JP7351199B2 - Treatment method for arsenic-containing wastewater - Google Patents

Treatment method for arsenic-containing wastewater Download PDF

Info

Publication number
JP7351199B2
JP7351199B2 JP2019215687A JP2019215687A JP7351199B2 JP 7351199 B2 JP7351199 B2 JP 7351199B2 JP 2019215687 A JP2019215687 A JP 2019215687A JP 2019215687 A JP2019215687 A JP 2019215687A JP 7351199 B2 JP7351199 B2 JP 7351199B2
Authority
JP
Japan
Prior art keywords
arsenic
wastewater
sludge
ratio
neutralization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019215687A
Other languages
Japanese (ja)
Other versions
JP2021084084A (en
Inventor
浩志 林
翔太 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019215687A priority Critical patent/JP7351199B2/en
Publication of JP2021084084A publication Critical patent/JP2021084084A/en
Application granted granted Critical
Publication of JP7351199B2 publication Critical patent/JP7351199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉱山の坑廃水などのヒ素を含む廃水について、ヒ素濃度を安定に排水基準以下に低減する処理方法に関する。 The present invention relates to a treatment method for stably reducing the arsenic concentration of arsenic-containing wastewater, such as mine wastewater, to below the wastewater standard.

鉱山の廃水には、坑道などから生じる水(坑内水)と、坑外の選鉱場や製錬場または捨石や鉱滓の集積場などから生じる水(坑外水)とがあり、これらの坑内水および坑外水を含めて坑廃水と云われる。この坑廃水は、鉄、マンガン、銅、亜鉛、鉛、ヒ素、カドミウムなどの重金属を含む酸性の廃水であり、坑廃水を外部に排水するときには、これらが汚染源にならないように処理する必要がある。 Mine wastewater includes water that comes from mine shafts (inside mine water) and water that comes from outside the mine, such as ore processing plants, smelters, or rubble and slag accumulation sites. Mine wastewater includes mine water and outside mine water. This mine wastewater is acidic wastewater containing heavy metals such as iron, manganese, copper, zinc, lead, arsenic, and cadmium, and when mine wastewater is discharged outside, it must be treated to prevent these from becoming a source of pollution. .

ヒ素を含む廃水について、ヒ素は水酸化第二鉄に取り込まれて共沈するので、従来、鉄の存在下で該廃水を中和処理し、ヒ素を澱物化してヒ素濃度を低減している。例えば、ヒ素を含む廃水について、特許文献1~特許文献3に記載された処理方法が知られている。 Regarding wastewater containing arsenic, since arsenic is incorporated into ferric hydroxide and co-precipitates, conventionally, the wastewater is neutralized in the presence of iron and the arsenic is turned into a precipitate to reduce the arsenic concentration. . For example, the treatment methods described in Patent Documents 1 to 3 are known for wastewater containing arsenic.

特許文献1には、ヒ素および硫化鉄を含む鉱山廃水に、中和剤として水酸化マグネシウムまたは水酸化ナトリウムを添加して撹拌することにより中和し、かつ硫酸マグネシウム沈殿物または硫酸ナトリウム沈殿物とともに、ヒ素沈澱物を共沈させて、それらの沈殿物を分離することを特徴とする鉱山廃水の処理方法が記載されている。 Patent Document 1 discloses that mine wastewater containing arsenic and iron sulfide is neutralized by adding magnesium hydroxide or sodium hydroxide as a neutralizing agent and stirring it together with magnesium sulfate precipitate or sodium sulfate precipitate. , describes a method for treating mine wastewater characterized by co-precipitating arsenic precipitates and separating these precipitates.

特許文献2には、As、F含有廃水にFe/As=2以上の第2鉄塩およびCa/F=20以上のカルシウム塩を添加してpH8.0~8.5の範囲で凝集沈澱を行なう第1段の処理工程と、その上澄分離水に対しAl/As=30以上かつAl/F=2以上のアルミニウム塩を添加してpH6.5~7.0の範囲で凝集沈澱を行なう第2段の処理工程とからなるヒ素およびフッ素含有廃水の処理方法が記載されている。 Patent Document 2 discloses that a ferric salt with Fe/As = 2 or more and a calcium salt with Ca/F = 20 or more are added to wastewater containing As and F to cause coagulation and precipitation in the pH range of 8.0 to 8.5. The first step is to perform coagulation and precipitation in the pH range of 6.5 to 7.0 by adding an aluminum salt with Al/As = 30 or more and Al/F = 2 or more to the supernatant separated water. A method for treating arsenic- and fluorine-containing wastewater is described, which comprises a second stage treatment step.

特許文献3には、ガリウムおよびヒ素を含む廃水に可溶性第二鉄塩を添加し、アルカリ剤によりpHを調節してガリウムおよびヒ素を水酸化第二鉄の沈澱と共沈させ、この沈澱を廃水から分離除去する処理方法が記載されており、さらに分離した沈澱を水に懸濁させて、pHをアルカリ側に調整してガリウムを溶出させ、固液分離した液分を蒸発乾固してガリウムを回収する工程が記載されている。 Patent Document 3 discloses that a soluble ferric salt is added to wastewater containing gallium and arsenic, the pH is adjusted with an alkaline agent, gallium and arsenic are coprecipitated with a precipitate of ferric hydroxide, and this precipitate is added to wastewater. Furthermore, the separated precipitate is suspended in water, the pH is adjusted to the alkaline side to elute gallium, and the solid-liquid separated liquid is evaporated to dryness to obtain gallium. The process for collecting the is described.

特開2006-116468号公報Japanese Patent Application Publication No. 2006-116468 特開昭61-185375号公報Japanese Unexamined Patent Publication No. 185375/1983 特開昭59-95991号公報Japanese Patent Application Publication No. 59-95991

ヒ素を含む廃水を、鉄の存在下で中和処理し、ヒ素を水酸化鉄沈澱と共沈させて澱物化する特許文献1~3の処理方法において、該廃水に含まれる鉄含有量が低く、鉄とヒ素の重量比(Fe/As比)が大幅に変動する廃水についてはヒ素を十分に澱物化することができず、ヒ素の除去効果を高めることが難しいと云う問題がある。 In the treatment methods of Patent Documents 1 to 3, in which wastewater containing arsenic is neutralized in the presence of iron and arsenic is co-precipitated with iron hydroxide precipitate to form a precipitate, the iron content contained in the wastewater is low. Regarding wastewater in which the weight ratio of iron to arsenic (Fe/As ratio) varies significantly, there is a problem that arsenic cannot be sufficiently converted into a precipitate, making it difficult to enhance the arsenic removal effect.

さらに、特許文献2の処理方法では第2処理工程でアルミニウム塩を用いるので処理工程が煩雑であり、コスト高になる。また、特許文献3の処理方法では、共存するガリウムの影響でヒ素を十分に除去し難い問題がある。 Furthermore, since the treatment method of Patent Document 2 uses aluminum salt in the second treatment step, the treatment step is complicated and the cost is high. Furthermore, the treatment method of Patent Document 3 has a problem in that it is difficult to sufficiently remove arsenic due to the influence of coexisting gallium.

本発明の処理方法は、ヒ素を含む廃水の処理において、従来の上記問題を解消し、ヒ素と鉄の含有量が大幅に変動する廃水であっても、安定にヒ素濃度を排水基準以下に低減することができる処理方法を提供する。 The treatment method of the present invention solves the above-mentioned conventional problems in the treatment of wastewater containing arsenic, and stably reduces the arsenic concentration to below the wastewater standard even in wastewater where the arsenic and iron contents vary widely. Provides a processing method that can.

本発明の処理方法は、以下の構成からなるヒ素含有廃水の処理方法である。
〔1〕ヒ素を含む酸性の廃水について、鉄の存在下で中和処理し、ヒ素を澱物化してヒ素濃度を低減する処理方法において、鉄とヒ素の重量比(Fe/As比)が29~110の範囲で変動する上記廃水に対して、上記中和処理で生成したヒ素の澱物を含む汚泥を回収し、Fe/As比が55~66であって固形物濃度60~120g/Lの回収した汚泥を上記中和処理に返送し、上記廃水に加えて中和処理することによって、上記Fe/As比の変動を緩和してヒ素の澱物化を進めることを特徴とするヒ素含有廃水の処理方法。
〔2〕ヒ素を含む廃水が鉱山の坑廃水である上記[1]に記載するヒ素含有廃水の処理方法。
〔3〕上記Fe/As比および上記固形物濃度の回収した汚泥を上記中和処理に返送し、上記廃水1Lに対して0.02~0.2Lの割合で加えて中和処理する上記[1]または上記[2]に記載するヒ素含有廃水の処理方法。
The treatment method of the present invention is a treatment method for arsenic-containing wastewater having the following configuration.
[1] In a treatment method in which acidic wastewater containing arsenic is neutralized in the presence of iron and the arsenic is turned into a precipitate to reduce the arsenic concentration, the weight ratio of iron to arsenic (Fe/As ratio) is 29. The sludge containing arsenic precipitates produced in the neutralization process was collected from the wastewater whose concentration ranged from 55 to 66 and the solid content was 60 to 120 g/L. Arsenic-containing wastewater characterized by returning the collected sludge to the neutralization treatment and adding it to the wastewater and subjecting it to neutralization treatment, thereby alleviating fluctuations in the Fe/As ratio and promoting the formation of arsenic as a precipitate. processing method.
[2] The method for treating arsenic-containing wastewater according to [1] above, wherein the arsenic-containing wastewater is mine wastewater.
[3] The recovered sludge with the above Fe/As ratio and the above solids concentration is returned to the above neutralization treatment, and is added at a ratio of 0.02 to 0.2 L to 1 L of the above wastewater for the neutralization treatment. 1] or the method for treating arsenic-containing wastewater described in [2] above.

〔具体的な説明〕
本発明の処理方法は、ヒ素を含む酸性の廃水について、鉄の存在下で中和処理し、ヒ素を澱物化してヒ素濃度を低減する処理方法において、鉄とヒ素の重量比(Fe/As比)が29~110の範囲で変動する上記廃水に対して、上記中和処理で生成したヒ素の澱物を含む汚泥を回収し、Fe/As比が55~66であって固形物濃度60~120g/Lの回収した汚泥を上記中和処理に返送し、上記廃水に加えて中和処理することによって、上記Fe/As比の変動を緩和してヒ素の澱物化を進めることを特徴とするヒ素含有廃水の処理方法である。

[Specific explanation]
The treatment method of the present invention involves neutralizing acidic wastewater containing arsenic in the presence of iron to reduce the arsenic concentration by turning the arsenic into a precipitate. The sludge containing arsenic precipitates produced in the neutralization process is collected from the wastewater whose Fe/As ratio varies in the range of 29 to 110 , and the Fe/As ratio is 55 to 66 and the solids concentration is 60. The recovered sludge of ~120g/L is returned to the neutralization treatment, and is added to the wastewater and subjected to the neutralization treatment, thereby alleviating the fluctuation of the Fe/As ratio and promoting the conversion of arsenic into precipitate. This is a method for treating arsenic-containing wastewater.

第二鉄イオンを含む酸性の廃水に消石灰などを加えてpH5.8~pH8.6に中和処理すると、水酸化第二鉄の中和澱物が生成する。この廃水中にヒ素イオンが含まれていると、上記中和澱物にヒ素イオンが取り込まれて共沈し、ヒ素含有澱物が形成され、ヒ素濃度が低減する。 When acidic wastewater containing ferric ions is neutralized to pH 5.8 to pH 8.6 by adding slaked lime, a neutralized precipitate of ferric hydroxide is produced. If this wastewater contains arsenic ions, the arsenic ions will be incorporated into the neutralized precipitate and co-precipitate, forming an arsenic-containing precipitate and reducing the arsenic concentration.

本発明の処理方法は、鉄とヒ素の重量比(Fe/As比)が変動する廃水に対して、中和処理で生成したヒ素含有澱物を含む汚泥を回収し、上記廃水のFe/As比変動幅の中間的なFe/As比を有する汚泥を上記中和処理に返送して中和処理することによって、上記Fe/As比の変動を緩和してヒ素の澱物化を進める処理方法である。 The treatment method of the present invention collects sludge containing arsenic-containing precipitates generated through neutralization treatment of wastewater in which the weight ratio of iron to arsenic (Fe/As ratio) varies, and removes Fe/As from the wastewater. A treatment method in which sludge having an Fe/As ratio in the middle of the ratio fluctuation range is returned to the neutralization treatment to be neutralized, thereby alleviating the fluctuation in the Fe/As ratio and promoting the formation of arsenic as a precipitate. be.

本発明の処理方法において、廃水のFe/As比変動幅の中間的なFe/As比を有する汚泥とは、該廃水のFe/As比の下限値の約1.9倍から該廃水のFe/As比の上限値の約0.6倍の範囲のFe/As比を有する汚泥を云う。具体的には、例えば、廃水のFe/As比が29~110の範囲で変動するとき、55~66の範囲のFe/As比を有する汚泥である。 In the treatment method of the present invention, sludge having an intermediate Fe/As ratio in the Fe/As ratio fluctuation range of the wastewater is defined as a sludge having an Fe/As ratio of about 1.9 times the lower limit of the Fe/As ratio of the wastewater. This refers to sludge having a Fe/As ratio that is approximately 0.6 times the upper limit of the Fe/As ratio. Specifically, for example, when the Fe/As ratio of the wastewater varies in the range from 29 to 110, the sludge has a Fe/As ratio in the range from 55 to 66.

本発明の処理方法は、Fe/As比が変動する廃水に消石灰などを加えて中和処理する中和工程と、該中和処理によって生成したヒ素含有澱物を含む汚泥を回収する工程と、該汚泥のFe/As比が、上記廃水のFe/As比変動幅の中間的なFe/As比を有する汚泥を中和工程に返送して消石灰と共に廃水に加える返送工程とを有する。 The treatment method of the present invention includes a neutralization step of adding slaked lime or the like to wastewater in which the Fe/As ratio fluctuates, and a step of recovering sludge containing arsenic-containing precipitate produced by the neutralization treatment. The sludge has a Fe/As ratio that is intermediate in the Fe/As ratio fluctuation range of the wastewater, and the sludge is returned to the neutralization step and added to the wastewater together with slaked lime.

廃水のFe/As比変動幅の中間的なFe/As比を有する汚泥を中和工程に返送して廃水に加えることによって、廃水のFe/As比の変動が緩和され、この汚泥の返送を繰り返すことによって、消石灰を加えた中和処理において、安定したヒ素濃度を有するヒ素含有澱物が形成され、ヒ素濃度を安定に低く抑えた中和処理を行うことができる。なお、中和処理後に回収したヒ素含有澱物を含む汚泥が上記廃水のFe/As比変動幅の中間的なFe/As比から外れるときは、中和工程に返送するときに該中間的なFe/As比の範囲になるように、鉄ヒ素源を加えて上記Fe/As比の範囲に調整すればよい。この調整に用いる鉄ヒ素源は、別途回収したヒ素含有澱物を含む汚泥を利用することができる。 By returning sludge with an Fe/As ratio that is intermediate to the Fe/As ratio fluctuation range of wastewater to the neutralization process and adding it to the wastewater, fluctuations in the Fe/As ratio of wastewater are alleviated, and the return of this sludge is By repeating the process, an arsenic-containing precipitate having a stable arsenic concentration is formed in the neutralization treatment in which slaked lime is added, and it is possible to perform the neutralization treatment in which the arsenic concentration is stably kept low. In addition, when the sludge containing arsenic-containing sediment recovered after the neutralization treatment deviates from the intermediate Fe/As ratio of the Fe/As ratio fluctuation range of the wastewater, when returning it to the neutralization process, An iron arsenic source may be added to adjust the Fe/As ratio within the above range. As the iron arsenic source used for this adjustment, sludge containing arsenic-containing sediment collected separately can be used.

中和工程に返送する汚泥の量は、例えば、固形分濃度60~120g/Lの汚泥について、廃水1Lに対して0.02~0.2Lの割合であればよい。 The amount of sludge to be returned to the neutralization step may be, for example, 0.02 to 0.2 L per 1 L of wastewater for sludge with a solid content concentration of 60 to 120 g/L.

本発明の処理方法は、鉄およびヒ素を含有する坑廃水の中和処理について好適に用いることができる。本発明の処理方法を坑廃水の処理に適用した例を図1に示す。 The treatment method of the present invention can be suitably used for neutralizing mine wastewater containing iron and arsenic. FIG. 1 shows an example in which the treatment method of the present invention is applied to treatment of mine wastewater.

例えばpH3~pH4であって、Fe/As比が約29~約110の範囲で変動している複数の坑廃水(以下、廃水)が原水受槽10に集められる。該原水受槽10の廃水は中和反応槽11に送られる。中和処理に用いる消石灰は消石灰溶解槽12に投入され、消石灰液にして条件槽13に送られ、該条件槽13から上記中和反応槽11に供給される。この中和反応槽11において、廃水は消石灰によって中和され、この中和処理によって廃水中の鉄は水酸化第二鉄沈澱を形成し、この水酸化第二鉄沈澱に廃水中のヒ素が取り込まれて共沈し、ヒ素含有澱物が形成される(中和工程)。消石灰は上記廃水を例えばpH8前後に中和する量が供給される。 For example, a plurality of mine wastewaters (hereinafter referred to as wastewaters) having a pH of 3 to 4 and a Fe/As ratio varying in the range of about 29 to about 110 are collected in the raw water receiving tank 10. The wastewater in the raw water receiving tank 10 is sent to a neutralization reaction tank 11. Slaked lime used for neutralization is put into a slaked lime dissolving tank 12, converted into a slaked lime liquid, and sent to a conditioned tank 13, from which it is supplied to the neutralization reaction tank 11. In this neutralization reaction tank 11, the wastewater is neutralized with slaked lime, and by this neutralization treatment, iron in the wastewater forms a ferric hydroxide precipitate, and arsenic in the wastewater is taken into this ferric hydroxide precipitate. and coprecipitates to form an arsenic-containing precipitate (neutralization step). Slaked lime is supplied in an amount to neutralize the wastewater to, for example, around pH 8.

中和処理された廃水は中和反応槽11から凝集槽14に導入される。該凝集槽14には高分子凝集剤溶解槽15から高分子凝集剤溶液が供給され、高分子凝集剤溶液が添加された中和廃水は沈降分離槽16に送られる。沈降分離槽16において、上記ヒ素含有澱物が沈降して中和汚泥が槽底に堆積する。この中和汚泥が回収されて(回収工程)、条件槽13に返送され(返送汚泥)、該条件槽13の消石灰液に添加され、廃水のFe/As比変動幅の中間的なFe/As比を有する汚泥が該条件槽13から中和反応槽11に送られて供給される(返送工程)。該返送汚泥が加えられることによって廃水のFe/As比の変動が緩和され、中和処理が安定に進む。なお、必要に応じ、条件槽13において、返送汚泥のFe/As比が廃水のFe/As比変動幅の中間的なFe/As比の範囲になるように調整される。 The neutralized wastewater is introduced from the neutralization reaction tank 11 to the coagulation tank 14. A polymer flocculant solution is supplied to the flocculant tank 14 from a polymer flocculant dissolving tank 15 , and the neutralized wastewater to which the polymer flocculant solution has been added is sent to a sedimentation separation tank 16 . In the settling tank 16, the arsenic-containing sediment settles and neutralized sludge is deposited on the bottom of the tank. This neutralized sludge is collected (recovery step), returned to the conditioned tank 13 (returned sludge), and added to the slaked lime solution in the conditioned tank 13 to produce Fe/As that is intermediate in the Fe/As ratio fluctuation range of the wastewater. The sludge having the same ratio is sent from the condition tank 13 to the neutralization reaction tank 11 and supplied thereto (return process). By adding the returned sludge, fluctuations in the Fe/As ratio of the wastewater are alleviated, and the neutralization process proceeds stably. Note that, if necessary, the Fe/As ratio of the returned sludge is adjusted in the condition tank 13 so that it falls within a Fe/As ratio range that is intermediate to the Fe/As ratio fluctuation range of wastewater.

一方、返送汚泥を回収した残余の汚泥(余剰汚泥)は沈降分離槽16の槽底から抜き出されて集積場に送られて最終処分される。沈降分離槽16において汚泥が分離された廃水は、大部分のヒ素が上記汚泥に取り込まれて分離されるので、ヒ素濃度を排水基準以下(0.1mg/L以下)に低減することができ、この処理済廃水は沈降分離槽16から濾過設備17を経由して浮遊粒子が除去され、外部に放流される。 On the other hand, the remaining sludge (surplus sludge) after recovering the returned sludge is extracted from the bottom of the sedimentation separation tank 16 and sent to a collection site for final disposal. In the wastewater from which sludge has been separated in the sedimentation separation tank 16, most of the arsenic is taken into the sludge and separated, so the arsenic concentration can be reduced to below the wastewater standard (0.1 mg/L or less), This treated wastewater is passed from the sedimentation separation tank 16 to the filtration equipment 17 to remove suspended particles, and is discharged to the outside.

本発明の処理方法によれば、返送汚泥が中和反応槽に繰り返し供給されて中和処理が進むので、Fe/As比の変動幅が大きい廃水についても、ヒ素を安定して排水基準以下まで除去することができ、さらに汚泥が濃縮されるので汚泥容積を減容化することができる。 According to the treatment method of the present invention, the returned sludge is repeatedly supplied to the neutralization reaction tank and the neutralization process progresses, so even in wastewater where the Fe/As ratio fluctuates widely, arsenic can be stably reduced to below the effluent standard. Since the sludge can be removed and the sludge is further concentrated, the sludge volume can be reduced.

坑廃水の処理に適用した本発明の処理工程図。FIG. 2 is a treatment process diagram of the present invention applied to treatment of mine wastewater.

〔実施例1〕
図1に示す処理工程において、サンプル用の坑廃水1Lを採取してpHを測定した。次に返送汚泥36mlを取り、3.0wt%消石灰スラリー4.0mlを加えて10分間撹拌し、条件付けした汚泥(固体濃度70g/L、Fe/As比57)を調製した。この条件付け汚泥の全量を該坑廃水に投入し、15分間撹拌してpH8.0となるよう中和処理した。pHが8.0に届かない場合は、消石灰スラリーを微量加えて調整した。その後、中和処理したスラリーに高分子凝集剤(ダイヤフロックAP-825B、三菱ケミカル社製品)の0.05%溶液を0.4ml添加して撹拌し、生成した澱物を沈降分離した。沈降分離後、上澄み液を採取し、鉄濃度およびヒ素濃度を誘導結合プラズマ発光分光分析装置にて定量分析した。この結果を表1に示した。
表1に示すように、中和工程のFe/As比は55~58の範囲で安定し、汚泥の固形物濃度は2.59g/L~2.66g/Lに濃縮されている。また、上澄み液の鉄濃度は0.1~0.3mg/Lであり、ヒ素濃度は0.06mg/L以下に低減されている。
[Example 1]
In the treatment process shown in FIG. 1, 1 L of mine wastewater was collected as a sample and its pH was measured. Next, 36 ml of returned sludge was taken, 4.0 ml of 3.0 wt% slaked lime slurry was added, and the mixture was stirred for 10 minutes to prepare conditioned sludge (solid concentration 70 g/L, Fe/As ratio 57). The entire amount of this conditioned sludge was put into the mine wastewater, stirred for 15 minutes, and neutralized to pH 8.0. If the pH did not reach 8.0, it was adjusted by adding a small amount of slaked lime slurry. Thereafter, 0.4 ml of a 0.05% solution of a polymer flocculant (Diafloc AP-825B, manufactured by Mitsubishi Chemical Corporation) was added to the neutralized slurry and stirred, and the resulting precipitate was separated by sedimentation. After sedimentation and separation, the supernatant liquid was collected, and the iron concentration and arsenic concentration were quantitatively analyzed using an inductively coupled plasma emission spectrometer. The results are shown in Table 1.
As shown in Table 1, the Fe/As ratio in the neutralization step was stable in the range of 55 to 58, and the solids concentration of the sludge was concentrated to 2.59 g/L to 2.66 g/L. In addition, the iron concentration of the supernatant liquid is 0.1 to 0.3 mg/L, and the arsenic concentration is reduced to 0.06 mg/L or less.

Figure 0007351199000001
Figure 0007351199000001

〔実施例2〕
返送汚泥の固形物濃度、Fe/As比、および返送汚泥量を表2に示すように調整した以外は実施例1と同様にして坑廃水の中和処理を行った。この結果を表2に示した。
表2に示すように、Fe/As比が56~65の返送汚泥を用いた場合、中和工程のFe/As比は53~64の範囲で安定し、汚泥の固形物濃度は2.58~2.64に濃縮されている。また、上澄み液の鉄濃度は0.1~0.2mg/Lであり、ヒ素濃度は0.08mg/L以下に低減されている。
[Example 2]
Mine wastewater was neutralized in the same manner as in Example 1, except that the solid concentration, Fe/As ratio, and amount of returned sludge in the returned sludge were adjusted as shown in Table 2. The results are shown in Table 2.
As shown in Table 2, when returning sludge with an Fe/As ratio of 56 to 65 is used, the Fe/As ratio in the neutralization step is stable in the range of 53 to 64, and the solids concentration of the sludge is 2.58. It is concentrated to ~2.64. Furthermore, the iron concentration of the supernatant liquid is 0.1 to 0.2 mg/L, and the arsenic concentration has been reduced to 0.08 mg/L or less.

Figure 0007351199000002
Figure 0007351199000002

〔比較例1〕
中和用の汚泥を返送しない以外は実施例1と同様にして坑廃水の中和処理を行った。この結果を表3に示した。中和工程のFe/As比は原坑廃水のFe/As比と同様に変動しており、このため上澄み液の鉄濃度は3.4~6.2mg/Lと高く、Fe/As比が51以下の坑廃水はヒ素濃度を排水基準以下(0.1mg/L以下)に低減することができない。また、中和工程で生成する汚泥の固形分濃度は約0.16g/L以下であり、汚泥が濃縮されずに嵩高い。
[Comparative example 1]
Mine wastewater was neutralized in the same manner as in Example 1, except that the sludge for neutralization was not returned. The results are shown in Table 3. The Fe/As ratio in the neutralization process fluctuates in the same way as the Fe/As ratio in raw mine wastewater, so the iron concentration in the supernatant liquid is as high as 3.4 to 6.2 mg/L, and the Fe/As ratio is high. The arsenic concentration of mine wastewater below 51 cannot be reduced to below the wastewater standard (0.1 mg/L or below). Furthermore, the solid content concentration of the sludge produced in the neutralization step is about 0.16 g/L or less, and the sludge is bulky without being concentrated.

Figure 0007351199000003
Figure 0007351199000003

10-原水受槽、11-中和反応槽、12-消石灰溶解槽、13-条件槽、14-凝集槽、15-高分子凝集剤溶解槽、16-沈降分離槽、17-濾過設備。
10-raw water receiving tank, 11-neutralization reaction tank, 12-slaked lime dissolution tank, 13-conditioning tank, 14-coagulation tank, 15-polymer flocculant dissolution tank, 16-sedimentation separation tank, 17-filtration equipment.

Claims (3)

ヒ素を含む酸性の廃水について、鉄の存在下で中和処理し、ヒ素を澱物化してヒ素濃度を低減する処理方法において、鉄とヒ素の重量比(Fe/As比)が29~110の範囲で変動する上記廃水に対して、上記中和処理で生成したヒ素の澱物を含む汚泥を回収し、Fe/As比が55~66であって固形物濃度60~120g/Lの回収した汚泥を上記中和処理に返送し、上記廃水に加えて中和処理することによって、上記Fe/As比の変動を緩和してヒ素の澱物化を進めることを特徴とするヒ素含有廃水の処理方法。 Acidic wastewater containing arsenic is neutralized in the presence of iron, and the arsenic is turned into a precipitate to reduce the arsenic concentration . The sludge containing arsenic precipitates produced in the neutralization process was collected from the wastewater that fluctuated within a range , and the sludge with a Fe/As ratio of 55 to 66 and a solid concentration of 60 to 120 g/L was recovered. A method for treating arsenic -containing wastewater, characterized in that the sludge is returned to the neutralization treatment, and the sludge is added to the wastewater and subjected to the neutralization treatment, thereby alleviating fluctuations in the Fe/As ratio and promoting the formation of arsenic as a precipitate. . ヒ素を含む廃水が鉱山の坑廃水である請求項1に記載するヒ素含有廃水の処理方法。 The method for treating arsenic-containing wastewater according to claim 1, wherein the arsenic-containing wastewater is mine wastewater. 上記Fe/As比および上記固形物濃度の回収した汚泥を上記中和処理に返送し、上記廃水1Lに対して0.02~0.2Lの割合で加えて中和処理する請求項1または請求項2に記載するヒ素含有廃水の処理方法。
The recovered sludge having the above Fe/As ratio and the above solids concentration is returned to the above neutralization treatment, and is added at a ratio of 0.02 to 0.2 L to 1 L of the waste water for neutralization treatment. A method for treating arsenic-containing wastewater as described in Item 2.
JP2019215687A 2019-11-28 2019-11-28 Treatment method for arsenic-containing wastewater Active JP7351199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019215687A JP7351199B2 (en) 2019-11-28 2019-11-28 Treatment method for arsenic-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215687A JP7351199B2 (en) 2019-11-28 2019-11-28 Treatment method for arsenic-containing wastewater

Publications (2)

Publication Number Publication Date
JP2021084084A JP2021084084A (en) 2021-06-03
JP7351199B2 true JP7351199B2 (en) 2023-09-27

Family

ID=76086464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215687A Active JP7351199B2 (en) 2019-11-28 2019-11-28 Treatment method for arsenic-containing wastewater

Country Status (1)

Country Link
JP (1) JP7351199B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285078A (en) 2002-03-27 2003-10-07 Kurita Water Ind Ltd Treatment method for arsenic-containing water
JP2006116468A (en) 2004-10-22 2006-05-11 Muroran Institute Of Technology Treatment method for mine waste water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051593A (en) * 1983-08-30 1985-03-23 Asahi Glass Co Ltd Treatment of heavy metal-containing mine waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285078A (en) 2002-03-27 2003-10-07 Kurita Water Ind Ltd Treatment method for arsenic-containing water
JP2006116468A (en) 2004-10-22 2006-05-11 Muroran Institute Of Technology Treatment method for mine waste water

Also Published As

Publication number Publication date
JP2021084084A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
Chen et al. Pollution control and metal resource recovery for acid mine drainage
CN108698827B (en) Process for producing phosphorus products from wastewater
Song et al. Treatment of tannery wastewater by chemical coagulation
JP3241374B2 (en) Wastewater treatment method using improved recirculation of high density sludge
CN106103360B (en) Method for removing sulfate from waste water
KR101484575B1 (en) Treating methods of sulfuric acid lyes and apparatus
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
CN113184968B (en) Method for treating waste acid water
JP4306394B2 (en) Cement kiln extraction dust processing method
Wang et al. Selective precipitation of copper and zinc over iron from acid mine drainage by neutralization and sulfidization for recovery
JP5206453B2 (en) Cement kiln extraction dust processing method
JP7351199B2 (en) Treatment method for arsenic-containing wastewater
JP5796703B2 (en) Calcium fluoride recovery method and recovery apparatus
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP6699388B2 (en) Mine wastewater treatment method
JPH0679286A (en) Treatment of selenium-containing waste water
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP3733452B2 (en) Waste disposal method
JP4629851B2 (en) Wastewater treatment method
JP7259620B2 (en) Method for treating lead-containing outside water
KR20160111875A (en) Method of producing gypsum and method of producing cement composition
JP2021166981A (en) Method for treating pit wastewater
JP2002316172A (en) Wastewater treatment method
JP7429357B2 (en) Mine wastewater treatment method
JP7275618B2 (en) Method for treating slurry containing heavy metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7351199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150