JP3887710B2 - Ammonia recovery method - Google Patents

Ammonia recovery method Download PDF

Info

Publication number
JP3887710B2
JP3887710B2 JP2000363374A JP2000363374A JP3887710B2 JP 3887710 B2 JP3887710 B2 JP 3887710B2 JP 2000363374 A JP2000363374 A JP 2000363374A JP 2000363374 A JP2000363374 A JP 2000363374A JP 3887710 B2 JP3887710 B2 JP 3887710B2
Authority
JP
Japan
Prior art keywords
ammonia
solution
vanadium
water
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000363374A
Other languages
Japanese (ja)
Other versions
JP2002166266A (en
Inventor
賢二 野崎
弘隆 磯村
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000363374A priority Critical patent/JP3887710B2/en
Publication of JP2002166266A publication Critical patent/JP2002166266A/en
Application granted granted Critical
Publication of JP3887710B2 publication Critical patent/JP3887710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、石油系燃焼灰の処理溶液からアンモニアを効率よく回収する方法に関する。より詳しくは、石油系燃焼灰からバナジウムやニッケルなどの有価金属を分離回収する方法などにおいて、アンモニアを添加して中性ないし弱アルカリ性に調整した溶液からバナジウムやニッケルを溶媒によって抽出した後に、この溶液からアンモニアを効率よく回収して再利用することができるアンモニア回収方法に関する。
【0002】
【従来の技術】
火力発電所や各種工業プラントのボイラー等は重油や石油コークス等の重質油系燃料を用いるものが多く、現在、多量の燃焼灰が排出されている。これらの大部分は埋め立て処分されているが、この燃焼灰にはバナジウム等の有価金属が含有されており、環境汚染の防止および再資源化の観点から、その有効利用が求められている。
【0003】
このような重油灰から有価金属を回収する方法として、例えば、石油系燃料の燃焼灰スラリーに硫酸を加えて灰中の有価金属を浸出させた後に、液性をアルカリ性に転化して鉄分を酸化沈殿させて除去し、液性を再び強酸性として液中のバナジウムを酸化バナジウムとして沈殿させる方法が知られている(特願昭60-46930号公報)。また、鉄分を除去した濾液を冷却してさらにバナジウム化合物を分離し、これに硫酸を添加してニッケルを回収する方法も提案されている(特公平04-61709号公報)。さらに、バナジウムを分離した後に、残渣からニッケルスラッジと石膏を分離する方法などが知られている(特公平05-13718号公報)。ところが、これらの処理方法は何れも硫酸浸出を行う方法であり、強酸性下で加熱するため浸出槽などの腐蝕が激しい問題がある。また、硫酸浸出を行った後に、液性をアルカリ性に転化して酸化剤を添加し、その後に再び酸性にするなど液性の調整が煩雑である。
【0004】
一方、硫酸浸出を行う上記従来方法に代えて、アンモニア浸出を行う方法が本出願人によって提案されている(特願平11-207923号公報)。このアンモニア浸出の方法は装置の腐食などの問題がなく、しかも液性の煩雑な調整が不要であり、バナジウムやニッケルなどを効率良く浸出できる利点がある。このバナジウムやニッケルは溶媒抽出によって分離回収することができる。
【0005】
【発明の解決課題】
本発明は、このようなアンモニア性溶液からアンモニアを効率良く回収する方法を提供するものであって、石油系燃焼灰の処理方法などにおいて、バナジウムやニッケルを抽出したアンモニア性溶液からアンモニアを回収する場合などに好適な処理方法である。
【0006】
【課題を解決する手段】
すなわち、本発明は、(1)石油系燃焼灰に水または硫酸を加えて強酸性の水性スラリーとし、これを固液分離し、その濾液にアンモニアを添加して中性ないし弱アルカリ性に調整し、さらに酸化処理して含有金属を溶媒抽出した後のアンモニア含有処理溶液を用い、または、上記水性スラリーの固液分離によって得た固形分をアンモニア浸出し、さらに酸化処理して含有金属を溶媒抽出した後のアンモニア含有処理溶液を用い、このアンモニア含有処理溶液を蒸留塔に導き、加熱してアンモニアを蒸発させて水と分離した後に、蒸発したアンモニアを凝縮して回収し、分離した水を処理系に戻すことを特徴とするアンモニアの回収方法に関する。
【0007】
本発明の上記回収方法は以下の態様を含む。
(2)石油系燃焼灰に水または硫酸を加えて強酸性の水性スラリーとし、これを固液分離し、その濾液を希釈し、これにアンモニアを添加して中性ないし弱アルカリ性に調整し、さらに酸化処理して液中のバナジウムを5価に酸化し、この溶液からバナジウムを溶媒抽出したものをアンモニア含有処理溶液として用いる上記(1)の回収方法。
(3)石油系燃焼灰に水または硫酸を加えて強酸性の水性スラリーとし、これを固液分離し、この固形分をアンモニア浸出し、この浸出液を酸化処理した後に、溶媒抽出工程に導いてバナジウムおよび/またはニッケルを抽出したものをアンモニア含有処理溶液として用いる上記(1)の回収方法、。
(4)上記(2)または(3)において、バナジウムおよび/またはニッケルを溶媒抽出した後に、この溶液にカルシウム化合物を添加して石膏および水酸化マグネシウムを生成させて分離した溶液を用い、回収したアンモニアおよび分離した水をおのおの処理系に戻して再利用する回収方法。
【0008】
【発明の実施の態様】
以下、本発明を実施形態に基づいて詳細に説明する。なお、特に示さない限り%は重量%であり、石膏は二水石膏である。本発明の回収方法の概略を図1に示す。図示する回収系には、蒸発塔11、コンデンサー12、アンモニア性溶液10を蒸発塔11に導く管路13、蒸発塔11とコンデンサー12を連通して系外に至る管路14が設けられている。
【0009】
石油系燃焼灰を処理して得たアンモニア含有溶液10を、管路13を通じて蒸留塔11に導き、約100℃に加熱してアンモニアを蒸発させる。水の一部はアンモニアと共に蒸発するが、大部分の水は蒸発せずに塔内に残る。蒸発して水と分離したアンモニアガスは管路14を通じてコンデンサー12に導かれ、凝集してアンモニア水になる。このアンモニア水および未凝縮のアンモニアガスを回収する。一方、蒸発塔11の底部から抜き出した水は処理系に戻して再利用することができる。
【0010】
本発明において用いる石油系燃焼灰の処理溶液とは、例えば、石油系燃焼灰の水性スラリーを固液分離した濾液を希釈し、アンモニアを添加して中性ないし弱アルカリ性に調整しつつ酸化処理し、次いでこの溶液からバナジウムを溶媒抽出した処理溶液である。あるいは、この水性スラリーを固液分離した固形分にアンモニア水を加えて中性ないし弱アルカリ性に調整し、この濾液に空気を導入し、さらに過酸化水素を添加して酸化浸出した後に、溶媒抽出工程に導いてバナジウムおよび/またはニッケルを抽出した処理溶液である。これらの処理溶液は、バナジウムおよび/またはニッケルを溶媒抽出した後に、この溶液にカルシウム化合物を添加して石膏および水酸化マグネシウムを沈殿させて分離したものでも良い。回収したアンモニアは処理系に戻して際利用することができる。また、分離した水を処理系に戻して再利用することができる。
【0011】
本発明の回収方法を石油系燃焼灰の処理工程に適用した例を図2に示す。図示する処理工程は、石油系燃焼灰を水性スラリーにする水浸出工程(A)、この水性スラリーを固液分離した溶液を希釈し、アンモニアを添加して中性ないし弱アルカリ性に調整し、さらに液中のバナジウムを酸化する工程(B)、この溶液にバナジウム抽出溶媒を加えてバナジウムを抽出する工程(C)、この抽出処理後の溶液からアンモニアを回収する工程(G)からなる処理系統と、上記水性スラリーを固液分離した固形分にアンモニア水を加えて中性ないし弱アルカリ性に調整すると共に酸化処理して固形分に含まれるバナジウム、ニッケルおよびマグネシウムを溶出させる酸化浸出工程(D)、この浸出スラリーを固液分離した溶液からバナジウムおよび/またはニッケルを溶媒抽出する工程(E)、溶媒抽出した溶液から石膏と水酸化マグネシウムを沈澱分離して回収する工程(F)、石膏と水酸化マグネシウムを固液分離した溶液を蒸留塔に導いてアンモニアを蒸発させて水と分離して回収する工程(H)からなる処理系統とを有する。以下、これら二種の処理系統の各工程について説明する。
【0012】
( ) 水浸出工程
本発明の方法で処理する石油系燃焼灰はタール質燃料、重油、石油コークス、石油ピッチ、アスファルトなどの石油系燃料を燃焼した際に生じる塵灰である。水浸出工程(A)において石油系燃焼灰に水または硫酸を加えて水性スラリーにする。この水性スラリーには多量の硫黄分が溶出しておりpH1〜3の強酸性を示す。この水性スラリーを固液分離し、次の希釈酸化工程(B)に導く。
【0013】
( ) 希釈酸化工程
水性スラリーを固液分離した溶液を水で希釈し、または多量の水で浸出し、液中のバナジウム濃度を3000ppm以下に調整する。バナジウム濃度が3000ppmより高いと酸化工程に時間がかかるため適当ではない。さらに、この溶液にアンモニア水を加えて液性を中性ないし弱アルカリ性(pH8〜9)に調整する。この液性下で酸化剤、例えば空気や過酸化水素などを導入して液中のバナジウムを4価から5価にする。4価のバナジウムイオンは沈澱を生じるので次工程の溶媒抽出による回収に適さない。なお、この希釈酸化工程ではニッケルの溶出は予め水浸出工程(A)が行われることによって抑えられる。この溶液を次のバナジウム抽出工程(C)に導く。
【0014】
( ) バナジウム抽出工程
バナジウムの抽出溶媒としてはキレート剤(Tricaprylyl Methyl Ammonium Chloride)をケロシンで5vol%に希釈したものなどを用いることができる。抽出したバナジウムを含む有機溶媒(キレート溶液)に塩化アンモニウムとアンモニア水の混合液(NH4Cl:75%、NH4OH:25%)などを混合して逆抽出を行う。次いでこの逆抽出液にアンモニア水を加えてpH9前後に調整してメタバナジン酸アンモニウムを沈澱させ、この沈澱を濾過分離して回収する。分離した濾液は逆抽出工程に循環して再利用することができる。回収したメタバナジン酸アンモニウムは乾燥し、あるいは加熱分解してバナジン酸の粉末を得る。
【0015】
( ) アンモニア回収工程
バナジウムの溶媒抽出工程を経た溶液(ラフィネート溶液)に消石灰スラリーなどを添加して石膏を沈澱させ、これを分離する。この溶液は燃焼灰の硫安分が溶解したアンモニウムイオンや溶媒抽出工程で加えたアンモニア水などを含有しているので、この溶液を本発明のアンモニア回収工程に導いてアンモニアを回収する。アンモニア回収工程は蒸留塔11とコンデンサー12を有する。このアンモニア含有溶液を蒸留塔11で約100℃に加熱してアンモニアを蒸発させる。水の一部はアンモニアと共に蒸発するが、大部分の水は蒸発せずに塔内に残る。蒸発して水と分離したアンモニアガスはコンデンサー12に導かれ、凝集してアンモニア水になる。このアンモニア水および未凝縮のアンモニアガスを回収する。
【0016】
以上の処理系統(A〜B〜C〜G)の他に、石油系燃焼灰の水性スラリーを固液分離した固形分の処理系統(D〜E〜F〜H)においてもアンモニアを回収することができる。この回収系統を以下に示す。
【0017】
( ) アンモニア酸化浸出工程
石油系燃焼灰の水性スラリーを固液分離した固形分をアンモニア酸化浸出工程(D)に導き、固形分に含まれているバナジウム、ニッケル、マグネシウムを溶出させる。まずこの固形分にアンモニア水と水を加えて中性ないし弱アルカリ性(pH7〜10)に調整しながら空気を導入してスラリーを酸化処理する。この酸化処理は二段階に行うと良い。まず中性ないし弱アルカリ性下で空気を導入して攪拌し、スラリーに含まれるニッケルやバナジウム等を酸化する。空気酸化の後にスラリーを固液分離し、その固形分に必要に応じてアンモニアを再度添加して液性を上記と同様に中性ないし弱アルカリ性に調整し、これに過酸化水素を添加して二段目の酸化処理を行う。
【0018】
このような二段階の酸化処理を行うことにより、スラリーに含まれるバナジウム、ニッケル、マグネシウムの浸出率が向上する。また、二段目の酸化処理の後に固液分離を行い、その濾液の全量を一段目の空気酸化に循環し、中性ないし弱アルカリ性下の酸化浸出を繰り返すことによりこの浸出工程の液量を増加せずに浸出効果を高めることができる。なお、酸化処理後の固形分はシリカやアルミナ等を含むため硫酸洗浄を行って回収し、セメント原料として利用することができる。
【0019】
( ) 溶媒抽出工程
(イ)ニッケル抽出
上記アンモニア酸化浸出工程で得た溶液から溶媒抽出によってニッケルを回収する。ニッケル抽出溶媒としてはキレート剤(2-Hydroxy-5-Nonylacetophenone-Oxime)をケロシンで10vol%に希釈したものや、リン酸系抽出剤を用いることができる。また、これらに代えてバーサチック酸を用いることにより、アンモニア浸出濾液に含まれるニッケルをマグネシウムと分離して効率良く抽出することができる。このバーサチック酸による抽出は、アンモニア浸出濾液のpHを弱アルカリ性、好ましくはpH7.5〜8.5に調整して行うのが好ましい。バーサチック酸の濃度は5%以上が適当であり10%以上が好ましい。
【0020】
バーサチック酸を上記アンモニア性溶液から分離した後に希硫酸と混合して洗浄する。ニッケルに随伴して抽出されたマグネシウムイオンは希硫酸中に洗い出される。この洗浄はpH2〜4の酸性下で行い、濃度0.01〜5g/lの希硫酸を用いるのが良い。濃度0.01〜5g/l、好ましくは0.1〜2g/lの希硫酸を用いることによってニッケルをバーサチック酸に残してマグネシウムを選択的に希硫酸中に洗い出すことができる。このマグネシウムは石膏の回収工程に導く。
【0021】
希硫酸で洗浄したバーサチック酸に濃硫酸を混合し、この濃硫酸にバーサチック酸中のニッケル(イオン)を逆抽出する。この逆抽出はpH1以下の酸性下で行い、濃度100〜300g/lの濃硫酸を用いるのが良い。混合後、濃硫酸とバーサチック酸を分離する。このバーサチック酸はニッケル抽出工程に循環して再度使用することができる。一方、分離した濃硫酸には逆抽出したニッケルが硫酸ニッケルの状態で含まれている。この濃硫酸液を30〜80℃程度に加熱し、望ましくは真空中で水分を蒸発させ、濃縮することにより硫酸ニッケルを回収することができる。あるいは、この濃硫酸液を硫酸ニッケルの溶解度以下に冷却して析出させても良い。この硫酸ニッケルを濾過して回収し、乾燥すれば硫酸ニッケルの粉末を得ることができる。この濾液(濃硫酸)は逆抽出工程に循環して再利用することができる。
【0022】
(ロ)バナジウム抽出
上記アンモニア浸出工程の濾液、あるいは上記ニッケル抽出工程で有機溶媒相と分離した浸出液(水相)にバナジウム抽出溶媒を加えて混合し、溶媒中にバナジウムを抽出する。抽出手段としてはミキサセトラー等を利用すると良い。先の希釈溶液からバナジウムを溶媒抽出する工程(C)と同様に、バナジウムの抽出溶媒としては、キレート剤(Tricaprylyl Methyl Ammonium Chloride)をケロシンで5vol%に希釈したものなどを用いることができる。抽出操作は、例えば、浸出液に対してこの溶媒を1:1の液量で混合し、液性を中性(pH=7.5程度)に保って行う。なお、バナジウム抽出溶媒として一般に用いられている他の溶液を用いても良い。
【0023】
バナジウムイオンを含む有機溶媒を浸出濾液と分離し、これに逆抽出液(水相)を加えてバナジウムを水相に移行させる。逆抽出液としては、塩化アンモニウムとアンモニア水の混合液(NH4Cl:80%、NH4OH:30%)等を用いることができる。逆抽出液と分離した有機溶媒はバナジウム抽出工程に循環して再利用することができる。この逆抽出液からバナジウム化合物(メタバナジン酸アンモニウム等)を析出させ、これを固液分離して回収する。
【0024】
バナジウムの抽出とニッケルの抽出は何れが先でも良い。また溶液中のバナジウム濃度およびニッケル濃度に応じて何れか一方のみを行っても良い。さらに、これらの抽出処理は、好ましくは、条件を整えて連続抽出を行う。なお、バナジウム抽出液として用いられるメチルアンモニウム系キレート液は中性(約pH7.5)で作用し、ニッケル抽出液として用いられるアセトフェノン系キレート液は中性付近(約pH8)で作用するので、これらを用いれば溶液の液性を大幅に調整せずにバナジウムとニッケルの溶媒抽出を連続して行うことができる。
【0025】
( ) 石膏 水酸化マグネシウム回収工程
本回収工程には、上記溶媒処理を経た溶液(ラフィネート溶液)を導入して石膏と水酸化マグネシウムを生成させる晶析槽1、晶析槽1に連通した液体サイクロン2および3、これらを連通する送液管路、液体サイクロン上部の微粒子を回収する手段、晶析槽の槽底から石膏を抜き出して回収する手段が設けられている。
【0026】
上記溶媒抽出を経たラフィネート溶液と消石灰スラリーを晶析槽1に導入して均一に攪拌し、オーバーフローした後に、槽底の沈澱物を抜き出し、固液分離して石膏を回収する。一方、晶析槽上部の懸濁液を第一液体サイクロン2に導き、分級した後に、サイクロン下部の凝集物を晶析槽10に戻す。この凝集物は概ね平均粒径約20〜80μm、大部分が平均粒径約50μmの粒子であり、石膏を主体とし一部に水酸化マグネシウムを含む。さらに、第一液体サイクロン2の上部から懸濁液を抜き出して第二液体サイクロン3に送る。微分級の後、サイクロン下部の凝集物の一部を第一液体サイクロン2に戻し、残部を晶析槽1に戻す。この凝集物は平均粒径約2〜20μm、大部分が平均粒径約15μmの粒子であり、石膏を主体とし一部に水酸化マグネシウムを含む。一方、第二液体サイクロン上部の懸濁液を抜き出して固液分離することにより、濃度約90%以上および平均粒径約2μm程度の水酸化マグネシウムを回収することができる。
【0027】
なお、上記ラフィネート溶液には灰中の硫安分が分解したアンモニウムイオンが存在し、さらに溶媒抽出の際にアンモニアを添加してpHを中性ないし弱アルカリ性に調整されているので、石膏および水酸化マグネシウムを固液分離して回収した際に、その濾液をアンモニア回収工程(H)に導く。
【0028】
( ) アンモニア回収工程
アンモニア回収工程は蒸留塔11とコンデンサー12を有する。石膏および水酸化マグネシウムを固液分離して回収した濾液(アンモニア含有溶液)を蒸留塔11に導き、約100℃に加熱してアンモニアを蒸発させる。水の一部はアンモニアと共に蒸発するが、大部分の水は蒸発せずに塔内に残る。蒸発して水と分離したアンモニアガスはコンデンサー12に導かれ、凝集してアンモニア水になる。このアンモニア水および未凝縮のアンモニアガスを回収する。
【0029】
以上の処理工程(A)〜(H)は硫酸ニッケルの濃縮工程およびアンモニアの蒸発工程を除いて全て常温で行うことができる。また、以上の処理方法において、石油系燃焼灰の水性スラリーを固液分離した溶液を希釈してバナジウムの溶媒抽出を行う処理系列(I:A→B→C)のアンモニア回収工程(G)と、水性スラリーを固液分離した固形分を中性ないし弱アンモニア性下で酸化浸出し、この浸出スラリーを固液分離した溶液からバナジウムおよび/またはニッケルを溶媒抽出する処理系統系列(II:D→E→F)のアンモニア回収工程(H)とをまとめて行っても良い。
【0030】
【実施例】
以下、本発明を実施例によって具体的に示す。
〔実施例1〕
タール質燃料の焼却灰(V:2.0wt%、Ni:0.44wt%、Mg:2.3wt%、S:22wt%、NH4:21wt%)を水性スラリーとし、固液分離した濾液(pH1.8)に水を加えて液中のバナジウム濃度を2200ppmに調整した後に、さらにアンモニア水を加えてpHを8.9に調整し、さらに空気を吹き込んで均一に撹拌した。この溶液にバナジウム抽出溶媒としてキレート剤(2-Hydroxy-5-Nonylacetophenone-Oxime)をケロシンで5vol%に希釈したものを混合した。バナジウム抽出後、抽出溶媒をスラリー濾液と分離し、抽出溶媒に塩化アンモニウム(0.8wt%)と25%濃度アンモニア水(0.6wt%)を水で溶かした混合液(逆抽出液)を混合し、この水相にバナジウムを逆抽出させた。
このバナジウム抽出溶媒と逆抽出液とを分離した後に、抽出溶媒は再び抽出工程に循環してバナジウムの抽出を行った。一方、逆抽出液には新しい逆抽出液を加えた後に再びバナジウム抽出溶媒と混合することにより逆抽出を繰り返し、逆抽出液中のバナジウムを濃縮させた。このときのバナジウム抽出溶媒と新しく加える逆抽出液の比は15:1である。逆抽出を繰り返して濃縮したバナジウムはメタバナジン酸アンモニウムを析出し液底に沈降するので、これを分離槽に導いて濾過回収した。
一方、バナジウムを抽出した後の溶液(スラリー濾液)に、消石灰スラリー(10wt%濃度)を混合し、液のpHを11に調整して石膏を生成させた。この石膏スラリーを濾過して回収した後に、濾液を蒸留塔に導き、加熱して蒸発したアンモニアガスをコンデンサーに導き、アンモニア水を回収した。この回収結果を表1に示した。
【0031】
〔実施例2〕
実施例1と同様の燃焼灰を水性スラリーとし、これを固液分離した固形分にアンモニア水を加えてpH8にし、これに空気を導入して2時間攪拌した後に固液分離し、この固形分にアンモニア水を加え、さらに過酸化水素水(濃度31vol%)を加えて攪拌混合した後に濾過し、濾液の全量を空気酸化工程に戻して酸化浸出を繰り返した。この空気酸化後の濾液を抜き出し、このアンモニア浸出濾液のpHを8に調整した後に溶媒抽出工程に導き、ニッケルの溶媒抽出とバナジウムの溶媒抽出を行った後に、そのラフィネート溶液に消石灰スラリーを加えて石膏を沈澱させ、固液分離した懸濁液を液体サイクロンに導いて水酸化マグネシウムを固液分離して回収した後に、溶液分をアンモニア回収工程の蒸留塔に導き、約100℃に加熱してアンモニアを蒸留し、コンデンサーを経て回収した。この回収結果を表1に示した。
【0032】
【表1】

Figure 0003887710
【0033】
【発明の効果】
本発明の回収方法によれば、アンモニア性溶液から効率よくアンモニアを回収し、分離した水を処理系に循環して再利用することができる。特に、石油系燃焼灰からバナジウムやニッケルを溶媒抽出によって回収する処理工程において、抽出処理した後のアンモニア含有溶液から液中のアンモニアを効率よく回収して再利用することができる。
【図面の簡単な説明】
【図1】本発明の方法の概略を示す工程図
【図2】本発明の方法を石油系燃焼灰の処理工程に適用した工程図。
【符号の説明】
10−アンモニア含有溶液、11−蒸留塔、12−コンデンサー、
13,14−管路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently recovering ammonia from a treatment solution of petroleum combustion ash. More specifically, in a method of separating and recovering valuable metals such as vanadium and nickel from petroleum combustion ash, etc., after extracting vanadium and nickel with a solvent from a solution adjusted to be neutral or weakly alkaline by adding ammonia, The present invention relates to an ammonia recovery method that can efficiently recover and reuse ammonia from a solution.
[0002]
[Prior art]
Many boilers of thermal power plants and various industrial plants use heavy oil-based fuels such as heavy oil and petroleum coke, and a large amount of combustion ash is currently discharged. Most of these are disposed of in landfills, but this combustion ash contains valuable metals such as vanadium, and their effective use is required from the viewpoint of prevention of environmental pollution and recycling.
[0003]
As a method for recovering valuable metals from such heavy oil ash, for example, sulfuric acid is added to petroleum fuel combustion ash slurry to leach valuable metals in the ash, and then the liquid is converted to alkaline to oxidize iron. A method is known in which precipitation is removed and the liquid is made strongly acidic again to precipitate vanadium in the liquid as vanadium oxide (Japanese Patent Application No. 60-46930). There has also been proposed a method in which the filtrate from which iron has been removed is cooled to further separate the vanadium compound, and sulfuric acid is added thereto to recover nickel (Japanese Patent Publication No. 04-61709). Furthermore, a method of separating nickel sludge and gypsum from the residue after separating vanadium is known (Japanese Patent Publication No. 05-13718). However, any of these treatment methods is a method in which sulfuric acid leaching is performed, and there is a problem that the leaching tank or the like is severely corroded because it is heated under strong acidity. Further, after leaching with sulfuric acid, adjustment of the liquidity is complicated, for example, the liquidity is converted to alkalinity, an oxidizing agent is added, and then the solution is acidified again.
[0004]
On the other hand, in place of the conventional method for leaching sulfuric acid, a method for leaching ammonia has been proposed by the present applicant (Japanese Patent Application No. 11-207923). This ammonia leaching method has no problems such as corrosion of the apparatus, and does not require complicated adjustment of liquidity, and has an advantage that vanadium or nickel can be efficiently leached. This vanadium or nickel can be separated and recovered by solvent extraction.
[0005]
[Problem to be Solved by the Invention]
The present invention provides a method for efficiently recovering ammonia from such an ammoniacal solution, and recovers ammonia from an ammoniacal solution from which vanadium or nickel has been extracted in a method for treating petroleum combustion ash or the like. This is a suitable processing method in some cases.
[0006]
[Means for solving the problems]
That is, the present invention provides (1) a strongly acidic aqueous slurry by adding water or sulfuric acid to petroleum-based combustion ash, and this is solid-liquid separated, and ammonia is added to the filtrate to adjust to neutral or weak alkaline. Further, use the ammonia-containing treatment solution after further oxidation treatment and solvent extraction of the contained metal, or leaching the solid content obtained by solid-liquid separation of the above aqueous slurry and further oxidation treatment to extract the contained metal by solvent extraction Then, the ammonia-containing treatment solution is introduced into a distillation column, heated to evaporate the ammonia and separated from water, and then the evaporated ammonia is condensed and recovered, and the separated water is treated. The present invention relates to a method for recovering ammonia characterized by being returned to the system.
[0007]
The recovery method of the present invention includes the following aspects.
(2) Water or sulfuric acid is added to petroleum combustion ash to form a strongly acidic aqueous slurry, this is solid-liquid separated, the filtrate is diluted, and ammonia is added to this to adjust to neutral or weak alkaline, The recovery method according to the above (1), in which vanadium in the liquid is further oxidized to be pentavalent and vanadium is solvent-extracted from this solution as the ammonia-containing treatment solution.
(3) Water or sulfuric acid is added to petroleum-based combustion ash to form a strongly acidic aqueous slurry, which is separated into solid and liquid, this solid content is leached with ammonia, and after this leachate is oxidized, it is led to the solvent extraction step. The recovery method according to the above (1), wherein vanadium and / or nickel extracted is used as the ammonia-containing treatment solution.
(4) In the above (2) or (3), after vanadium and / or nickel was solvent-extracted, a calcium compound was added to this solution to produce gypsum and magnesium hydroxide, and the separated solution was used for recovery. A recovery method in which ammonia and separated water are returned to each treatment system for reuse.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments. Unless otherwise indicated,% is% by weight, and gypsum is dihydrate gypsum. An outline of the recovery method of the present invention is shown in FIG. The recovery system shown in the figure is provided with an evaporation tower 11, a condenser 12, a pipe 13 that guides the ammoniacal solution 10 to the evaporation tower 11, and a pipe 14 that connects the evaporation tower 11 and the condenser 12 to the outside of the system. .
[0009]
An ammonia-containing solution 10 obtained by treating petroleum combustion ash is led to a distillation column 11 through a pipe 13 and heated to about 100 ° C. to evaporate ammonia. Some of the water evaporates with ammonia, but most of the water remains in the tower without evaporating. The ammonia gas evaporated and separated from the water is led to the condenser 12 through the pipe 14 and aggregates into ammonia water. The ammonia water and uncondensed ammonia gas are recovered. On the other hand, the water extracted from the bottom of the evaporation tower 11 can be returned to the treatment system and reused.
[0010]
The treatment solution of petroleum combustion ash used in the present invention is, for example, a solution obtained by diluting a filtrate obtained by solid-liquid separation of an aqueous slurry of petroleum combustion ash, and adding ammonia to oxidize while adjusting to neutral or weak alkalinity. Then, a treatment solution obtained by solvent extraction of vanadium from this solution. Alternatively, ammonia water is added to the solid content obtained by solid-liquid separation of this aqueous slurry to adjust to neutral or weak alkalinity, air is introduced into this filtrate, hydrogen peroxide is further added, and oxidative leaching is performed, followed by solvent extraction. This is a treatment solution obtained by introducing vanadium and / or nickel into the process. These treatment solutions may be those obtained by extracting vanadium and / or nickel with a solvent and then adding a calcium compound to the solution to precipitate gypsum and magnesium hydroxide. The recovered ammonia can be returned to the treatment system for use. Further, the separated water can be returned to the treatment system and reused.
[0011]
An example in which the recovery method of the present invention is applied to a process for treating petroleum combustion ash is shown in FIG. The illustrated treatment step includes a water leaching step (A) for converting petroleum-based combustion ash into an aqueous slurry, diluting a solution obtained by solid-liquid separation of the aqueous slurry, adding ammonia to adjust the neutral to weak alkaline, A treatment system comprising a step (B) of oxidizing vanadium in the liquid, a step (C) of extracting vanadium by adding a vanadium extraction solvent to the solution, and a step (G) of recovering ammonia from the solution after the extraction treatment; Oxidative leaching step (D) of adding ammonia water to the solid content obtained by solid-liquid separation of the aqueous slurry to adjust to neutral to weak alkaline and oxidizing to elute vanadium, nickel and magnesium contained in the solid content, Step (E) for extracting vanadium and / or nickel from the solution obtained by solid-liquid separation of the leach slurry, and gypsum and magnesium hydroxide from the solvent extracted solution. A processing system comprising the step (F) of separating and recovering the precipitate by precipitation, and the step (H) of separating and collecting the solution obtained by solid-liquid separation of gypsum and magnesium hydroxide to the distillation tower to evaporate the ammonia and separate it from the water And have. Hereinafter, each process of these two types of processing systems will be described.
[0012]
( A ) Water leaching step Petroleum combustion ash treated by the method of the present invention is dust ash generated when burning petroleum fuels such as tar fuel, heavy oil, petroleum coke, petroleum pitch, and asphalt. . In the water leaching step (A), water or sulfuric acid is added to petroleum-based combustion ash to form an aqueous slurry. A large amount of sulfur is eluted from this aqueous slurry, and exhibits strong acidity of pH 1 to 3. This aqueous slurry is subjected to solid-liquid separation and led to the next dilution oxidation step (B).
[0013]
( B ) Diluted oxidation step The solution obtained by solid-liquid separation of the aqueous slurry is diluted with water or leached with a large amount of water, and the vanadium concentration in the solution is adjusted to 3000 ppm or less. If the vanadium concentration is higher than 3000 ppm, the oxidation process takes time, which is not suitable. Further, aqueous ammonia is added to this solution to adjust the liquidity to neutral to weakly alkaline (pH 8-9). Under this liquid property, an oxidizing agent such as air or hydrogen peroxide is introduced to change the vanadium in the liquid from tetravalent to pentavalent. Since tetravalent vanadium ions cause precipitation, they are not suitable for recovery by solvent extraction in the next step. In this dilution oxidation step, nickel elution is suppressed by performing the water leaching step (A) in advance. This solution is led to the next vanadium extraction step (C).
[0014]
( C ) Vanadium extraction step As a vanadium extraction solvent, a chelating agent (Tricaprylyl Methyl Ammonium Chloride) diluted with kerosene to 5 vol% can be used. Back extraction is performed by mixing a mixed solution of ammonium chloride and aqueous ammonia (NH 4 Cl: 75%, NH 4 OH: 25%) or the like with the extracted organic solvent (chelate solution) containing vanadium. Next, aqueous ammonia is added to the back extract to adjust the pH to around 9 to precipitate ammonium metavanadate, and the precipitate is separated by filtration and recovered. The separated filtrate can be circulated and reused in the back extraction step. The recovered ammonium metavanadate is dried or thermally decomposed to obtain vanadic acid powder.
[0015]
( G ) Ammonia recovery step Gypsum is precipitated by adding slaked lime slurry to the solution (raffinate solution) that has been subjected to the solvent extraction step of vanadium to separate it. Since this solution contains ammonium ions in which the ammonium sulfate content of combustion ash is dissolved and aqueous ammonia added in the solvent extraction step, this solution is introduced into the ammonia recovery step of the present invention to recover ammonia. The ammonia recovery process has a distillation column 11 and a condenser 12. This ammonia-containing solution is heated to about 100 ° C. in the distillation column 11 to evaporate the ammonia. Some of the water evaporates with ammonia, but most of the water remains in the tower without evaporating. The ammonia gas evaporated and separated from the water is led to the condenser 12 and aggregates into ammonia water. The ammonia water and uncondensed ammonia gas are recovered.
[0016]
In addition to the above processing systems (A to B to C to G), ammonia is also collected in a solid processing system (D to E to F to H) obtained by solid-liquid separation of an aqueous slurry of petroleum-based combustion ash. Can do. This recovery system is shown below.
[0017]
( D ) Ammonia oxidation leaching process The solid content obtained by solid-liquid separation of the aqueous slurry of petroleum combustion ash is introduced into the ammonia oxidation leaching process (D), and vanadium, nickel and magnesium contained in the solid content are eluted. Let First, ammonia water and water are added to the solid content to adjust the slurry to neutral or weakly alkaline (pH 7 to 10), and air is introduced to oxidize the slurry. This oxidation treatment is preferably performed in two stages. First, air is introduced and stirred under neutral or weak alkalinity to oxidize nickel, vanadium, and the like contained in the slurry. After air oxidation, the slurry is separated into solid and liquid, and ammonia is added again to the solid content as necessary to adjust the liquidity to neutral or weak alkaline as described above, and hydrogen peroxide is added thereto. A second oxidation process is performed.
[0018]
By performing such a two-stage oxidation treatment, the leach rate of vanadium, nickel, and magnesium contained in the slurry is improved. In addition, solid-liquid separation is performed after the second stage oxidation treatment, and the entire amount of the filtrate is circulated to the first stage air oxidation, and the amount of liquid in this leaching step is reduced by repeating oxidative leaching under neutral or weak alkalinity. The leaching effect can be enhanced without increasing. In addition, since the solid content after the oxidation treatment includes silica, alumina and the like, it can be recovered by washing with sulfuric acid and used as a cement raw material.
[0019]
( E ) Solvent extraction process
(A) Nickel extraction Nickel is recovered from the solution obtained in the ammonia oxidation leaching step by solvent extraction. As the nickel extraction solvent, a chelating agent (2-Hydroxy-5-Nonylacetophenone-Oxime) diluted to 10 vol% with kerosene or a phosphate-based extractant can be used. In addition, by using versatic acid instead of these, nickel contained in the ammonia leaching filtrate can be separated from magnesium and efficiently extracted. This extraction with versatic acid is preferably carried out by adjusting the pH of the ammonia leaching filtrate to weakly alkaline, preferably pH 7.5 to 8.5. The concentration of versatic acid is suitably 5% or more, preferably 10% or more.
[0020]
The versatic acid is separated from the ammoniacal solution and then mixed with dilute sulfuric acid and washed. Magnesium ions extracted along with nickel are washed out in dilute sulfuric acid. This washing is preferably performed under acidic conditions of pH 2 to 4, and dilute sulfuric acid having a concentration of 0.01 to 5 g / l is preferably used. By using dilute sulfuric acid at a concentration of 0.01 to 5 g / l, preferably 0.1 to 2 g / l, magnesium can be selectively washed out in dilute sulfuric acid leaving nickel in versatic acid. This magnesium leads to the gypsum recovery process.
[0021]
Concentrated sulfuric acid is mixed with versatic acid washed with dilute sulfuric acid, and nickel (ion) in versatic acid is back-extracted with the concentrated sulfuric acid. This back-extraction is performed under acidic conditions of pH 1 or lower, and concentrated sulfuric acid having a concentration of 100 to 300 g / l is preferably used. After mixing, concentrated sulfuric acid and versatic acid are separated. This versatic acid can be recycled and reused in the nickel extraction process. On the other hand, the separated concentrated sulfuric acid contains back-extracted nickel in the form of nickel sulfate. Nickel sulfate can be recovered by heating the concentrated sulfuric acid solution to about 30 to 80 ° C., preferably evaporating water in a vacuum and concentrating. Alternatively, this concentrated sulfuric acid solution may be cooled to below the solubility of nickel sulfate and deposited. The nickel sulfate can be collected by filtration and dried to obtain nickel sulfate powder. This filtrate (concentrated sulfuric acid) can be circulated and reused in the back extraction step.
[0022]
(B) Vanadium extraction A vanadium extraction solvent is added to and mixed with the filtrate of the ammonia leaching step or the leachate (aqueous phase) separated from the organic solvent phase in the nickel extraction step, and vanadium is extracted into the solvent. A mixer settler or the like may be used as the extraction means. As in the step (C) for extracting vanadium from the diluted solution, a vanadium extraction solvent may be obtained by diluting a chelating agent (Tricaprylyl Methyl Ammonium Chloride) to 5 vol% with kerosene. The extraction operation is performed, for example, by mixing this solvent in a 1: 1 amount with respect to the leachate and keeping the liquidity neutral (about pH = 7.5). In addition, you may use the other solution generally used as a vanadium extraction solvent.
[0023]
An organic solvent containing vanadium ions is separated from the leaching filtrate, and a back extract (aqueous phase) is added thereto to transfer vanadium to the aqueous phase. As the back extract, a mixed solution of ammonium chloride and aqueous ammonia (NH 4 Cl: 80%, NH 4 OH: 30%) or the like can be used. The organic solvent separated from the back extract can be recycled by being recycled to the vanadium extraction step. A vanadium compound (ammonium metavanadate, etc.) is precipitated from this back-extracted solution, and this is recovered by solid-liquid separation.
[0024]
Either vanadium extraction or nickel extraction may be performed first. Further, only one of them may be performed according to the vanadium concentration and the nickel concentration in the solution. Further, these extraction processes are preferably carried out continuously under conditions. The methylammonium chelate used as the vanadium extract acts neutral (about pH 7.5), and the acetophenone chelate used as the nickel extract acts near neutral (about pH 8). Can be used to continuously perform solvent extraction of vanadium and nickel without greatly adjusting the liquidity of the solution.
[0025]
( F ) Gypsum and magnesium hydroxide recovery process In this recovery process, a crystallization tank 1 and a crystallization tank for introducing gypsum and magnesium hydroxide by introducing the solution (raffinate solution) that has undergone the above solvent treatment. 1 is provided with liquid cyclones 2 and 3 communicating with 1, a liquid feed pipe communicating these, means for collecting fine particles on the upper part of the liquid cyclone, and means for extracting and collecting gypsum from the bottom of the crystallization tank.
[0026]
The raffinate solution and slaked lime slurry that have been subjected to the above solvent extraction are introduced into the crystallization tank 1 and stirred uniformly, and after overflowing, the sediment at the bottom of the tank is extracted, separated into solid and liquid, and gypsum is recovered. On the other hand, after the suspension in the upper part of the crystallization tank is guided to the first liquid cyclone 2 and classified, the aggregates in the lower part of the cyclone are returned to the crystallization tank 10. These aggregates are generally particles having an average particle diameter of about 20 to 80 μm, and most of them are particles having an average particle diameter of about 50 μm, and mainly include gypsum and partly magnesium hydroxide. Further, the suspension is extracted from the upper part of the first hydrocyclone 2 and sent to the second hydrocyclone 3. After the differential classification, a part of the agglomerates at the lower part of the cyclone is returned to the first liquid cyclone 2 and the remainder is returned to the crystallization tank 1. These agglomerates are particles having an average particle size of about 2 to 20 μm, most of which have an average particle size of about 15 μm, and mainly contain gypsum and partly magnesium hydroxide. On the other hand, magnesium hydroxide having a concentration of about 90% or more and an average particle size of about 2 μm can be recovered by extracting the suspension above the second liquid cyclone and performing solid-liquid separation.
[0027]
The raffinate solution contains ammonium ions obtained by decomposition of ammonium sulfate in ash, and ammonia is added during solvent extraction to adjust the pH to neutral or weak alkalinity. When the magnesium is recovered by solid-liquid separation, the filtrate is led to an ammonia recovery step (H).
[0028]
( H ) Ammonia recovery step The ammonia recovery step includes a distillation column 11 and a condenser 12. The filtrate (ammonia-containing solution) recovered by solid-liquid separation of gypsum and magnesium hydroxide is led to the distillation column 11 and heated to about 100 ° C. to evaporate the ammonia. Some of the water evaporates with ammonia, but most of the water remains in the tower without evaporating. The ammonia gas evaporated and separated from the water is led to the condenser 12 and aggregates into ammonia water. The ammonia water and uncondensed ammonia gas are recovered.
[0029]
The above treatment steps (A) to (H) can all be performed at room temperature except for the nickel sulfate concentration step and the ammonia evaporation step. In the above treatment method, the ammonia recovery step (G) of the treatment series (I: A → B → C) in which the solution obtained by solid-liquid separation of the aqueous slurry of petroleum combustion ash is diluted to perform solvent extraction of vanadium; The solid content obtained by solid-liquid separation of the aqueous slurry is oxidized and leached under neutral or weak ammonia, and the processing system series (II: D →) is used to extract vanadium and / or nickel from the solution obtained by solid-liquid separation of the leached slurry. E → F) ammonia recovery step (H) may be performed together.
[0030]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
Ash tar fuels (V: 2.0wt%, Ni: 0.44wt%, Mg: 2.3wt%, S: 22wt%, NH 4: 21wt%) and an aqueous slurry, solid-liquid separated filtrate (pH 1.8 ) Was added to adjust the vanadium concentration in the liquid to 2200 ppm, and then ammonia water was further added to adjust the pH to 8.9, and air was blown into the solution and stirred uniformly. A solution obtained by diluting a chelating agent (2-Hydroxy-5-Nonylacetophenone-Oxime) to 5 vol% with kerosene as a vanadium extraction solvent was mixed with this solution. After vanadium extraction, the extraction solvent is separated from the slurry filtrate, and a mixed solution (back extract) in which ammonium chloride (0.8 wt%) and 25% aqueous ammonia (0.6 wt%) are dissolved in water is mixed in the extraction solvent. Vanadium was back extracted into this aqueous phase.
After separating the vanadium extraction solvent and the back extract, the extraction solvent was circulated again to the extraction step to extract vanadium. On the other hand, a new back extract was added to the back extract and then mixed with the vanadium extraction solvent again to repeat back extraction, thereby concentrating the vanadium in the back extract. At this time, the ratio of the vanadium extraction solvent to the newly added back extract is 15: 1. Vanadium concentrated by repeated back-extraction repeatedly precipitated ammonium metavanadate and settled to the bottom of the liquid, which was led to a separation tank and collected by filtration.
On the other hand, slaked lime slurry (10 wt% concentration) was mixed with the solution (slurry filtrate) after the extraction of vanadium, and the pH of the solution was adjusted to 11 to produce gypsum. After this gypsum slurry was recovered by filtration, the filtrate was guided to a distillation column, and ammonia gas evaporated by heating was guided to a condenser to recover aqueous ammonia. The recovery results are shown in Table 1.
[0031]
[Example 2]
Combustion ash similar to that in Example 1 was made into an aqueous slurry, and ammonia water was added to the solid content obtained by solid-liquid separation to adjust the pH to 8, and air was introduced into this and stirred for 2 hours, followed by solid-liquid separation. Ammonia water was added to the mixture, hydrogen peroxide water (concentration 31 vol%) was further added, the mixture was stirred and mixed, and the mixture was filtered. The filtrate after the air oxidation was extracted, and after adjusting the pH of the ammonia leaching filtrate to 8, it was led to the solvent extraction process. After performing the solvent extraction of nickel and the solvent extraction of vanadium, slaked lime slurry was added to the raffinate solution. After the gypsum is precipitated and the solid-liquid separated suspension is introduced into a liquid cyclone and magnesium hydroxide is recovered by solid-liquid separation, the solution is led to a distillation column in the ammonia recovery step and heated to about 100 ° C. Ammonia was distilled and recovered via a condenser. The recovery results are shown in Table 1.
[0032]
[Table 1]
Figure 0003887710
[0033]
【The invention's effect】
According to the recovery method of the present invention, ammonia can be efficiently recovered from an ammoniacal solution, and the separated water can be circulated and reused in the treatment system. In particular, in the process of recovering vanadium and nickel from petroleum combustion ash by solvent extraction, the ammonia in the liquid can be efficiently recovered and reused from the ammonia-containing solution after the extraction process.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an outline of the method of the present invention. FIG. 2 is a process diagram in which the method of the present invention is applied to a process for treating petroleum combustion ash.
[Explanation of symbols]
10-ammonia-containing solution, 11-distillation tower, 12-condenser,
13,14-pipeline

Claims (4)

石油系燃焼灰に水または硫酸を加えて強酸性の水性スラリーとし、これを固液分離し、その濾液にアンモニアを添加して中性ないし弱アルカリ性に調整し、さらに酸化処理して含有金属を溶媒抽出した後のアンモニア含有処理溶液を用い、または、上記水性スラリーの固液分離によって得た固形分をアンモニア浸出し、さらに酸化処理して含有金属を溶媒抽出した後のアンモニア含有処理溶液を用い、このアンモニア含有処理溶液を蒸留塔に導き、加熱してアンモニアを蒸発させて水と分離した後に、蒸発したアンモニアを凝縮して回収し、分離した水を処理系に戻すことを特徴とするアンモニアの回収方法。 Water or sulfuric acid is added to petroleum-based combustion ash to form a strongly acidic aqueous slurry, which is separated into solid and liquid, and ammonia is added to the filtrate to adjust to neutral or weak alkalinity. Use the ammonia-containing treatment solution after solvent extraction, or use the ammonia-containing treatment solution after the solid content obtained by solid-liquid separation of the aqueous slurry is ammonia leached and further oxidized to solvent-extract the contained metal. ammonia the ammonia-containing process solution led to the distillation column, heated and ammonia is evaporated and after separated from water, which is recovered by condensing the evaporated ammonia, and returning the separated water treatment system Recovery method. 石油系燃焼灰に水または硫酸を加えて強酸性の水性スラリーとし、これを固液分離し、その濾液を希釈し、これにアンモニアを添加して中性ないし弱アルカリ性に調整し、さらに酸化処理して液中のバナジウムを5価に酸化し、この溶液からバナジウムを溶媒抽出したものをアンモニア含有処理溶液として用いる請求項1の回収方法。 Water or sulfuric acid is added to petroleum-based combustion ash to form a strongly acidic aqueous slurry, which is solid-liquid separated. The filtrate is diluted, and ammonia is added thereto to adjust it to neutral or weak alkalinity, followed by oxidation treatment. Then, the recovery method according to claim 1, wherein vanadium in the liquid is oxidized to pentavalent, and vanadium extracted from the solution is used as an ammonia-containing treatment solution. 石油系燃焼灰に水または硫酸を加えて強酸性の水性スラリーとし、これを固液分離し、この固形分をアンモニア浸出し、この浸出液を酸化処理した後に、溶媒抽出工程に導いてバナジウムおよび/またはニッケルを抽出したものをアンモニア含有処理溶液として用いる請求項1の回収方法。 Water or sulfuric acid is added to petroleum combustion ash to form a strongly acidic aqueous slurry, which is solid-liquid separated. This solid content is ammonia leached, and this leachate is oxidized, and then led to a solvent extraction step for vanadium and / or Or the recovery method of Claim 1 which uses what extracted nickel as an ammonia containing process solution. 請求項2または3において、バナジウムおよび/またはニッケルを溶媒抽出した後に、この溶液にカルシウム化合物を添加して石膏および水酸化マグネシウムを生成させて分離した溶液を用い、回収したアンモニアおよび分離した水をおのおの処理系に戻して再利用する回収方法。In Claim 2 or 3, after extracting solvent of vanadium and / or nickel, a calcium compound is added to this solution to produce gypsum and magnesium hydroxide, and a separated solution is used to recover the recovered ammonia and separated water. A collection method for returning to each processing system and reusing it.
JP2000363374A 2000-11-29 2000-11-29 Ammonia recovery method Expired - Fee Related JP3887710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363374A JP3887710B2 (en) 2000-11-29 2000-11-29 Ammonia recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363374A JP3887710B2 (en) 2000-11-29 2000-11-29 Ammonia recovery method

Publications (2)

Publication Number Publication Date
JP2002166266A JP2002166266A (en) 2002-06-11
JP3887710B2 true JP3887710B2 (en) 2007-02-28

Family

ID=18834492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363374A Expired - Fee Related JP3887710B2 (en) 2000-11-29 2000-11-29 Ammonia recovery method

Country Status (1)

Country Link
JP (1) JP3887710B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746654B2 (en) * 2001-12-06 2004-06-08 Brown University Research Foundation Dry and semi-dry methods for removal of ammonia from fly ash
JP5604149B2 (en) * 2010-03-30 2014-10-08 太平洋セメント株式会社 Ammonia recovery device and ammonia recovery method

Also Published As

Publication number Publication date
JP2002166266A (en) 2002-06-11

Similar Documents

Publication Publication Date Title
Binnemans et al. Hydrometallurgical processes for the recovery of metals from steel industry by-products: a critical review
RU2562989C1 (en) Method of preparing vanadium oxide
RU2710613C1 (en) Method of reducing ammonia from a vanadium compound for producing an ammonia compound and recycling waste water
US4115513A (en) Processing of ammonium paratungstate from tungsten ores
JP2017502827A (en) How to recover ash from waste incineration
CN101392332A (en) Cleaning production technique for directly transforming rare earth sulfate bake ore to extract rare earth
KR20190134085A (en) Method of recycling chlorine bypass dust generated in cement manufacturing process
JP3306471B2 (en) Treatment method of exhaust gas from cement kiln
JP3780359B2 (en) Treatment method for petroleum combustion ash
JP3831805B2 (en) Treatment method for petroleum combustion ash
JP3887710B2 (en) Ammonia recovery method
US1780323A (en) Utilization of galvanizer's waste
WO2019155430A1 (en) Process for recovering vanadium in the form of iron vanadate from a gasifier slag
JP2004352521A (en) Processing method of heavy oil burned ash
JP3780358B2 (en) Treatment method for petroleum combustion ash
CN109536711B (en) Recycling treatment system for metal surface treatment waste
JP3536901B2 (en) Method of recovering valuable metals from fly ash
JP3780356B2 (en) Treatment method for petroleum combustion ash
JP4013172B2 (en) Processing method for heavy oil combustion ash
JP3991171B2 (en) Processing method for heavy oil combustion ash
Okuwaki et al. Extraction of vanadium from electrostatic precipitator ashes of oil power plants
US5624650A (en) Nitric acid process for ferric sulfate production
JP4013171B2 (en) Processing method for heavy oil combustion ash
JP3796646B2 (en) Treatment method for petroleum combustion ash
EP4015452A1 (en) Process for producing technical grade phosphoric acid from sewage sludge ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees