JP2002220587A - Method for producing high-luminance light emitting material - Google Patents

Method for producing high-luminance light emitting material

Info

Publication number
JP2002220587A
JP2002220587A JP2001017891A JP2001017891A JP2002220587A JP 2002220587 A JP2002220587 A JP 2002220587A JP 2001017891 A JP2001017891 A JP 2001017891A JP 2001017891 A JP2001017891 A JP 2001017891A JP 2002220587 A JP2002220587 A JP 2002220587A
Authority
JP
Japan
Prior art keywords
metal
earth metal
dispersion stabilizer
light emitting
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001017891A
Other languages
Japanese (ja)
Other versions
JP3699991B2 (en
Inventor
Yukio Jo
超男 徐
Gei Ryu
芸 劉
Hiroshi Tateyama
博 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001017891A priority Critical patent/JP3699991B2/en
Publication of JP2002220587A publication Critical patent/JP2002220587A/en
Application granted granted Critical
Publication of JP3699991B2 publication Critical patent/JP3699991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing fine powder of highly crystalline high-luminance light emitting material by a safe and simple operation. SOLUTION: In producing a high-luminance light emitting material (e.g. SrAl2O4:Eu) comprising one or more kinds of aluminates as a parent body substance and one or more kinds of metal ions of rare earth metal ions or transition metal ions as the central ion of light emitting center in the parent body substance, an aluminum alcoholate is mixed with one or more kinds of water-soluble compounds of a metal except aluminum in an aqueous medium, changed into alkalinity and made into a colloid. A dispersion stabilizer is added to the colloid, rapidly dried to form a dried substance having the dispersion stabilizer attached to the surface of colloidal particle. The dried material is calcined in an oxidizing atmosphere at 500-900 deg.C. The calcined material is ground, the obtained powder is molded or not molded and fired in a reducing atmosphere at 1,000-1,700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、応力励起、紫外線
励起、プラズマ励起、電子線励起、電場励起などにより
発光する各種発光体の製造方法、特にアルミン酸塩を母
体物質とし、希土類金属又は遷移金属を発光中心の中心
イオンとして含む高輝度発光材料の新規な製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing various luminous bodies which emit light by stress excitation, ultraviolet excitation, plasma excitation, electron beam excitation, electric field excitation, etc. The present invention relates to a novel method for producing a high-luminance luminescent material containing a metal as a central ion of a luminescent center.

【0002】[0002]

【従来の技術】これまで、外部からの刺激により発光す
る発光体としては、紫外線励起のものとしてケイ光ラン
プ用ケイ光体、プラズマディスプレイ用ケイ光体など、
電子線励起のものとして高速電子励起用ケイ光体、ケイ
光表示管用ケイ光体など、X線・放射線励起のものとし
てX線用ケイ光体、固体シンチレーターなど、熱励起・
赤外線励起のものとして蓄光性ケイ光体、輝尽性ケイ光
体、赤外可視変換ケイ光体などが知られている。
2. Description of the Related Art Heretofore, as a luminous body which emits light by an external stimulus, a luminous body for a fluorescent lamp, a luminous body for a plasma display, and the like, which are excited by ultraviolet rays, have been known.
Thermal excitation, such as phosphor for high-speed electron excitation and phosphor for fluorescent display tube, etc. for X-ray and radiation excitation, and solid scintillator for X-ray and radiation excitation.
Phosphorescent phosphors, stimulable phosphors, infrared-visible conversion phosphors and the like are known as those excited by infrared rays.

【0003】また、本発明者らは、先に機械的外力によ
って発光する、非化学量論的組成を有するアルミン酸塩
の少なくとも1種からなり、かつ機械的エネルギーによ
って励起されたキャリアーが基底状態に戻る際に発光す
る格子欠陥をもつ物質、又はこの母体物質中に希土類金
属イオン及び遷移金属イオンの中から選ばれた少なくと
も1種の金属イオンを発光中心の中心イオンとして含む
物質からなる高輝度応力発光材料を提案している(特願
平11−223516号)。
In addition, the present inventors have proposed that a carrier which is made of at least one kind of aluminate having a non-stoichiometric composition and which emits light by a mechanical external force, and which is excited by mechanical energy, has a ground state. High luminance comprising a substance having lattice defects that emit light upon returning to the substrate, or a substance containing at least one kind of metal ion selected from rare earth metal ions and transition metal ions as a central ion of the emission center in the base substance. A stress-stimulated luminescent material has been proposed (Japanese Patent Application No. 11-223516).

【0004】これらの発光材料は、一般に固相反応法、
すなわち所定の組成を生成するための各原料を粉末状で
混合し、高温で焼成して、各原料間で固相反応させる方
法により製造されている。そして、この際反応を促進す
るために、高温での液相形成を助長するフラックス剤と
して、例えばホウ酸、水酸化ナトリウム、塩化アンモニ
ウムなどが用いられている。
[0004] These luminescent materials are generally prepared by a solid phase reaction method,
That is, it is manufactured by a method in which raw materials for producing a predetermined composition are mixed in a powder form, fired at a high temperature, and subjected to a solid-phase reaction between the raw materials. In order to promote the reaction at this time, for example, boric acid, sodium hydroxide, ammonium chloride, or the like is used as a flux agent for promoting the formation of a liquid phase at a high temperature.

【0005】しかしながら、このような固相反応法は、
一般に生成する発光材料の粒子が粗大化する傾向があ
り、微粉体を得ることが困難である。また、微粒子を形
成させるために有機溶媒中で反応させる方法も知られて
いるが、有機溶媒の使用に伴う環境汚染や人体への影響
についての配慮を必要とする上に、コスト高になるのを
免れず、また生成する微粉体は結晶性が低いために、十
分な発光輝度が得られないという欠点がある。
[0005] However, such a solid-phase reaction method is
Generally, the particles of the luminescent material generated tend to be coarse, and it is difficult to obtain fine powder. Although a method of reacting in an organic solvent to form fine particles is also known, it is necessary to consider environmental pollution and the effect on the human body due to the use of the organic solvent, and the cost increases. In addition, the resulting fine powder has low crystallinity, so that sufficient emission luminance cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、従来方法のもつ欠点を克服し、安全で簡
単な操作により、高輝度、高結晶性の高輝度発光材料の
微粉体を得ることを目的としてなされたものである。
SUMMARY OF THE INVENTION Under the above circumstances, the present invention overcomes the drawbacks of the conventional method and provides a high-luminance, high-crystallinity, high-luminance luminescent material by a safe and simple operation. The purpose is to obtain fine powder.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高品質の
高輝度発光材料を製造する方法について鋭意研究した結
果、アルミニウムの供給原料としてアルミニウムアルコ
ラートを用い、アルミニウム以外の成分金属、例えばア
ルカリ土類金属、希土類金属、遷移金属の供給原料とし
て、それらの水溶性でかつ膠質化可能な化合物を用い、
これらをホウ酸とともに含む水溶液をアルカリ性にして
膠質化し、さらにこのようにして得た膠質粒子を分散安
定剤の存在下で乾燥させることにより、安定化した高輝
度、高結晶性の高輝度発光材料の微粉体が得られるこ
と、この微粉体を仮焼成後、粉砕して本焼成すれば、高
品質の高輝度発光材料が得られることを見出し、この知
見に基づいて本発明をなすに至った。
The present inventors have conducted intensive studies on a method for producing a high-quality, high-luminance luminescent material. As a result, the present inventors have found that aluminum alcoholate is used as a raw material for aluminum, and a component metal other than aluminum, such as an alkali metal, is used. Earth water, rare earth metal, as a raw material of the transition metal, using their water-soluble and gelatinizable compounds,
An aqueous solution containing these together with boric acid is made alkaline to form a colloid, and the obtained colloid particles are dried in the presence of a dispersion stabilizer to provide a stabilized, high-brightness, high-crystalline, high-brightness luminescent material. It has been found that if the fine powder is obtained, the fine powder is preliminarily baked, and then ground and baked, a high-quality high-luminance light-emitting material can be obtained, and the present invention has been made based on this finding. .

【0008】すなわち、本発明は、アルミン酸塩の少な
くとも1種を母体物質とし、その中に希土類金属イオン
及び遷移金属イオンの中から選ばれた少なくとも1種の
金属イオンを発光中心の中心イオンとして含む高輝度発
光材料を製造するに当り、アルミニウムアルコラートと
アルミニウム以外の成分金属の水溶性化合物の少なくと
も1種とを水性媒質中で混合したのち、アルカリ性に変
えて膠質化し、次いでこれに分散安定剤を添加して急速
乾燥し、膠質粒子表面に分散安定剤が付着した乾燥物を
生成させたのち、この乾燥物を酸化雰囲気中500〜9
00℃で仮焼成し、この仮焼成物を粉砕し、得た粉末を
成形し又は成形しないで還元雰囲気中1000〜170
0℃において焼成することを特徴とする高輝度発光材料
の製造方法を提供するものである。
That is, according to the present invention, at least one kind of aluminate is used as a host substance, and at least one kind of metal ion selected from rare earth metal ions and transition metal ions is used as a central ion of a luminescence center. In producing a high-brightness light-emitting material containing aluminum alcoholate and at least one water-soluble compound of a component metal other than aluminum in an aqueous medium, the mixture is converted to alkalinity to form a gel, and then a dispersion stabilizer is added thereto. And dried rapidly to form a dried product having a dispersion stabilizer attached to the surface of the colloidal particles.
The calcined product is calcined at 00 ° C., the calcined product is pulverized, and the obtained powder is molded or not molded in a reducing atmosphere at 1000 to 170 ° C.
An object of the present invention is to provide a method for producing a high-luminance light-emitting material, which is characterized by firing at 0 ° C.

【0009】[0009]

【発明の実施の形態】本発明方法の目的とする高輝度発
光材料における母体物質を構成するアルミン酸塩として
は、例えば一般式MxAly2x+3y/2(ただしMはアル
カリ土類金属、遷移金属又は希土類金属、x、yは整
数)で表わされるものを挙げることができ、Mのアルカ
リ土類金属としては、Mg、Ca、Ba及びSrが、遷
移金属としてはZnが、希土類金属としてはYが好まし
い。また、発光中心の中心イオンを形成する希土類金属
としては、Sc、Y、La、Ce、Pr、Nd、Pm、
Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Luなど、好ましくはY、Ce、Eu、Tbを、遷
移金属としては、例えばSb、Ti、Zr、V、Cr、
Mn、Fe、Co、Ni、Cu、Zn、Nb、Mo、T
a、Wなど、好ましくはSb、Mn又はMoを挙げるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION As an aluminate constituting a base substance in a high-luminance light-emitting material aimed at by the method of the present invention, for example, a general formula M x Al y O 2x + 3y / 2 (where M is an alkaline earth element) Metals, transition metals or rare earth metals, x and y are integers). Examples of the alkaline earth metal of M include Mg, Ca, Ba and Sr, Zn as a transition metal, and rare earth. Y is preferred as the metal. The rare earth metal forming the central ion of the emission center is Sc, Y, La, Ce, Pr, Nd, Pm,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, Lu, etc., preferably Y, Ce, Eu, Tb, and transition metals such as Sb, Ti, Zr, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, T
a, W, etc., preferably Sb, Mn or Mo.

【0010】そして、上記の一般式におけるアルカリ土
類金属が化学量論的に0.01〜20モル%外れた格子
欠陥をもつアルミン酸塩を母体物質とし、これに希土類
金属イオン又は遷移金属イオン0.01〜10モル%を
発光中心のイオンとして含むものは、高輝度応力発光材
料となる。本発明方法によれば、そのほかSrMgAl
1017、BaMg2Al1627やYAlO3を母体物質と
し、Euを発光中心の中心イオンとする紫外線励起ケイ
光体なども製造することができる。
An aluminate having a lattice defect in which the alkaline earth metal in the above general formula is stoichiometrically deviated from 0.01 to 20 mol% is used as a base material, and a rare earth metal ion or a transition metal ion is added thereto. A material containing 0.01 to 10 mol% as the ion of the luminescent center is a high-luminance stress-luminescent material. According to the method of the present invention, SrMgAl
An ultraviolet-excited phosphor using 10 O 17 , BaMg 2 Al 16 O 27 or YAlO 3 as a base substance and Eu as a central ion of a light emission center can also be manufactured.

【0011】本発明方法においては、アルミニウム供給
原料としてアルミニウムアルコラートを用いる必要があ
る。このアルミニウムアルコラートとしては、例えばモ
ノメトキシジエトキシアルミニウム、トリエトキシアル
ミニウム、モノプロポキシジエトキシアルミニウム、ト
リプロポキシアルミニウム、トリイソプロポキシアルミ
ニウムなどを挙げることができる。
In the method of the present invention, it is necessary to use aluminum alcoholate as the aluminum feedstock. Examples of the aluminum alcoholate include monomethoxydiethoxyaluminum, triethoxyaluminum, monopropoxydiethoxyaluminum, tripropoxyaluminum, and triisopropoxyaluminum.

【0012】次に、アルカリ土類金属の供給原料として
用いるアルカリ土類金属の水溶性化合物としては、例え
ば塩化マグネシウム、塩化カルシウム、塩化バリウム、
硝酸カルシウム、硝酸ストロンチウム、硫酸バリウム、
炭酸マグネシウム、硫酸マグネシウムなどを挙げること
ができる。
Next, as a water-soluble compound of an alkaline earth metal used as a supply material of the alkaline earth metal, for example, magnesium chloride, calcium chloride, barium chloride,
Calcium nitrate, strontium nitrate, barium sulfate,
Examples thereof include magnesium carbonate and magnesium sulfate.

【0013】また、希土類金属の供給原料として用いる
希土類金属の水溶性化合物としては、ユーロピウム、イ
ットリウム、セリウム、トリビウム、ガドリウムの塩化
物、硝酸塩及び硫酸塩などを挙げることができるし、遷
移金属の供給原料としては、アンチモン、マンガン、タ
リウム、鉄の塩化物、水酸化物、炭酸塩、硫酸塩、硝酸
塩などを挙げることができる。
The rare-earth metal water-soluble compound used as a rare-earth metal supply material may include chlorides, nitrates and sulfates of europium, yttrium, cerium, tribium and gadolinium. Examples of the raw material include antimony, manganese, thallium, iron chloride, hydroxide, carbonate, sulfate, and nitrate.

【0014】本発明方法においては、これらのアルミニ
ウムアルコラートと所要の金属の水溶性化合物とを、水
性媒質中で目的とする高輝度発光材料中の各金属成分の
構成原子比に相当する割合で混合する。この際のアルミ
ニウムアルコラート及び各金属の水溶性化合物は、水性
媒質に対し、固形分濃度として30質量%以下の範囲に
なるように溶解する。この際の水性媒質としては、水又
は水と水混和性溶媒、例えばアルコールとの混合物が用
いられる。
In the method of the present invention, the aluminum alcoholate and the water-soluble compound of the required metal are mixed in an aqueous medium at a ratio corresponding to the constituent atomic ratio of each metal component in the intended high-luminance luminescent material. I do. At this time, the aluminum alcoholate and the water-soluble compound of each metal are dissolved in the aqueous medium so as to have a solid content concentration of 30% by mass or less. As the aqueous medium at this time, water or a mixture of water and a water-miscible solvent such as an alcohol is used.

【0015】次に、このようにして調製された水性溶液
にアルカリ溶液、例えばアンモニア水を加えてpHを
8.0以上に調整すると、全体が膠質化、すなわちゾル
・ゲル化して微細な球状の膠質粒子が形成される。この
粒子形状は、pHの調整により球状以外に繊維状、小板
状、網状などにすることもできる。この際のアルカリ溶
液としては、水酸化アルカリ、炭酸アルカリなども用い
られるが、熱分解により容易に除去することができ、水
洗工程を省略しうる点でアンモニア水が好ましい。
Next, when the pH of the aqueous solution thus prepared is adjusted to 8.0 or more by adding an alkaline solution, for example, aqueous ammonia, the entire solution becomes gelatinized, that is, becomes sol-gel, and becomes a fine spherical particle. Colloidal particles are formed. The particle shape can be made into a fiber shape, a plate shape, a net shape, etc. other than the spherical shape by adjusting the pH. As the alkali solution at this time, alkali hydroxide, alkali carbonate and the like are also used, but ammonia water is preferred because it can be easily removed by thermal decomposition and the washing step can be omitted.

【0016】次いで、このようにして得られた膠質液に
分散安定剤を加えたのち、急速乾燥すると、表面に分散
安定剤が付着した球状のゲル粒子粉末が得られる。上記
の分散安定剤としては、ジメチルホルムアミド、ジメチ
ルアセトアミド、ジエチルアセトアミドのようなジアル
キルカルボン酸アミドが好ましいが、そのほかのゲル安
定化に有効な化合物を用いることもできる。この分散安
定剤の添加に際しては、架橋反応を防ぐために、激しく
かきまぜるのが好ましい。急速乾燥は、100〜200
℃の温度において、必要に応じ減圧下で行われる。この
乾燥は、溶媒の沸点以上に設定した乾燥炉を用いて行わ
れるが、そのほか超音波乾燥、スプレー乾燥などを用い
てもよい。
Next, a dispersion stabilizer is added to the thus obtained colloidal solution, and then the mixture is rapidly dried to obtain spherical gel particle powder having the dispersion stabilizer adhered to the surface. As the above-mentioned dispersion stabilizer, dialkyl carboxylic acid amides such as dimethylformamide, dimethylacetamide and diethylacetamide are preferred, but other compounds effective for gel stabilization can also be used. When the dispersion stabilizer is added, it is preferable to stir vigorously to prevent a crosslinking reaction. Rapid drying is 100-200
The reaction is carried out at a temperature of 0 ° C., if necessary under reduced pressure. This drying is performed using a drying oven set at a temperature equal to or higher than the boiling point of the solvent. In addition, ultrasonic drying, spray drying, or the like may be used.

【0017】次に、このようにして得た乾燥物を、酸化
雰囲気、例えば空気中500〜900℃において仮焼成
したのち、生成した固形物を軽く粉砕し、還元雰囲気、
例えば水素気流中、1000〜1700℃において本焼
成することにより、高輝度発光材料粉末を得ることがで
きる。この際の焼成時間は、材料の組成、焼成温度によ
り異なるが、通常は1〜6時間である。また必要に応じ
仮焼成物の粉砕物を本焼成に先立ち、所望の形状に成形
することもでき、このようにして球形状、板状、円筒状
など任意の形状を有する発光材料を得ることができる。
Next, the dried product thus obtained is calcined in an oxidizing atmosphere, for example, in the air at 500 to 900 ° C., and the resulting solid is crushed lightly to form a reducing atmosphere.
For example, high-brightness light-emitting material powder can be obtained by performing main firing at 1000 to 1700 ° C. in a hydrogen stream. The firing time at this time varies depending on the composition of the material and the firing temperature, but is usually 1 to 6 hours. Further, if necessary, the pulverized preliminarily fired material can be formed into a desired shape prior to the main firing, and thus a luminescent material having an arbitrary shape such as a spherical shape, a plate shape, and a cylindrical shape can be obtained. it can.

【0018】本発明方法においては、原料混合物中に少
量のホウ酸を添加すると、より輝度が向上した発光材料
を得ることができる。このホウ酸の添加量としては、水
性溶液中の固形分全量に基づき0.01〜10モル%の
範囲が好ましい。
In the method of the present invention, when a small amount of boric acid is added to the raw material mixture, a luminescent material with further improved luminance can be obtained. The amount of boric acid added is preferably in the range of 0.01 to 10 mol% based on the total solid content in the aqueous solution.

【0019】本発明方法により得られる高輝度発光材料
は、ポリマーと混合してシート状、ブロック状、球状、
ロッド状、管状など任意の形状に成形して用いることが
できる。例えば、このものをフッ化ビニリデンとテトラ
フルオロエチレンとの共重合体に混合してシート状に成
形し、両面に電極を積層すれば、電場発光デバイスとす
ることができる。ポリマーへの含有割合としては、10
〜70質量%、好ましくは30〜60質量%の範囲が選
ばれる。
The high-luminance luminescent material obtained by the method of the present invention is mixed with a polymer to form a sheet, block, sphere,
It can be used after being formed into an arbitrary shape such as a rod shape and a tubular shape. For example, if this is mixed with a copolymer of vinylidene fluoride and tetrafluoroethylene to form a sheet, and electrodes are laminated on both sides, an electroluminescent device can be obtained. The content ratio in the polymer is 10
The range is selected from 70 to 70% by mass, and preferably from 30 to 60% by mass.

【0020】[0020]

【実施例】次に実施例により本発明をさらに詳細に説明
する。
Next, the present invention will be described in more detail by way of examples.

【0021】実施例 トリイソプロポキシアルミニウムAl(O−iC37
3163.4gと硝酸ストロンチウムSr(NO33
3.8gと硝酸Eu(NO33・2.9H2O1.56
gとホウ酸H3BO31.2gとを40℃に保った水40
0mlに加え、かきまぜながら18%のアンモニア水を
添加し、pH8.5に調整し、4時間かきまぜることに
よりゲル溶液を調製した。次に、この中にジメチルホル
ムアミド200mlを加えて4時間激しくかきまぜてよ
く混合したのち、150℃に設定した乾燥炉に入れ、乾
燥させた。次いで、これを700℃において仮焼成し、
得られた仮焼物を粉砕したのち、5体積%の水素を含む
アルゴン中、1300℃において4時間本焼成した。こ
のようにして平均粒子径1.5μmの高輝度発光材料微
粉体を得ることができた。図1は、このようにして得た
微粉体の結晶構造を示すXRDパターンである。この図
より、この微粉体は、不純物を全く含まない、高結晶性
のSrAl24を母体物質としていることが分る。この
ように、本発明方法によると、小さい粒子径にもかかわ
らず、高結晶のものが得られる。
EXAMPLES Aluminum triisopropoxy Al (O-iC 3 H 7 )
3 163.4G strontium nitrate Sr (NO 3) 3 8
3.8 g and Eu (NO 3 ) 3 · 2.9H 2 O 1.56
g and boric acid H 3 BO 3 1.2 g in water 40 maintained at 40 ° C.
To 0 ml, 18% aqueous ammonia was added with stirring to adjust the pH to 8.5, and the mixture was stirred for 4 hours to prepare a gel solution. Next, 200 ml of dimethylformamide was added thereto, and the mixture was stirred vigorously for 4 hours to mix well, then placed in a drying oven set at 150 ° C., and dried. Next, it is pre-fired at 700 ° C.
After the obtained calcined product was pulverized, it was finally calcined at 1300 ° C. for 4 hours in argon containing 5% by volume of hydrogen. In this way, a high-luminance light-emitting material fine powder having an average particle diameter of 1.5 μm was obtained. FIG. 1 is an XRD pattern showing the crystal structure of the fine powder thus obtained. From this figure, it can be seen that this fine powder contains SrAl 2 O 4 of high crystallinity, which does not contain any impurities, as a base substance. As described above, according to the method of the present invention, a highly crystalline product can be obtained despite its small particle size.

【0022】比較例 従来の固相法により以下のようにして発光粉体を調製し
た。酸化アルミニウム粉末と炭酸ストロンチウム粉末と
酸化ユーロピウム粉末とをAlとSrとEuとの原子比
が2:0.99:0.01になるように秤量し、ホウ酸
粉末5モル%と混合したのち、まず空気中、800℃に
おいて60分間仮焼成し、得られた焼成物を粉砕し、さ
らに5体積%の水素を含有するアルゴン中、1300℃
において4時間本焼成することにより、平均粒子径15
μmの発光粉体を得た。
Comparative Example A luminescent powder was prepared by the conventional solid-phase method as follows. Aluminum oxide powder, strontium carbonate powder, and europium oxide powder are weighed so that the atomic ratio of Al, Sr, and Eu is 2: 0.99: 0.01, and mixed with 5 mol% of boric acid powder. First, it is calcined at 800 ° C. for 60 minutes in the air, and the obtained calcined product is pulverized.
By firing for 4 hours at an average particle size of 15
A μm luminescent powder was obtained.

【0023】参考例1 実施例及び比較例で得た発光粉体を金型に充てんし、3
GPaの静水圧でプレス成形したのち1500℃におい
て4時間焼成することによりサンプルを作成した。これ
らのサンプルの紫外線励起による発光輝度を表1に示
す。なお、参考のために市販品(SrAl24・Eu)
についての発光輝度も示した。
Reference Example 1 The luminescent powders obtained in Examples and Comparative Examples were filled in a mold, and
A sample was prepared by press molding at a hydrostatic pressure of GPa, followed by baking at 1500 ° C. for 4 hours. Table 1 shows the emission luminance of these samples when excited by ultraviolet light. For reference, a commercially available product (SrAl 2 O 4 .Eu)
The light emission luminance for is also shown.

【0024】[0024]

【表1】 [Table 1]

【0025】この表より本発明方法で製造した発光粉体
は、粒子が小さく、高輝度であることが分る。
From this table, it can be seen that the luminescent powder produced by the method of the present invention has small particles and high luminance.

【0026】次に、これらのサンプルについて材料試験
機により1000Nの機械的作用力を加え、その応力発
光を測定した。その際の相対発光強度を図2に、またプ
ラズマ中で発光させたときの相対発光強度を図3にそれ
ぞれ示した。
Next, a mechanical action force of 1000 N was applied to these samples by a material testing machine, and the stress luminescence was measured. FIG. 2 shows the relative light emission intensity at that time, and FIG. 3 shows the relative light emission intensity when light was emitted in plasma.

【0027】参考例2 参考例及び比較例で得た高輝度発光材料粉末を、フッ化
ビニリデンとテトラフルオロエチレンとの共重合体の粉
末と質量比1:1の割合で混合し、溶融流展して、厚さ
50μmのシート状に成形した。このシートの一方の面
にAlを、他方の面にITOとを蒸着して電極を形成さ
せることにより、電場発光デバイスを作製した。このよ
うにして得たデバイスの両電極間に電圧を印加して発光
させ、その強度を測定した結果を図4に示す。これらの
参考例の結果から分るように、本発明方法で製造した高
輝度発光材料は、従来方法で製造したものに比べ、応力
励起、プラズマ励起、電場励起のいずれにおいても高い
発光強度を示す。
Reference Example 2 The high-luminance light-emitting material powders obtained in Reference Example and Comparative Example were mixed with a powder of a copolymer of vinylidene fluoride and tetrafluoroethylene at a mass ratio of 1: 1. Then, it was formed into a sheet having a thickness of 50 μm. Electrode was formed by depositing Al on one side of this sheet and ITO on the other side to form electrodes. The voltage was applied between both electrodes of the device thus obtained to emit light, and the intensity was measured. The results are shown in FIG. As can be seen from the results of these reference examples, the high-brightness luminescent material manufactured by the method of the present invention exhibits higher luminescence intensity under any of stress excitation, plasma excitation, and electric field excitation as compared with those manufactured by the conventional method. .

【0028】[0028]

【発明の効果】本発明によると、高い発光強度をもつ高
輝度発光材料を簡単な操作で多量に製造することがで
き、しかも従来法により得られるものよりも小さい粒子
径のものが得られるので合成樹脂などに均一に配合する
ことができるという利点がある。
According to the present invention, a high-luminance luminescent material having a high luminous intensity can be mass-produced by a simple operation, and a particle having a smaller particle diameter than that obtained by the conventional method can be obtained. There is an advantage that it can be uniformly mixed with a synthetic resin or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法で得られた発光材料の1例につい
てのXRDパターン。
FIG. 1 is an XRD pattern of one example of a luminescent material obtained by the method of the present invention.

【図2】 本発明方法及び従来方法により得られた発光
材料の応力励起発光強度を示すグラフ。
FIG. 2 is a graph showing stress-induced luminescence intensity of luminescent materials obtained by the method of the present invention and the conventional method.

【図3】 本発明方法及び従来方法により得られた発光
材料のプラズマ励起発光強度を示すグラフ。
FIG. 3 is a graph showing plasma-excited luminescence intensity of luminescent materials obtained by the method of the present invention and the conventional method.

【図4】 本発明方法及び従来方法により得られた発光
材料の電場励起発光強度を示すグラフ。
FIG. 4 is a graph showing electric-field-excited luminescence intensity of luminescent materials obtained by the method of the present invention and the conventional method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 立山 博 佐賀県鳥栖市宿町字野々下807番地1 経 済産業省産業技術総合研究所九州工業技術 研究所内 Fターム(参考) 3K007 AB02 AB18 DA03 DA04 DB00 DC04 FA03 4H001 CA01 CF01 CF02 XA08 XA13 XA20 XA38 XA56 XB21 YA00 YA21 YA25 YA39 YA51 YA58 YA63 YA65  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hiroshi Tateyama 807-1, Nonoshita, Sukumachi, Tosu-shi, Saga Prefecture F-term in Kyushu Industrial Technology Research Institute, National Institute of Advanced Industrial Science and Technology 3K007 AB02 AB18 DA03 DA04 DB00 DC04 FA03 4H001 CA01 CF01 CF02 XA08 XA13 XA20 XA38 XA56 XB21 YA00 YA21 YA25 YA39 YA51 YA58 YA63 YA65

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミン酸塩の少なくとも1種を母体物
質とし、その中に希土類金属イオン及び遷移金属イオン
の中から選ばれた少なくとも1種の金属イオンを発光中
心の中心イオンとして含む高輝度発光材料を製造するに
当り、アルミニウムアルコラートとアルミニウム以外の
成分金属の水溶性化合物の少なくとも1種とを水性媒質
中で混合したのち、アルカリ性に変えて膠質化し、次い
でこれに分散安定剤を添加して急速乾燥し、膠質粒子表
面に分散安定剤が付着した乾燥物を生成させたのち、こ
の乾燥物を酸化雰囲気中500〜900℃で仮焼成し、
この仮焼成物を粉砕し、得た粉末を成形し又は成形しな
いで還元雰囲気中1000〜1700℃において焼成す
ることを特徴とする高輝度発光材料の製造方法。
1. High-intensity light emission comprising at least one kind of aluminate as a base substance and at least one kind of metal ion selected from rare earth metal ions and transition metal ions as a central ion of a light emission center. In producing the material, aluminum alcoholate and at least one water-soluble compound of a component metal other than aluminum are mixed in an aqueous medium, then changed to alkalinity to form a gel, and then a dispersion stabilizer is added thereto. After rapidly drying to produce a dried product having a dispersion stabilizer attached to the surface of the colloidal particles, the dried product is pre-baked at 500 to 900 ° C. in an oxidizing atmosphere,
A method for producing a high-intensity light-emitting material, characterized in that the calcined product is pulverized and the obtained powder is molded or not molded and calcined in a reducing atmosphere at 1000 to 1700 ° C.
【請求項2】 成分金属がアルカリ土類金属及び希土類
金属又は遷移金属である請求項1記載の高輝度発光材料
の製造方法。
2. The method according to claim 1, wherein the component metals are an alkaline earth metal and a rare earth metal or a transition metal.
【請求項3】 アルカリ土類金属が、ストロンチウム、
カルシウム及びバリウムの中から選ばれた少なくとも1
種の金属である請求項2記載の高輝度発光材料の製造方
法。
3. The method according to claim 1, wherein the alkaline earth metal is strontium,
At least one selected from calcium and barium
3. The method according to claim 2, wherein the material is a kind of metal.
【請求項4】 希土類金属又は遷移金属がユウロピウ
ム、イットリビウム、セリウム、トリビウム、アンチモ
ン及びマンガンの中から選ばれた少なくとも1種の金属
である請求項2記載の高輝度発光材料の製造方法。
4. The method according to claim 2, wherein the rare earth metal or the transition metal is at least one metal selected from europium, yttrium, cerium, tribium, antimony and manganese.
【請求項5】 アルカリ溶液がアンモニア水溶液である
請求項1ないし4のいずれかに記載の高輝度発光材料の
製造方法。
5. The method according to claim 1, wherein the alkaline solution is an aqueous ammonia solution.
【請求項6】 分散安定剤がジアルキルカルボン酸アミ
ドである請求項1ないし5のいずれかに記載の高輝度発
光材料の製造方法。
6. The method according to claim 1, wherein the dispersion stabilizer is a dialkylcarboxylic acid amide.
JP2001017891A 2001-01-26 2001-01-26 Method for producing high-luminance luminescent material Expired - Lifetime JP3699991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001017891A JP3699991B2 (en) 2001-01-26 2001-01-26 Method for producing high-luminance luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001017891A JP3699991B2 (en) 2001-01-26 2001-01-26 Method for producing high-luminance luminescent material

Publications (2)

Publication Number Publication Date
JP2002220587A true JP2002220587A (en) 2002-08-09
JP3699991B2 JP3699991B2 (en) 2005-09-28

Family

ID=18884001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001017891A Expired - Lifetime JP3699991B2 (en) 2001-01-26 2001-01-26 Method for producing high-luminance luminescent material

Country Status (1)

Country Link
JP (1) JP3699991B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371273A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Plasma display device and method for manufacturing phosphor
JP2004137329A (en) * 2002-10-16 2004-05-13 Sony Corp Stress-induced light-emitting particle, stress-induced light-emitting artificial sand, stress-induced light-emitting particle aggregate, stress-induced light-emitting flexible structure and method for producing stress-induced light-emitting particle
WO2004065521A1 (en) * 2003-01-20 2004-08-05 Daiden Co.,Ltd. Method for preparing high brightness luminescent material and high brightness luminescent material
JP2005302508A (en) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd Transparent conductive sheet and electroluminescent element using it
JP2006036887A (en) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology Stress-induced luminescent composition containing anisotropic stress-induced illuminant and method for producing the same
WO2006095732A1 (en) * 2005-03-08 2006-09-14 Sumitomo Chemical Company, Limited Electron beam excited light-emitting device
JP2011506684A (en) * 2007-12-12 2011-03-03 ゼネラル・エレクトリック・カンパニイ Persistent phosphor
US8128839B2 (en) 2004-04-09 2012-03-06 National Institute Of Advanced Industrial Science & Technology High-luminosity stress-stimulated luminescent material, manufacturing method thereof, and use thereof
JP2012086349A (en) * 2010-10-22 2012-05-10 Taisuke Iwamoto Cutting tip and method for manufacturing the cutting tip, and cutting tool and method for manufacturing the cutting tool
CN102746845A (en) * 2012-07-20 2012-10-24 中国地质大学(武汉) Rare earth long-persistence luminescent powder, preparation method and application thereof
JP2014145040A (en) * 2013-01-29 2014-08-14 Sakai Chem Ind Co Ltd Production method of composition for stress light-emitting material, composition for stress light-emitting material obtained by the production method, and stress light-emitting material produced from the composition
WO2015053033A1 (en) * 2013-10-08 2015-04-16 日立金属株式会社 Ceramic scintillator and method for producing same, scintillator array, and radiation detector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371273A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Plasma display device and method for manufacturing phosphor
JP2004137329A (en) * 2002-10-16 2004-05-13 Sony Corp Stress-induced light-emitting particle, stress-induced light-emitting artificial sand, stress-induced light-emitting particle aggregate, stress-induced light-emitting flexible structure and method for producing stress-induced light-emitting particle
WO2004065521A1 (en) * 2003-01-20 2004-08-05 Daiden Co.,Ltd. Method for preparing high brightness luminescent material and high brightness luminescent material
US8128839B2 (en) 2004-04-09 2012-03-06 National Institute Of Advanced Industrial Science & Technology High-luminosity stress-stimulated luminescent material, manufacturing method thereof, and use thereof
JP2005302508A (en) * 2004-04-12 2005-10-27 Fuji Photo Film Co Ltd Transparent conductive sheet and electroluminescent element using it
JP2006036887A (en) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology Stress-induced luminescent composition containing anisotropic stress-induced illuminant and method for producing the same
JP4524357B2 (en) * 2004-07-26 2010-08-18 独立行政法人産業技術総合研究所 Stress-stimulated luminescent composition containing anisotropic stress-stimulated luminescent material and method for producing the same
WO2006095732A1 (en) * 2005-03-08 2006-09-14 Sumitomo Chemical Company, Limited Electron beam excited light-emitting device
JP2011506684A (en) * 2007-12-12 2011-03-03 ゼネラル・エレクトリック・カンパニイ Persistent phosphor
JP2012086349A (en) * 2010-10-22 2012-05-10 Taisuke Iwamoto Cutting tip and method for manufacturing the cutting tip, and cutting tool and method for manufacturing the cutting tool
CN102746845A (en) * 2012-07-20 2012-10-24 中国地质大学(武汉) Rare earth long-persistence luminescent powder, preparation method and application thereof
CN102746845B (en) * 2012-07-20 2014-07-09 中国地质大学(武汉) Rare earth long-persistence luminescent powder, preparation method and application thereof
JP2014145040A (en) * 2013-01-29 2014-08-14 Sakai Chem Ind Co Ltd Production method of composition for stress light-emitting material, composition for stress light-emitting material obtained by the production method, and stress light-emitting material produced from the composition
WO2015053033A1 (en) * 2013-10-08 2015-04-16 日立金属株式会社 Ceramic scintillator and method for producing same, scintillator array, and radiation detector
US10207957B2 (en) 2013-10-08 2019-02-19 Hitachi Metals, Ltd. Ceramic scintillator and its production method, and scintillator array and radiation detector
EP3056555B1 (en) * 2013-10-08 2020-08-05 Hitachi Metals, Ltd. Method for producing a ceramic scintillator, a scintillator array, and a radiation detector

Also Published As

Publication number Publication date
JP3699991B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP5910498B2 (en) Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
WO2016186057A1 (en) Phosphor, production method for same, illumination instrument, and image display device
JP2004356635A (en) Transformation-type led
JP3699991B2 (en) Method for producing high-luminance luminescent material
JP2015042753A (en) Method of producing aluminate luminophore, bam, yag and cat by alum method
US11407942B2 (en) Garnet silicate, garnet silicate phosphor, and wavelength converter and light emitting device which use the garnet silicate phosphor
Khattab et al. Preparation of strontium aluminate: Eu2+ and Dy3+ persistent luminescent materials based on recycling alum sludge
WO2004011572A1 (en) Mechanoluminescence material and process for producing the same
JP2001288465A (en) Production method for green-luminescent alkaline earth aluminate phosphor for vuv excitation light emission apparatus
WO2011040711A2 (en) Fluorescent complexes having magnetic characteristics, and method for preparing same
WO2010137533A1 (en) Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles
KR101496959B1 (en) Red-emitting phosphors with highly enhanced luminescent efficiency and their preparation methods
JP2001131544A (en) Yellow-green emitting luminous body of heat-resistance, water resistance, high luminance and long luminescent persistency and production thereof
WO2010099665A1 (en) Oxide luminescent materials activated by trivalent thulium and their preparations
WO1998006793A1 (en) Process for the preparaiton of aluminate-base phosphor
KR100387659B1 (en) Manufacturing method of strontium aluminate phosphor by the sol-gel method
CN1982409A (en) Crush-free long-persistence fluorescent powder and its synthesis
JP2001152145A (en) Preparation process of aluminate fluorescent body for luminous material
JP3559449B2 (en) Orthorhombic hydroxide phosphor and its manufacturing method
CN106833637B (en) A kind of dysprosium ion Doped Tungsten barium tantalate and its preparation method and application
JP2007002086A (en) Method for producing electron beam-excited red phosphor
KR100893074B1 (en) Calcium aluminate-based blue phosphor and method for the preparation thereof
JP2007002085A (en) Method for producing electron beam-excited red phosphor
JP2010100763A (en) Method of producing luminous fluorescent substance and luminous fluorescent substance
JPH11256153A (en) Particulate luminous fluorescent powder and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050609

R150 Certificate of patent or registration of utility model

Ref document number: 3699991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term