JP2021166981A - Method for treating pit wastewater - Google Patents

Method for treating pit wastewater Download PDF

Info

Publication number
JP2021166981A
JP2021166981A JP2020071785A JP2020071785A JP2021166981A JP 2021166981 A JP2021166981 A JP 2021166981A JP 2020071785 A JP2020071785 A JP 2020071785A JP 2020071785 A JP2020071785 A JP 2020071785A JP 2021166981 A JP2021166981 A JP 2021166981A
Authority
JP
Japan
Prior art keywords
starch
fluorine
primary
heavy metal
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020071785A
Other languages
Japanese (ja)
Inventor
翔太 中山
Shota Nakayama
浩志 林
Hiroshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020071785A priority Critical patent/JP2021166981A/en
Publication of JP2021166981A publication Critical patent/JP2021166981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

To provide a treatment method which prevents elution of fluorine even when fluorine-containing sediment is mixed with heavy metal segment, and can enhance treatment efficiency by subjecting the sediments to unification treatment.SOLUTION: A method for treating pit wastewater that adds a neutralizer to acidic pit wastewater containing heavy metal and fluorine and converts the heavy metal and the fluorine into sediments and removes the sediments includes: a primary neutralization step of adding a neutralizer containing magnesium oxide to the pit wastewater, and generating heavy metal-containing sediment (primary neutralization sediment); a sediment return step of solid-liquid separating the heavy metal-containing sediment generated in the primary neutralization step, adding the magnesium oxide to the part or the whole of the sediment and converting the sediment to alkali sediment, and using the alkali sediment in a neutralizer in the primary neutralization step; and a secondary neutralization step of adding magnesium oxide and an aluminum source to a liquid content obtained by separating the heavy metal-containing sediment (primary neutralization sediment), and generating fluorine-containing sediment (secondary neutralization sediment).SELECTED DRAWING: Figure 1

Description

本発明は、休廃止鉱山などから排出される廃水(坑廃水と云う)の処理方法に関し、詳しくは、マンガンなどの重金属およびフッ素を含む酸性坑廃水について、重金属とフッ素を効果的に澱物化して除去することができる処理方法に関する。 The present invention relates to a method for treating wastewater (referred to as mine wastewater) discharged from a closed mine or the like. Specifically, for heavy metals such as manganese and acidic mine wastewater containing fluorine, heavy metals and fluorine are effectively precipitated. Regarding the processing method that can be removed.

坑廃水にはマンガンなどの重金属やフッ素を多く含むものがある。例えば、坑廃水にはマンガン5.0〜10mg/L、フッ素20〜30mg/L程度を含むものがある。従来、坑廃水に中和剤を加えて重金属やフッ素を澱物にして除去する処理方法が知られている。 Some mine wastewater contains a large amount of heavy metals such as manganese and fluorine. For example, some mine wastewater contains about 5.0 to 10 mg / L of manganese and about 20 to 30 mg / L of fluorine. Conventionally, a treatment method is known in which a neutralizing agent is added to mine wastewater to remove heavy metals and fluorine into starch.

マンガンなどの重金属の水酸化物はpH10以上の液性下で沈澱する。一方、フッ素については、硫酸アルミニウムのようなアルミニウム源を用い、中性付近で生じる水酸化アルミニウム沈澱にフッ素を吸着させて除去する方法が知られている。このように、マンガンなどの重金属を沈澱化するpH域(pH10.0以上)とフッ素含有沈澱を生じるpH域(pH6.0〜8.0)とは異なるので、マンガンとフッ素を同時に除去することができない。 Hydroxides of heavy metals such as manganese precipitate under liquid conditions of pH 10 or higher. On the other hand, as for fluorine, a method is known in which an aluminum source such as aluminum sulfate is used to adsorb and remove fluorine on an aluminum hydroxide precipitate generated near neutrality. As described above, since the pH range for precipitating heavy metals such as manganese (pH 10.0 or higher) and the pH range for causing fluorine-containing precipitation (pH 6.0 to 8.0) are different, manganese and fluorine should be removed at the same time. I can't.

また、一般に水酸化沈澱は脱水性に劣る嵩高い沈澱であるため澱物量が増加し、処分場の容量を圧迫する問題がある。さらに、水酸化アルミニウム沈澱はpHの安定域が中性付近に限られ,pHが中性付近からアルカリ側または酸側に変化すると沈澱が溶解してフッ素が溶出する。このため、水酸化アルミニウムの沈澱を、pH10以上で形成され重金属水酸化物沈澱に混合すると、フッ素が溶出する問題があり、これらの澱物を一元化して処理することができない。 Further, in general, hydroxide precipitation is a bulky precipitation inferior in dehydration property, so that there is a problem that the amount of precipitate increases and the capacity of the disposal site is compressed. Furthermore, the stable pH range of aluminum hydroxide precipitate is limited to near neutral, and when the pH changes from near neutral to the alkaline side or acid side, the precipitate dissolves and fluorine elutes. Therefore, when the precipitate of aluminum hydroxide is formed at pH 10 or higher and mixed with the precipitate of heavy metal hydroxide, there is a problem that fluorine is eluted, and these precipitates cannot be treated in a unified manner.

さらに、フッ素の除去方法として、特許文献1には、ハイドロタルサイト類やゼオライト類をフッ素含有排水に添加してフッ素を除去し、またカルシウム塩を添加してフッ素をフッ化カルシウムにして沈澱化する処理方法が記載されている。また、特許文献2には、消石灰とアルミ凝集剤を用い、フッ素含有汚泥を生成させて分離除去する方法が記載されている。 Further, as a method for removing fluorine, Patent Document 1 states that hydrotalcites and zeolites are added to fluorine-containing wastewater to remove fluorine, and a calcium salt is added to convert fluorine into calcium fluoride for precipitation. The processing method to be performed is described. Further, Patent Document 2 describes a method of forming fluorine-containing sludge and separating and removing it by using slaked lime and an aluminum flocculant.

特開2007−209886号公報Japanese Unexamined Patent Publication No. 2007-209886 特許第4661132号公報Japanese Patent No. 4661132

特許文献1、2の方法は廃水中のフッ素除去に関するが、坑廃水にはフッ素と共にマンガンなどの重金属が含まれていることが多々あり、特許文献1、2の方法ではマンガンなどの重金属とフッ素を共に効率よく除去することができない。さらに、硫酸アルミニウムを用いた従来のフッ素除去方法では水酸化アルミニウム澱物が嵩高いため後処理の負担が大きいなどの問題がある。 The methods of Patent Documents 1 and 2 relate to the removal of fluorine in wastewater, but mine wastewater often contains heavy metals such as manganese together with fluorine, and the methods of Patent Documents 1 and 2 include heavy metals such as manganese and fluorine. Cannot be removed efficiently. Further, the conventional method for removing fluorine using aluminum sulfate has a problem that the burden of post-treatment is heavy because the aluminum hydroxide starch is bulky.

本発明は、従来の上記問題を解決したものであり、中和剤として酸化マグネシウムを用いることによって重金属を密度の高い澱物にし、さらに該重金属澱物にフッ素含有澱物を混合してもフッ素が溶出せず、これらの澱物を一元化処理できるようにして処理効率を高めることができる処理方法を提供する。 The present invention solves the above-mentioned conventional problems. By using magnesium oxide as a neutralizing agent, a heavy metal is made into a high-density starch, and even if a fluorine-containing starch is mixed with the heavy metal starch, fluorine is used. Provided is a treatment method capable of improving the treatment efficiency by making it possible to centralize the treatment of these precipitates without elution.

本発明は、以下の構成によって上記問題を解決した、坑廃水の処理方法に関する。
〔1〕重金属およびフッ素を含む酸性の坑廃水に中和剤を加えて該重金属およびフッ素を澱物化して除去する処理方法において、該坑廃水に酸化マグネシウムを含む中和剤を添加して重金属含有澱物(一次中和澱物)を生成させる一次中和工程、該一次中和工程で生じた重金属含有澱物(一次中和澱物)を固液分離し、その一部または全部に酸化マグネシウムを加えてアルカリ澱物にし、このアルカリ澱物を一次中和工程の中和剤に用いる澱物返送工程、上記重金属含有澱物(一次中和澱物)を分離した液分に、酸化マグネシウムとアルミニウム源を添加してフッ素含有澱物(二次中和澱物)を生成させる二次中和工程を有し、該フッ素含有澱物(二次中和澱物)を固液分離することを特徴とする坑廃水の処理方法。
〔2〕上記一次中和工程において、上記坑廃水に酸化マグネシウムを含む中和剤を加えて、pH9.5以上の液性下で重金属含有澱物(一次中和澱物)を生成させ、固液分離した該重金属含有澱物(一次中和澱物)の一部または全部に酸化マグネシウムを加えてpH10.5以上のアルカリ澱物にする上記[1]に記載する坑廃水の処理方法。
〔3〕上記二次中和工程において、上記重金属含有澱物(一次中和澱物)を分離した液分に、酸化マグネシウムとアルミニウム源を添加し、pH6.0〜8.0の液性にして、水酸化アルミニウム沈澱にフッ素が吸着したフッ素含有澱物(二次中和澱物)を生成させる上記[1]または上記[2]に記載する坑廃水の処理方法。
〔4〕固液分離した上記フッ素含有澱物(二次中和澱物)を上記澱物返送工程に送り、固液分離した上記重金属含有澱物(一次中和澱物)に加えて混合澱物にし、該混合澱物の一部または全部に酸化マグネシウムを加えてアルカリ澱物にし、これを一次中和工程の中和剤として用いる上記[1]〜上記[3]の何れかに記載する坑廃水の処理方法。
The present invention relates to a method for treating mine wastewater, which solves the above problems by the following configuration.
[1] In a treatment method in which a neutralizing agent is added to acidic mineral wastewater containing heavy metal and fluorine to form a starch and remove the heavy metal and fluorine, a neutralizing agent containing magnesium oxide is added to the underground wastewater to remove the heavy metal. A primary neutralization step for producing a contained starch (primary neutralized starch), a heavy metal-containing starch (primary neutralized starch) produced in the primary neutralization step is solid-liquid separated, and a part or all thereof is oxidized. Magnesium oxide is added to an alkaline starch, and this alkaline starch is used as a neutralizing agent in the primary neutralization step. It has a secondary neutralization step of adding an aluminum source and a fluorine-containing starch (secondary neutralized starch) to produce the fluorine-containing starch (secondary neutralized starch), and solid-liquid separation of the fluorine-containing starch (secondary neutralized starch). A method for treating mine wastewater, which is characterized by.
[2] In the primary neutralization step, a neutralizing agent containing magnesium oxide is added to the tunnel wastewater to generate a heavy metal-containing starch (primary neutralized starch) under a liquid state of pH 9.5 or higher, and solidify. The method for treating mineral wastewater according to the above [1], wherein magnesium oxide is added to a part or all of the liquid-separated heavy metal-containing starch (primary neutralized starch) to make an alkaline starch having a pH of 10.5 or higher.
[3] In the secondary neutralization step, magnesium oxide and an aluminum source are added to the liquid content from which the heavy metal-containing starch (primary neutralized starch) has been separated to obtain a liquid property having a pH of 6.0 to 8.0. The method for treating mineral wastewater according to the above [1] or [2], wherein a fluorine-containing starch (secondary neutralized starch) in which fluorine is adsorbed on the aluminum hydroxide precipitate is produced.
[4] The solid-liquid separated fluorine-containing starch (secondary neutralized starch) is sent to the starch return step, and the solid-liquid separated heavy metal-containing starch (primary neutralized starch) is added to the mixed starch. The above-mentioned [1] to [3], wherein magnesium oxide is added to a part or all of the mixed starch to make an alkaline starch, and this is used as a neutralizing agent in the primary neutralization step. How to treat mine wastewater.

〔具体的な説明〕
以下、本発明の処理方法を具体的に説明する。
本発明の処理方法は、重金属およびフッ素を含む酸性の坑廃水に中和剤を加えて該重金属およびフッ素を澱物化して除去する処理方法において、該坑廃水に酸化マグネシウムを含む中和剤を添加して重金属含有澱物(一次中和澱物)を生成させる一次中和工程、該一次中和工程で生じた重金属含有澱物(一次中和澱物)を固液分離し、その一部または全部に酸化マグネシウムを加えてアルカリ澱物にし、このアルカリ澱物を一次中和工程の中和剤に用いる澱物返送工程、上記重金属含有澱物(一次中和澱物)を分離した液分に、酸化マグネシウムとアルミニウム源を添加してフッ素含有澱物(二次中和澱物)を生成させる二次中和工程を有し、該フッ素含有澱物(二次中和澱物)を固液分離することを特徴とする坑廃水の処理方法である。
[Specific explanation]
Hereinafter, the processing method of the present invention will be specifically described.
The treatment method of the present invention is a treatment method in which a neutralizing agent is added to acidic mineral wastewater containing heavy metal and fluorine to form a starch and remove the heavy metal and fluorine. A primary neutralization step of adding and producing a heavy metal-containing starch (primary neutralized starch), and a solid-liquid separation of the heavy metal-containing starch (primary neutralized starch) produced in the primary neutralization step are performed, and a part thereof is separated. Alternatively, magnesium oxide is added to the whole to make an alkaline starch, and this alkaline starch is used as a neutralizing agent in the primary neutralization step. It has a secondary neutralization step of adding magnesium oxide and an aluminum source to produce a fluorine-containing starch (secondary neutralized starch), and solidifies the fluorine-containing starch (secondary neutralized starch). This is a method for treating mine wastewater, which is characterized by liquid separation.

本発明の処理方法は、好ましくは、二次中和工程で分離したフッ素含有澱物(二次中和澱物)を澱物返送工程に送り、固液分離した重金属含有澱物(一次中和澱物)に加えて混合澱物にし、この混合澱物の一部または全部に酸化マグネシウムを加えてアルカリ澱物にし、これを一次中和工程の中和剤として用いる。この処理方法の概要を図1の工程図に示す。 In the treatment method of the present invention, preferably, the fluorine-containing starch (secondary neutralized starch) separated in the secondary neutralization step is sent to the starch return step, and the heavy metal-containing starch (primary neutralization) separated by solid and liquid is sent. (Stand) is added to make a mixed starch, and magnesium oxide is added to a part or all of the mixed starch to make an alkaline starch, which is used as a neutralizing agent in the primary neutralization step. The outline of this processing method is shown in the process chart of FIG.

〔一次中和工程〕
重金属およびフッ素を含む酸性の坑廃水に中和剤を加えてアルカリ性にし、該重金属を澱物化する。通常、坑廃水はpH3.5〜4.0の酸性であり、これに中和剤を加えて、pH9.5以上、例えば、pH9.5〜10.5のアルカリ性にして、坑廃水に含まれる重金属を水酸化物にして重金属含有澱物(一次中和澱物)を生成させる。中和剤として酸化マグネシウムないし酸化マグネシウムを含むアルカリ澱物を用いる。
[Primary neutralization process]
A neutralizing agent is added to acidic mineral wastewater containing heavy metals and fluorine to make the heavy metals alkaline, and the heavy metals are made into a starch. Normally, the mine wastewater is acidic with a pH of 3.5 to 4.0, and a neutralizing agent is added to this to make it alkaline with a pH of 9.5 or higher, for example, a pH of 9.5 to 10.5, and the mine wastewater is contained in the mine wastewater. Heavy metals are converted into hydroxides to produce heavy metal-containing starches (primary neutralized starches). An alkaline precipitate containing magnesium oxide or magnesium oxide is used as a neutralizing agent.

坑廃水に添加された酸化マグネシウムの反応によって坑廃水のpHを上げ、坑廃水がpH9.5〜10.5のアルカリ域になると、該坑廃水に含まれているマンガンなどの重金属は水酸化マンガン(II)などの水酸化物を生じて澱物になる。 When the pH of the mine wastewater is raised by the reaction of magnesium oxide added to the mine wastewater and the mine wastewater becomes an alkaline region with a pH of 9.5 to 10.5, heavy metals such as manganese contained in the mine wastewater are manganese hydroxide. It produces hydroxides such as (II) and becomes starch.

〔澱物返送工程〕
上記一次中和工程で生じた重金属含有澱物(一次中和澱物)を沈降分離して固液分離する。このとき、高分子凝集剤を添加して粗大な凝集フロックを形成させると、澱物の沈降速度を早くすることができるので、効率よく固液分離を行うことができる。この一次中和澱物には重金属水酸化物および未溶解分の酸化マグネシウムが含まれている。固液分離した一次中和澱物の一部または全部にさらに酸化マグネシウムを加えてpH10.5以上のアルカリ澱物にし、該アルカリ澱物を一次中和工程に送り、中和剤として用いる。残余の一次中和澱物は系外に処分される。
[Stand return process]
The heavy metal-containing starch (primary neutralized starch) produced in the primary neutralization step is separated by sedimentation and solid-liquid separation is performed. At this time, if a polymer flocculant is added to form coarse aggregate flocs, the sedimentation rate of the sediment can be increased, so that solid-liquid separation can be performed efficiently. This primary neutralized starch contains heavy metal hydroxides and undissolved magnesium oxide. Magnesium oxide is further added to a part or all of the solid-liquid separated primary neutralized starch to make an alkaline starch having a pH of 10.5 or higher, and the alkaline starch is sent to the primary neutralization step and used as a neutralizing agent. The residual primary neutralized starch is disposed of outside the system.

〔二次中和工程〕
一次中和澱物を分離した液分に、酸化マグネシウムとアルミニウム源を添加し、pH6.0〜8.0の液性にして、水酸化アルミニウムを沈澱させ、該水酸化アルミニウムにフッ素が吸着したフッ素含有澱物(二次中和澱物)を生成させる。一次中和澱物を分離した液分は、約pH9.5〜10.5のアルカリ性であり、これにアルミニウム源を加えるとpHが低下するが、さらに酸化マグネシウムを加えることによってpH低下を抑制してpH6.0〜8.0の中性域に制御する。アルミニウム源としては、硫酸アルミニウム(硫酸バンド)やポリ塩化アルミニウム(PAC)などを使用することができる。このpH中性域で、水酸化アルミニウムが沈澱し、これにフッ素が吸着したフッ素含有澱物が形成され、フッ素が固定化される。このフッ素含有澱物(二次中和澱物)を固液分離する。
[Secondary neutralization process]
Magnesium oxide and an aluminum source were added to the liquid content from which the primary neutralized starch was separated to make the liquid property pH 6.0 to 8.0, aluminum hydroxide was precipitated, and fluorine was adsorbed on the aluminum hydroxide. Fluorine-containing starch (secondary neutralized starch) is produced. The liquid content from which the primary neutralized starch is separated is alkaline with a pH of about 9.5 to 10.5, and the pH drops when an aluminum source is added to it, but the pH drop is suppressed by adding magnesium oxide. The pH is controlled to the neutral range of 6.0 to 8.0. As the aluminum source, aluminum sulfate (aluminum sulfate band), polyaluminum chloride (PAC), or the like can be used. In this pH neutral range, aluminum hydroxide precipitates, a fluorine-containing starch on which fluorine is adsorbed is formed, and fluorine is immobilized. This fluorine-containing starch (secondary neutralized starch) is solid-liquid separated.

〔澱物混合工程〕
本発明の処理方法は、好ましくは、固液分離したフッ素含有澱物(二次中和澱物)を上記澱物返送工程に送り、固液分離した一次中和澱物に加えて混合澱物にし、該混合澱物の一部または全部に酸化マグネシウムを加えてpH10.5以上のアルカリ澱物にし、これを一次中和工程の中和剤として用いる。
[Stand mixing process]
In the treatment method of the present invention, preferably, the solid-liquid separated fluorine-containing starch (secondary neutralized starch) is sent to the above-mentioned starch return step, and the mixed starch is added to the solid-liquid separated primary neutralized starch. Then, magnesium oxide is added to a part or all of the mixed starch to make an alkaline starch having a pH of 10.5 or higher, which is used as a neutralizing agent in the primary neutralization step.

フッ素含有澱物(二次中和澱物)は、酸化マグネシウムを含む一次澱物に混合されることによって、二次中和澱物のアルミニウム成分が一次中和澱物の酸化マグネシウムと反応してハイドロタルサイト類を形成する。このハイドロタルサイト類はフッ素などの陰イオン成分を吸着して固定化する効果がある。ハイドロタルサイト類はアルカリ性でも化学的に安定であるため、上記混合澱物に酸化マグネシウムを加えてpH10.5以上のアルカリ澱物にしても、フッ素は溶出しない。従って、一次中和澱物に二次中和澱物を混合して混合澱物にすることによって安定にこれらの澱物を一元化処理することができる。 The fluorine-containing starch (secondary neutralized starch) is mixed with the primary starch containing magnesium oxide, so that the aluminum component of the secondary neutralized starch reacts with the magnesium oxide of the primary neutralized starch. Form hydrotalcites. These hydrotalcites have the effect of adsorbing and immobilizing anionic components such as fluorine. Since hydrotalcites are chemically stable even when they are alkaline, fluorine does not elute even if magnesium oxide is added to the mixed starch to make an alkaline starch having a pH of 10.5 or higher. Therefore, by mixing the primary neutralized starch with the secondary neutralized starch to obtain a mixed neutralized starch, these neutralized starches can be stably unified.

本発明の処理方法は、酸化マグネシウムを含む中和剤を用いて重金属含有澱物(一次中和澱物)を生成させて分離することによって、坑廃水の重金属濃度を大幅に低減することができる。また、二次中和によって生成したフッ素含有澱物(二次中和澱物)を分離することによって坑廃水のフッ素濃度を大幅に低減することができる。
さらに、上記[4]に記載した本発明の好ましい処理工程では、酸化マグネシウムを含む中和剤を用い、上記一次中和澱物と該二次中和澱物を混合して混合澱物にし、フッ素が溶出しない安定な混合澱物を形成できるので、これらの澱物を一元化処理できようになる。この澱物処理の一元化によって、二次中和工程で生じた澱物処理の負担を解消することができる。
さらに、本発明の処理方法によれば、密度の高い澱物を形成することができる。このため処分場の負担を軽減することができる。
The treatment method of the present invention can significantly reduce the heavy metal concentration in mineral wastewater by producing and separating heavy metal-containing starch (primary neutralized starch) using a neutralizing agent containing magnesium oxide. .. Further, by separating the fluorine-containing starch (secondary neutralized starch) produced by the secondary neutralization, the fluorine concentration of the tunnel wastewater can be significantly reduced.
Further, in the preferable treatment step of the present invention described in [4] above, a neutralizing agent containing magnesium oxide is used, and the primary neutralizing starch and the secondary neutralizing starch are mixed to form a mixed starch. Since it is possible to form a stable mixed starch in which fluorine does not elute, it becomes possible to unify these starches. By unifying the starch treatment, the burden of the starch treatment generated in the secondary neutralization step can be eliminated.
Furthermore, according to the treatment method of the present invention, a dense starch can be formed. Therefore, the burden on the disposal site can be reduced.

本発明の好ましい処理工程の一例を示す工程図。The process drawing which shows an example of the preferable processing process of this invention.

以下、本発明の実施例を比較例と共に示す。
水質分析用の抗廃水サンプルを懸濁物も含めて採取した後に、35wt%濃度の塩酸をサンプル容積の10wt%加えて溶解し、ICP発光分光分析装置、イオンクロマトグラフ分析装置を用いて化学定量分析を行った。この結果を表1に示した。表1に示す坑廃水(原水と云う)を用い、金属鉱業事業団技術開発部が平成2年にまとめた「澱物繰り返し中和法の指針」に記載されているバッチ試験法に準じて試験を行った。
Hereinafter, examples of the present invention will be shown together with comparative examples.
After collecting an anti-waste water sample for water quality analysis including suspension, add 10 wt% of the sample volume to dissolve 35 wt% hydrochloric acid, and chemically quantify using an ICP emission spectroscopic analyzer and an ion chromatograph analyzer. Analysis was carried out. The results are shown in Table 1. Using the mine wastewater (called raw water) shown in Table 1, the test was conducted according to the batch test method described in the "Guidelines for the Repeated Ststillation Neutralization Method" compiled by the Technology Development Department of the Metal Mining Corporation in 1990. Was done.

Figure 2021166981
Figure 2021166981

〔実施例1〕
槽内の原水1Lに酸化マグネシウム0.15g/Lを加えて攪拌し、pH10に調整した(一次中和工程)。このpHに達しないときは酸化マグネシウムを追加した。これに高分子凝集剤を加えて攪拌し、澱物の凝集フロックを形成させて静置し、槽底に一次中和澱物を沈降堆積させた。沈降終了後、澱物界面高さを測定し、澱物量と澱物界面高さ(澱物の容積)から澱物濃度を算出した。
一方、上記一次中和の上澄み液を採取して、ICP発光分光分析装置、イオンクロマトグラフ分析装置にて定量分析し、一次中和上澄み液に含まれる残留重金属とフッ素の濃度を測定した。
該上澄み液と上記一次中和澱物とを固液分離し、分離した一次中和澱物に酸化マグネシウムを添加してpH11に調整してアルカリ澱物にした。このアルカリ澱物を次回の一次中和処理の中和剤として用いた(澱物返送工程)。
次に、分離した上澄み液に、硫酸アルミニウム溶液(Al 濃度8.0wt%)を所定量加え、さらに中和剤の酸化マグネシウムを加えてpH7.0に調整し中和スラリーとした(二次中和工程)。この中和スラリーに高分子凝集剤を加えて攪拌し、澱物の凝集フロックを形成させて静置し、槽底に二次中和澱物を沈降堆積させた。沈降終了後、澱物界面高さを測定し、澱物量と澱物界面高さ(澱物の容積)から澱物濃度を算出した。
一方、上記二次中和の上澄み液を採取して、ICP発光分光分析装置、イオンクロマトグラフ分析装置にて定量分析し、二次中和上澄み液に含まれる残留重金属とフッ素の濃度を測定した。これらの結果を表2に示した。
[Example 1]
Magnesium oxide 0.15 g / L was added to 1 L of raw water in the tank and stirred to adjust the pH to 10 (primary neutralization step). When this pH was not reached, magnesium oxide was added. A polymer flocculant was added thereto, and the mixture was stirred to form aggregate flocs of the starch and allowed to stand, and the primary neutralized starch was precipitated and deposited on the bottom of the tank. After the completion of sedimentation, the height of the starch interface was measured, and the starch concentration was calculated from the amount of starch and the height of the starch interface (volume of starch).
On the other hand, the supernatant of the primary neutralization was collected and quantitatively analyzed by an ICP emission spectroscopic analyzer and an ion chromatograph analyzer to measure the concentrations of residual heavy metal and fluorine contained in the primary neutralized supernatant.
The supernatant and the above-mentioned primary neutralized starch were solid-liquid separated, and magnesium oxide was added to the separated primary neutralized starch to adjust the pH to 11 to obtain an alkaline starch. This alkaline starch was used as a neutralizing agent for the next primary neutralization treatment (starment return step).
Next, a predetermined amount of an aluminum sulfate solution (Al 2 O 3 concentration 8.0 wt%) was added to the separated supernatant, and magnesium oxide, a neutralizing agent, was further added to adjust the pH to 7.0 to prepare a neutralized slurry (). Secondary neutralization step). A polymer flocculant was added to the neutralized slurry and stirred to form aggregated flocs of the starch and allowed to stand, and the secondary neutralized starch was precipitated and deposited on the bottom of the tank. After the completion of sedimentation, the height of the starch interface was measured, and the starch concentration was calculated from the amount of starch and the height of the starch interface (volume of starch).
On the other hand, the supernatant of the secondary neutralization was collected and quantitatively analyzed by an ICP emission spectroscopic analyzer and an ion chromatograph analyzer to measure the concentrations of residual heavy metal and fluorine contained in the secondary neutralized supernatant. .. These results are shown in Table 2.

〔実施例2〕
上記実施例1の処理工程において、二次中和工程で生じた二次中和澱物を固液分離してその全量を一次中和澱物に混合して混合澱物にした。この混合澱物に酸化マグネシウムを添加してpH11に調整してアルカリ澱物にした。このアルカリ澱物を一次中和工程の中和剤として用いた。それ以外は上記実施例1と同様にして、一次中和工程から二次中和工程および澱物返送工程に至る処理工程を実施した。この結果を表2に示す。
[Example 2]
In the treatment step of Example 1 above, the secondary neutralized starch produced in the secondary neutralization step was solid-liquid separated and the whole amount was mixed with the primary neutralized starch to prepare a mixed starch. Magnesium oxide was added to this mixed starch to adjust the pH to 11, and the mixture was made into an alkaline starch. This alkaline starch was used as a neutralizing agent in the primary neutralization step. Other than that, the treatment steps from the primary neutralization step to the secondary neutralization step and the starch return step were carried out in the same manner as in Example 1 above. The results are shown in Table 2.

〔比較例1〕
酸化マグネシウムに代えて消石灰を中和剤として用いた以外は実施例1と同様にして一次中和および二次中和を行った。この結果を表2に示す。
[Comparative Example 1]
Primary neutralization and secondary neutralization were carried out in the same manner as in Example 1 except that slaked lime was used as a neutralizing agent instead of magnesium oxide. The results are shown in Table 2.

表2に示すように、一次中和澱物の濃度は、実施例1、2では180g/Lであるが、比(較例1では100g/Lであり、実施例1、2より低く、実施例1、2のほうが澱物の濃縮が進んでいることがわかる。また、二次中和澱物の容積は、実施例1、2では4.0mlであり、非常に小さいが、比較例1では60mlであり、嵩高い澱物になっている。これは、実施例1、2で中和剤として用いたMgOは水への溶解速度が、比較例1の消石灰に比べて遅いため、MgO粒子近傍に新生沈殿が高密度に析出しやすく、澱物の濃縮、減容化に寄与するためである。 As shown in Table 2, the concentration of the primary neutralized precipitate was 180 g / L in Examples 1 and 2, but the ratio (100 g / L in Comparative Example 1 was lower than that in Examples 1 and 2). It can be seen that the concentration of the precipitate is higher in Examples 1 and 2. The volume of the secondary neutralized precipitate is 4.0 ml in Examples 1 and 2, which is very small, but in Comparative Example 1. The volume is 60 ml, which is a bulky precipitate. This is because MgO used as a neutralizing agent in Examples 1 and 2 has a slower dissolution rate in water than that of slaked lime in Comparative Example 1. This is because the new precipitates are likely to precipitate in the vicinity of the particles at a high density, which contributes to the concentration and volume reduction of the precipitates.

また、一次中和後の上澄み液のフッ素濃度を比較すると、実施例1、比較例1では原水とほぼ同じ濃度であるが、実施例2では12mg/Lであり、一次中和でもフッ素の一部が除去されている。これは,実施例2で二次中和澱物を一次中和澱物に混合してアルカリ澱物にしているので、澱物中のMgOと二次中和澱物中のアルミニウム成分が反応してハイドロタルサイト類が形成され、これにフッ素が取り込まれて除去されるためであると考えられる。二次中和の硫酸アルミニウムの添加量と、二次中和の上澄み液のフッ素濃度を比較すると、実施例1および比較例1では、硫酸アルミニウムを0.80g/L添加して、上澄み液のフッ素濃度がそれぞれ6.7mg/L、6.9mg/Lであるのに対し、実施例2では0.60g/Lだけ添加しても、上澄み液のフッ素濃度は3.8mg/Lであり、格段に低下している。これは、一次中和の上澄み液のフッ素濃度が、実施例2では12mg/Lと低く、このため二次中和の負荷が減り、添加する硫酸アルミニウムの添加量が少なくても、フッ素濃度を十分に低減できるからであると考えられる。 Further, when the fluorine concentration of the supernatant after the primary neutralization is compared, it is almost the same concentration as the raw water in Example 1 and Comparative Example 1, but it is 12 mg / L in Example 2, and even in the primary neutralization, it is one of fluorine. The part has been removed. This is because the secondary neutralized starch was mixed with the primary neutralized starch to make an alkaline starch in Example 2, so that MgO in the starch reacts with the aluminum component in the secondary neutralized starch. It is considered that this is because hydrotalcites are formed and fluorine is taken in and removed from the hydrotalcites. Comparing the amount of the secondary neutralized aluminum sulfate added and the fluorine concentration of the secondary neutralized supernatant, in Example 1 and Comparative Example 1, 0.80 g / L of aluminum sulfate was added to the supernatant. While the fluorine concentration was 6.7 mg / L and 6.9 mg / L, respectively, in Example 2, even if only 0.60 g / L was added, the fluorine concentration of the supernatant was 3.8 mg / L. It has dropped dramatically. This is because the fluorine concentration of the supernatant of the primary neutralization is as low as 12 mg / L in Example 2, so that the load of the secondary neutralization is reduced, and even if the amount of aluminum sulfate added is small, the fluorine concentration can be increased. It is considered that this is because it can be sufficiently reduced.

Figure 2021166981
Figure 2021166981

Claims (4)

重金属およびフッ素を含む酸性の坑廃水に中和剤を加えて該重金属およびフッ素を澱物化して除去する処理方法において、該坑廃水に酸化マグネシウムを含む中和剤を添加して重金属含有澱物(一次中和澱物)を生成させる一次中和工程、該一次中和工程で生じた重金属含有澱物(一次中和澱物)を固液分離し、その一部または全部に酸化マグネシウムを加えてアルカリ澱物にし、このアルカリ澱物を一次中和工程の中和剤に用いる澱物返送工程、上記重金属含有澱物(一次中和澱物)を分離した液分に、酸化マグネシウムとアルミニウム源を添加してフッ素含有澱物(二次中和澱物)を生成させる二次中和工程を有し、該フッ素含有澱物(二次中和澱物)を固液分離することを特徴とする坑廃水の処理方法。 In a treatment method in which a neutralizing agent is added to acidic mineral wastewater containing heavy metal and fluorine to form a starch and remove the heavy metal and fluorine, a neutralizing agent containing magnesium oxide is added to the underground wastewater to form a heavy metal-containing starch. A primary neutralization step for producing (primary neutralized starch), a heavy metal-containing starch (primary neutralized starch) produced in the primary neutralization step is solid-liquid separated, and magnesium oxide is added to a part or all of the solid-liquid separation. Alkaline starch is used as a neutralizing agent in the primary neutralization step. It has a secondary neutralization step of adding fluorine-containing starch (secondary neutralized starch) to produce the fluorine-containing starch (secondary neutralized starch), and is characterized by solid-liquid separation of the fluorine-containing starch (secondary neutralized starch). How to treat mine wastewater. 上記一次中和工程において、上記坑廃水に酸化マグネシウムを含む中和剤を加えて、pH9.5以上の液性下で重金属含有澱物(一次中和澱物)を生成させ、固液分離した該重金属含有澱物(一次中和澱物)の一部または全部に酸化マグネシウムを加えてpH10.5以上のアルカリ澱物にする請求項1に記載する坑廃水の処理方法。 In the primary neutralization step, a neutralizing agent containing magnesium oxide was added to the tunnel wastewater to generate a heavy metal-containing starch (primary neutralizing starch) under a liquid property of pH 9.5 or higher, and solid-liquid separation was performed. The method for treating mineral wastewater according to claim 1, wherein magnesium oxide is added to a part or all of the heavy metal-containing starch (primary neutralized starch) to make an alkaline starch having a pH of 10.5 or higher. 上記二次中和工程において、上記重金属含有澱物(一次中和澱物)を分離した液分に、酸化マグネシウムとアルミニウム源を添加し、pH6.0〜8.0の液性にして、水酸化アルミニウム沈澱にフッ素が吸着したフッ素含有澱物(二次中和澱物)を生成させる請求項1または請求項2に記載する坑廃水の処理方法。 In the secondary neutralization step, magnesium oxide and an aluminum source are added to the liquid in which the heavy metal-containing starch (primary neutralized starch) is separated to make the liquid having a pH of 6.0 to 8.0, and water is used. The method for treating mineral wastewater according to claim 1 or 2, wherein a fluorine-containing starch (secondary neutralized starch) in which fluorine is adsorbed on aluminum oxide precipitate is produced. 固液分離した上記フッ素含有澱物(二次中和澱物)を上記澱物返送工程に送り、固液分離した上記重金属含有澱物(一次中和澱物)に加えて混合澱物にし、該混合澱物の一部または全部に酸化マグネシウムを加えてアルカリ澱物にし、これを一次中和工程の中和剤として用いる請求項1〜請求項3の何れかに記載する坑廃水の処理方法。



The solid-liquid separated fluorine-containing starch (secondary neutralized starch) is sent to the starch return step, and is added to the solid-liquid separated heavy metal-containing starch (primary neutralized starch) to form a mixed starch. The method for treating mineral wastewater according to any one of claims 1 to 3, wherein magnesium oxide is added to a part or all of the mixed starch to form an alkaline starch, which is used as a neutralizing agent in the primary neutralization step. ..



JP2020071785A 2020-04-13 2020-04-13 Method for treating pit wastewater Pending JP2021166981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020071785A JP2021166981A (en) 2020-04-13 2020-04-13 Method for treating pit wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071785A JP2021166981A (en) 2020-04-13 2020-04-13 Method for treating pit wastewater

Publications (1)

Publication Number Publication Date
JP2021166981A true JP2021166981A (en) 2021-10-21

Family

ID=78079326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071785A Pending JP2021166981A (en) 2020-04-13 2020-04-13 Method for treating pit wastewater

Country Status (1)

Country Link
JP (1) JP2021166981A (en)

Similar Documents

Publication Publication Date Title
JP2912226B2 (en) Wastewater treatment method
JP2009179841A (en) Method for treating molten fly ash
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JP4306394B2 (en) Cement kiln extraction dust processing method
JPH11137958A (en) Treatment of stack gas desulfurization waste water
JP5915834B2 (en) Method for producing purification treatment material
JP5206453B2 (en) Cement kiln extraction dust processing method
JP2001340870A (en) Method for treating fluorine-containing wastewater
JP4306422B2 (en) Cement kiln extraction dust processing method
JP5796703B2 (en) Calcium fluoride recovery method and recovery apparatus
JP2021166981A (en) Method for treating pit wastewater
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP2005185901A (en) Method and apparatus for removing heavy metal from soil complexly contaminated with heavy metal
JP2006116468A (en) Treatment method for mine waste water
JP7351199B2 (en) Treatment method for arsenic-containing wastewater
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP5206455B2 (en) Cement kiln extraction dust processing method
JP5493903B2 (en) Mercury removal method
JP2003181467A (en) Method for treating selenium-containing waste water
JP7429357B2 (en) Mine wastewater treatment method
EA016467B1 (en) Method of radium stabilization in solid effluent or effluent containing substances in suspension
JP6329448B2 (en) Waste water treatment method and waste water treatment equipment
JP2002316172A (en) Wastewater treatment method
JP7259620B2 (en) Method for treating lead-containing outside water
JP2003047972A (en) Method for treating fluorine-containing wastewater