in FIG. 1, a petroleum-based combustion ash treatment liquid was introduced into a crystallization tank, the liquid temperature was raised to 50 ° C., and slaked lime slurry was added thereto and uniformly stirred. did.
Next, after the suspension in the upper part of the crystallization tank is led to the first liquid cyclone and operated for about 2 minutes, the aggregate in the lower part of the cyclone is returned to the crystallization tank, and the suspension in the upper part of the cyclone is introduced into the second liquid cyclone. did. After operating for about 11 hours, the fine particles on the upper part of the cyclone were collected, and the aggregates on the lower part of the cyclone were returned to the crystallization tank. The precipitate was recovered from the bottom of the crystallization tank. Table 1 summarizes the amount of the processing solution, the components of the recovered material, and the recovered amount. Gypsum and magnesium hydroxide were recovered from the petroleum-based combustion ash treatment liquid in the same manner as in Example 1 except that the liquid cyclone was not used (Comparative Example 1). Further, precipitation was performed without heating the crystallization tank (Comparative Example 2). The result is shown in comparison with Table 1. As shown in the processing results in Table 1, in the method of the present invention, the purity of the recovered gypsum is 99% or more, and the purity of magnesium hydroxide is 91%, all of which are high purity. On the other hand, in Comparative Example 1, the recovered amount of gypsum was about half that of the example, and the purity of the recovered magnesium hydroxide was 10%.
And extremely low. In Comparative Example 2, the purity of magnesium hydroxide was even lower.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の回収方法および回収装置によれ
ば、被処理溶液から石膏と水酸化マグネシウムを効果的
に分離することができる。従って、石膏を回収すると共
に、石膏を殆ど含まない高純度の水酸化マグネシウムを
回収することができる。
According to the recovery method and the recovery apparatus of the present invention, gypsum and magnesium hydroxide can be effectively separated from the solution to be treated. Therefore, while recovering gypsum, high-purity magnesium hydroxide containing almost no gypsum can be recovered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る回収装置の構成図FIG. 1 is a configuration diagram of a recovery device according to the present invention.

【符号の説明】[Explanation of symbols]

10−晶析槽、11−第一液体サイクロン、12−第二
液体サイクロン、13−送液管路、14−回送管路、1
5−貯槽。
10-crystallization tank, 11-first hydrocyclone, 12-second hydrocyclone, 13-liquid feed line, 14-feed line, 1
5-Storage tank.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 9/02 615 B01D 9/02 615Z 616 616 625 625A 53/34 ZAB C01F 11/46 Z 53/50 102B 53/77 B01D 53/34 125R C01F 11/46 ZAB 102 (72)発明者 三浦 啓一 千葉県佐倉市大作二丁目4番2号 太平洋 セメント株式会社中央研究所内 Fターム(参考) 4D002 AA02 AC01 BA02 DA05 DA06 DA11 DA12 EA07 FA03 GA01 GA03 GB03 GB09 GB12 HA04 4G076 AA10 AA14 AB18 BA13 GA00──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 9/02 615 B01D 9/02 615Z 616 616 625 625A 53/34 ZAB C01F 11/46 Z 53/50 102B 53/77 B01D 53/34 125R C01F 11/46 ZAB102 (72) Inventor Keiichi Miura 2-4-2, Daisaku, Sakura-shi, Chiba F-term in the Central Research Institute of Taiheiyo Cement Co., Ltd. 4D002 AA02 AC01 BA02 DA05 DA06 DA11 DA12 EA07 FA03 GA01 GA03 GB03 GB09 GB12 HA04 4G076 AA10 AA14 AB18 BA13 GA00

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 硫酸イオンとマグネシウムイオンを含有
する溶液にカルシウム化合物を加え、この溶液を5〜8
0℃に加温して石膏と水酸化マグネシウムを生成させ、
これを固液分離して石膏と水酸化マグネシウムを回収す
ることを特徴とする石膏と水酸化マグネシウムの回収方
法。
1. A calcium compound is added to a solution containing sulfate ions and magnesium ions, and the solution is added to a solution containing 5 to 8
Heated to 0 ° C. to form gypsum and magnesium hydroxide,
A method for recovering gypsum and magnesium hydroxide, comprising separating the solid and liquid into gypsum and magnesium hydroxide.
【請求項2】 カルシウム化合物を加えた後に、この溶
液を30〜80℃に加温して石膏と水酸化マグネシウム
を生成させる請求項1の回収方法。
2. The method according to claim 1, wherein after adding the calcium compound, the solution is heated to 30 to 80 ° C. to form gypsum and magnesium hydroxide.
【請求項3】 硫酸イオンとマグネシウムイオンを含有
する溶液を晶析槽に導き、カルシウム化合物を加えて石
膏と水酸化マグネシウムを生成させ、沈澱した石膏を槽
底から抜き出し、一方、沈澱しない石膏粒子と水酸化マ
グネシウム粒子を含む懸濁液を液体サイクロンに導き、
サイクロン上部の水酸化マグネシウム微粒子を回収し、
さらにサイクロン下部の石膏粒子と水酸化マグネシウム
の混合物を晶析槽に戻すことを特徴とする石膏と水酸化
マグネシウムの回収方法。
3. A solution containing a sulfate ion and a magnesium ion is led to a crystallization tank, and a calcium compound is added to generate gypsum and magnesium hydroxide. And a suspension containing magnesium hydroxide particles into a hydrocyclone,
Collect the magnesium hydroxide fine particles at the top of the cyclone,
A method for recovering gypsum and magnesium hydroxide, further comprising returning a mixture of gypsum particles and magnesium hydroxide below the cyclone to a crystallization tank.
【請求項4】液体サイクロンを二段に設け、晶析槽で沈
澱しない石膏粒子と水酸化マグネシウム粒子を含む懸濁
液を第一液体サイクロンに導き、この第一液体サイクロ
ン下部に集まる平均粒径約20〜80μmの混合物を晶
析槽に戻し、一方、第一液体サイクロン上部の微粒子を
含む懸濁液を第二液体サイクロンに導き、この第二液体
サイクロン上部に凝集する水酸化マグネシウム微粒子を
回収する一方、第二液体サイクロン下部に集まる平均粒
径約2〜20μmの混合物を晶析槽または晶析槽と第一
液体サイクロンに戻すことを特徴とする請求項3の回収
方法。
4. A hydrocyclone is provided in two stages, and a suspension containing gypsum particles and magnesium hydroxide particles which do not precipitate in a crystallization tank is led to a first hydrocyclone, and an average particle size collected under the first hydrocyclone The mixture of about 20-80 μm is returned to the crystallization tank, while the suspension containing the fine particles at the top of the first hydrocyclone is led to the second hydrocyclone, and the magnesium hydroxide fine particles that aggregate at the top of the second hydrocyclone are collected. 4. The method according to claim 3, wherein the mixture having an average particle size of about 2 to 20 [mu] m collected under the second hydrocyclone is returned to the crystallization tank or the crystallization tank and the first hydrocyclone.
【請求項5】 石油系燃焼灰の処理溶液を晶析槽に導
き、該溶液に生石灰、消石灰または消石灰スラリーの何
れかを加えて石膏と水酸化マグネシウムを生成させ、沈
澱した石膏を槽底から抜き出し、沈澱しない石膏粒子と
水酸化マグネシウム粒子を含む懸濁液を液体サイクロン
に導く請求項3または4の回収方法。
5. A treatment solution for petroleum-based combustion ash is guided to a crystallization tank, and any of quick lime, slaked lime or slaked lime slurry is added to the solution to form gypsum and magnesium hydroxide, and the precipitated gypsum is removed from the bottom of the tank. The method according to claim 3 or 4, wherein the suspension containing the gypsum particles and magnesium hydroxide particles that are extracted and settled is guided to a liquid cyclone.
【請求項6】 石油系燃焼灰の処理溶液がニッケルまた
はバナジウムを溶媒抽出したラフィネート溶液であり、
該溶液に消石灰スラリーを加えて石膏と水酸化マグネシ
ウムを生成させ、これを分離回収する請求項5の回収方
法。
6. The processing solution for petroleum-based combustion ash is a raffinate solution obtained by solvent extraction of nickel or vanadium,
6. The recovery method according to claim 5, wherein a slaked lime slurry is added to the solution to produce gypsum and magnesium hydroxide, which are separated and recovered.
【請求項7】 硫黄酸化物を吸収した水酸化マグネシウ
ムスラリーの処理溶液を晶析槽に導き、沈澱した石膏を
槽底から抜き出し、沈澱しない石膏粒子と水酸化マグネ
シウム粒子を含む懸濁液を液体サイクロンに導く請求項
3または4の回収方法。
7. A treatment solution of a magnesium hydroxide slurry having absorbed sulfur oxides is introduced into a crystallization tank, and the precipitated gypsum is extracted from the bottom of the tank, and a suspension containing non-precipitated gypsum particles and magnesium hydroxide particles is converted into a liquid. The method according to claim 3 or 4, which leads to a cyclone.
【請求項8】 晶析槽の溶液を30〜80℃に加温し
て、石膏と水酸化マグネシウムを生成させる請求項3〜
7の何れかに記載する回収方法。
8. The solution in the crystallization tank is heated to 30 to 80 ° C. to form gypsum and magnesium hydroxide.
8. The collection method according to any one of items 7 to 7.
【請求項9】 被処理溶液にカルシウム化合物を加えて
石膏と水酸化マグネシウムを生成させる晶析槽、晶析槽
に連通した液体サイクロン、晶析槽で沈降しない石膏粒
子と水酸化マグネシウム粒子を含む懸濁液を液体サイク
ロンに導く送液管路、液体サイクロン下部の沈降物を晶
析槽に戻す回送管路、液体サイクロン上部の微粒子を回
収する手段を有することを特徴とする石膏と水酸化マグ
ネシウムの回収装置。
9. A crystallization tank for adding gypsum and magnesium hydroxide by adding a calcium compound to the solution to be treated, a liquid cyclone connected to the crystallization tank, gypsum particles and magnesium hydroxide particles which do not settle in the crystallization tank. Gypsum and magnesium hydroxide, having a liquid feed line for guiding the suspension to the hydrocyclone, a feed line for returning the sediment below the liquid cyclone to the crystallization tank, and a means for collecting fine particles above the liquid cyclone Recovery equipment.
【請求項10】 送液管路、回送管路、晶析槽の排出管
路、および液体サイクロン上部から微粒子回収手段に通
じる排出管路の各管路中に貯槽が介設されている請求項
9に記載する回収装置。
10. A storage tank is provided in each of a liquid feed line, a feed line, a discharge line of the crystallization tank, and a discharge line leading from the upper part of the liquid cyclone to the fine particle recovery means. 9. The recovery device according to 9.
JP2001304064A 2000-11-29 2001-09-28 Recovery method for gypsum and magnesium hydroxide and recovery system therefor Pending JP2002226211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304064A JP2002226211A (en) 2000-11-29 2001-09-28 Recovery method for gypsum and magnesium hydroxide and recovery system therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000363373 2000-11-29
JP2000-363373 2000-11-29
JP2001304064A JP2002226211A (en) 2000-11-29 2001-09-28 Recovery method for gypsum and magnesium hydroxide and recovery system therefor

Publications (1)

Publication Number Publication Date
JP2002226211A true JP2002226211A (en) 2002-08-14

Family

ID=26604845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304064A Pending JP2002226211A (en) 2000-11-29 2001-09-28 Recovery method for gypsum and magnesium hydroxide and recovery system therefor

Country Status (1)

Country Link
JP (1) JP2002226211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176057A (en) * 2018-08-08 2020-10-29 宇部興産株式会社 Manufacturing method of cement composition, and manufacturing system of cement composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176057A (en) * 2018-08-08 2020-10-29 宇部興産株式会社 Manufacturing method of cement composition, and manufacturing system of cement composition

Similar Documents

Publication Publication Date Title
WO2012021375A2 (en) The recovery of alumina trihydrate during the bayer process using cross-linked polysaccharides
WO2018170105A1 (en) Rare earth element extraction from coal
EP2586753A1 (en) Treatment device and treatment method for chlorine bypass dust
CN112941328A (en) Treatment method for recycling fly ash
CN103052607A (en) Method and device for treating chlorine bypass dust and discharge gas
EP0016624B1 (en) Coal de-ashing process
JP2001017939A (en) Treatment of cement kiln waste gas dust
EP2010684A1 (en) Processing of waste or cyclone solids from the chlorination of titanium bearing ores
CN1023693C (en) Process for extracting of vanadium pentoxide by water immersion from cured mixture of stone coal ash with surfuric acid by heating
JP2003236497A (en) Waste treatment method
JP3780359B2 (en) Treatment method for petroleum combustion ash
JP3831805B2 (en) Treatment method for petroleum combustion ash
JP2002226211A (en) Recovery method for gypsum and magnesium hydroxide and recovery system therefor
JP2004352521A (en) Processing method of heavy oil burned ash
JP3887710B2 (en) Ammonia recovery method
JP4013172B2 (en) Processing method for heavy oil combustion ash
JP4013171B2 (en) Processing method for heavy oil combustion ash
JP3991171B2 (en) Processing method for heavy oil combustion ash
JP3358892B2 (en) Mixing method of dust collection ash and drainage and drainage of heavy oil fuel fired boiler
CN114075627A (en) Germanium recovery method
JP3684477B2 (en) Treatment method for petroleum combustion ash
JP7351199B2 (en) Treatment method for arsenic-containing wastewater
CN103038174B (en) Process for recovery of alumina using tricalcium aluminate
JP3585321B2 (en) Wet treatment of petroleum-based combustion ash
JP3780358B2 (en) Treatment method for petroleum combustion ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023