JP2001131544A - Yellow-green emitting luminous body of heat-resistance, water resistance, high luminance and long luminescent persistency and production thereof - Google Patents

Yellow-green emitting luminous body of heat-resistance, water resistance, high luminance and long luminescent persistency and production thereof

Info

Publication number
JP2001131544A
JP2001131544A JP31662499A JP31662499A JP2001131544A JP 2001131544 A JP2001131544 A JP 2001131544A JP 31662499 A JP31662499 A JP 31662499A JP 31662499 A JP31662499 A JP 31662499A JP 2001131544 A JP2001131544 A JP 2001131544A
Authority
JP
Japan
Prior art keywords
yellow
phosphor
fluorine
luminance
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31662499A
Other languages
Japanese (ja)
Other versions
JP3559210B2 (en
Inventor
Yukio Sumida
田 幸 雄 隅
Heibon Baku
平 凡 莫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Co Ltd
Original Assignee
Read Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Co Ltd filed Critical Read Co Ltd
Priority to JP31662499A priority Critical patent/JP3559210B2/en
Publication of JP2001131544A publication Critical patent/JP2001131544A/en
Application granted granted Critical
Publication of JP3559210B2 publication Critical patent/JP3559210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a yellow-green emitting luminous body having improved initial emission luminance and afterglow time. SOLUTION: This yellow-green emitting luminous body has heat resistance, water resistance, high luminance and long after-glowing properties and the following composition formula: Sr1-n-m-k-qE'nEumLnkYq)OrAl2O3:BxFy (where 0<=n<=0.1, 0<m<=0, 0<k<=0.1, 0<=q<=0.05, 1<=r<=1.50, 0<=x<=0.1, 0<y<=0.1, E' is one or more kinds of elements selected from Mn, Zn, Bi, Ca, Mg, Ba; Ln is one or more kinds of lanthanoid elements) and is indexed with the monoclinic crystal system and mainly comprises a fluorine-containing strontium aluminate salt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素含有の耐熱
・耐水性に優れた高輝度・長残光性黄緑発光色のストロ
ンチウムアルミン酸塩蓄光体及びそれを製造する方法に
関し、より詳しくは、1000℃からの低温で焼成出
来、生産性に優れ、初期輝度と残光輝度共に高く、化学
的に安定するストロンチウムアルミン酸塩蓄光体を提供
しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strontium aluminate phosphor containing fluorine and having excellent heat and water resistance and a high luminance and a long afterglow yellow-green luminescent color, and a method for producing the same. An object of the present invention is to provide a strontium aluminate phosphor which can be fired at a temperature as low as 1000 ° C., has excellent productivity, has high initial luminance and afterglow luminance, and is chemically stable.

【0002】[0002]

【従来の技術】蓄光体は、電子線や、X線・紫外線・太
陽光・蛍光灯等の外部エネルギーで励起し、励起停止後
長い時間発光するもので、励起・発光は半永久的に繰り
返す事が出来る。従来、硫化物系蓄光体としては、青色
発光の(Ca,Sr)S:Bi、黄緑色発光のZnS:
Cu、赤色発光の(Zn,Cd)S:Cuが知られてい
る。これらは残光輝度が低く、高温高湿の条件下で紫外
線により分解して黒色化し、残光輝度が著しく劣化する
等の問題点があり、実用上時計の文字盤や室内の避難誘
導標識等に用途が限定されていた。
2. Description of the Related Art Phosphors are excited by external energy such as electron beams, X-rays, ultraviolet rays, sunlight, fluorescent lights, etc., and emit light for a long time after excitation is stopped. Can be done. Conventionally, as a sulfide-based phosphor, blue-emitting (Ca, Sr) S: Bi and yellow-green-emitting ZnS:
Cu and (Zn, Cd) S: Cu which emit red light are known. These have low afterglow luminance, have the problem that they are decomposed by ultraviolet rays under high-temperature and high-humidity conditions and become black, and the afterglow luminance is significantly deteriorated. Use was limited.

【0003】近年来、化学的により安定していて、暗所
で肉眼で確認出来る残光時間の長いアルミン酸塩蓄光体
(日本特許第2543825号、米国特許第5,37
6,303号及び特開平8−151574号)、珪酸塩
蓄光体(特開平9−194833号)、アルミニウム珪
酸塩蓄光体(特開平9−238966号)等がある。
In recent years, aluminate phosphors that are chemically more stable and have a long afterglow time that can be visually confirmed in the dark (Japanese Patent No. 2543825, US Pat. No. 5,37)
No. 6,303 and JP-A-8-151574, silicate phosphors (JP-A-9-194833), aluminum silicate phosphors (JP-A-9-238966), and the like.

【0004】アルミン酸塩蓄光体としては、黄緑色発光
のSrAl :Eu,Dyが、青緑色発光のSr
Al1425:Eu,Dyや、SrAl
:Eu,Dy等と比べ、初期(例えば、励起後1
分)の発光輝度が高いものの、残光性及び耐候性、特に
耐水性に劣ることが指摘される。更に、特開平8−15
1574号公報には、リン素を含有させることで、黄緑
発光性SrAl :Eu,Dy蓄光体の耐熱・耐
水性が改善され、600℃で30分間の酸化焼成によ
り、残光輝度の維持率は焼成前の76.6%を有し、ま
た、72時間水中撹拌を経過した後、49.1%を有す
ると報告している。
As the aluminate phosphor, SrAl 2 O 4 : Eu, Dy which emits yellow-green light and SrAl 2 O 4 : Er, which emits blue-green light are used.
4 Al 14 O 25 : Eu, Dy, SrAl 4 O
7 : Initial (for example, 1 after excitation) compared to Eu, Dy, etc.
However, it is pointed out that, although the emission luminance of (ii) is high, afterglow and weather resistance, particularly water resistance, are inferior. Further, JP-A-8-15
Japanese Patent No. 1574 discloses that phosphorus contains heat- and water-resistant yellow-green light-emitting SrAl 2 O 4 : Eu, Dy phosphors that are improved by phosphoric acid, and afterglow brightness at 600 ° C. for 30 minutes. Has a retention of 76.6% before calcining and has been reported to have 49.1% after stirring in water for 72 hours.

【0005】[0005]

【発明が解決しようとする課題】本発明者は、上記Sr
Al :Eu,Dy蓄光体の結晶構造の安定化、
結晶成長、低温化焼成、欠陥の制御等により、耐熱・耐
水性に優れ、高輝度・長残光を達成出来る成分について
鋭意検討を重ねた結果、フッ素を含有させる事により、
特に硼素とフッ素を同時に含有させる事により、励起停
止して1分後の発光輝度が、最大約1.7倍、1時間後
の発光輝度が3.1倍まで向上し、且つ高い耐熱・耐水
性を持つ蓄光体を、従来より低い焼成温度において低コ
スト大量生産の出来る事を見出した。
SUMMARY OF THE INVENTION The present inventor has set forth the above Sr.
Al 2 O 4 : stabilization of the crystal structure of the Eu, Dy phosphor,
As a result of intensive studies on components that can achieve high heat resistance and water resistance, and achieve high luminance and long afterglow, by crystal growth, low temperature firing, defect control, etc.
In particular, by simultaneously containing boron and fluorine, the emission luminance one minute after excitation is stopped can be increased up to about 1.7 times and the emission luminance one hour later can be increased 3.1 times, and high heat and water resistance can be obtained. It has been found that a phosphorescent material having a property can be mass-produced at low cost at a lower firing temperature than before.

【0006】本発明は、かかる知見に基づくものであ
り、その基本的な解決課題は、初期発光輝度の高い上記
黄緑発光性のSrAl :Eu,Dy蓄光体より
一層初期発光輝度と残光時間を改善した黄緑発光色蓄光
体を提供することにある。本発明の他の解決課題は、大
気中焼成しても蓄光特性が低下しない高い耐熱性を有す
る黄緑発光色蓄光体を提供することにある。また、本発
明の他の解決課題は、水性蓄光インキや、自動車用蓄光
塗料のような応用製品の屋外・水中での使用に際して、
蓄光特性を長く維持出来るようにした黄緑発光色蓄光体
を提供することにある。
The present invention is based on this finding, and the basic problem to be solved is that the yellow-green SrAl 2 O 4 : Eu, Dy phosphor having a high initial light emission luminance has a higher initial light emission luminance than that of the phosphor. An object of the present invention is to provide a yellow-green luminescent color phosphor having an improved afterglow time. Another object of the present invention is to provide a yellow-green luminous color phosphor having high heat resistance that does not deteriorate its luminous properties even when fired in the air. Another problem to be solved by the present invention is to use water-based luminous inks and applied products such as luminous paints for automobiles outdoors and underwater.
An object of the present invention is to provide a yellow-green luminous color luminous body capable of maintaining luminous characteristics for a long time.

【0007】さらに、本発明の他の解決課題は、低温度
・短時間での焼成を可能にし、それによって、バッチ式
炉からキャリア方式のトンネル炉にすることを可能に
し、大量連続生産を容易にした黄緑発光色蓄光体及びそ
の製造方法を提供することにある。本発明の他の解決課
題は、低温度での焼成を可能にすることにより、耐熱ス
テンレス材を炉材として使用可能とし、それによって、
設備費が安価な量産化のためのシステム化を図るのを容
易にした黄緑発光色蓄光体及びその製造方法を提供する
ことにある。
Another object of the present invention is to enable low-temperature, short-time sintering, thereby making it possible to change from a batch-type furnace to a carrier-type tunnel furnace, facilitating mass continuous production. And a method of manufacturing the same. Another object of the present invention is to make it possible to use a heat-resistant stainless steel as a furnace material by enabling firing at a low temperature,
An object of the present invention is to provide a yellow-green luminous color phosphor that facilitates systematization for mass production with low equipment cost and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の本発明の黄緑発光色蓄光体は、組成式が、 (Sr1−n−m−k−q E'Eu Ln
)Al :B,F 、または、 (Sr
1−n−m−k−q E'Eu Ln )O・
rAl :B ,F (但し、 0≦n≦0.1 0<m≦0.05 0<k≦0.1 0≦q≦0.05 1≦r≦1.50 0≦x≦0.1 0<y≦0.1 であり、式中のE’は、Mn,Zn,Bi,Ca,M
g,Baの群から選択された一種以上の金属元素、Ln
は、Ce,Pr,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの群から選択された一種以上のランタノ
イド元素)で表され、単斜晶系で指数づけられる、フッ
素含有ストロンチウムアルミン酸塩を主体とするもので
ある。
Means for Solving the Problems] yellow-green emission color phosphorescent article of the present invention to solve the above problems, a composition formula, (Sr 1-n-m -k-q E 'n Eu m Ln k Y
q ) Al 2 O 4 : B x , F y , or (Sr
1-n-m-k- q E 'n Eu m Ln k Y q) O ·
rAl 2 O 3 : B x , F y (where 0 ≦ n ≦ 0.1 0 <m ≦ 0.05 0 <k ≦ 0.1 0 ≦ q ≦ 0.05 1 ≦ r ≦ 1.50 0 ≦ x ≦ 0.10 <y ≦ 0.1, where E ′ is Mn, Zn, Bi, Ca, M
one or more metal elements selected from the group consisting of g and Ba, Ln
Are Ce, Pr, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu), and is mainly composed of fluorine-containing strontium aluminate represented by a monoclinic system.

【0009】また、上記課題を解決するための本発明の
黄緑発光色蓄光体の製造方法は、上記いずれかの組成式
中のSr,Al,Eu,Y,E’,Ln,B元素を含む
単体粉末あるいは化合物粉末もしくは溶液を、上記組成
式の量比になるように秤量すると共に、F元素を含む化
合物粉末または溶液を焼成して上記組成式の量比になる
ように秤量したものを出発原料とし、それらを混合した
後、乾燥、粉砕して得られた混合粉末を耐熱容器に入
れ、成型、あるいは粉末のままの状態で、還元雰囲気中
1000℃〜1500℃で30分〜2時間焼成した後、
冷却された焼成品を粉末状に粉砕することを特徴とする
ものである。
Further, the method for producing a yellow-green luminous color phosphor of the present invention for solving the above-mentioned problems is characterized in that the elements Sr, Al, Eu, Y, E ', Ln and B in any of the above-mentioned composition formulas are replaced by A single powder or a compound powder or a solution containing the same is weighed so as to have a composition ratio of the above formula, and the compound powder or a solution containing an F element is baked and weighed so as to have a quantity ratio of the above composition formula. As a starting material, after mixing them, the mixed powder obtained by drying and pulverization is put into a heat-resistant container, and molded or kept in a powdery state in a reducing atmosphere at 1000 ° C to 1500 ° C for 30 minutes to 2 hours. After firing,
It is characterized in that the cooled fired product is ground into a powder.

【0010】上記構成を有する黄緑発光色蓄光体及びそ
の製造方法によれば、従来のSrAl :Eu,
Dy蓄光体よりも一層初期発光輝度と残光時間が改善さ
れ、また、大気中で焼成(500℃〜900℃)しても
蓄光特性が低下しない高い耐熱性を有し、更に、水性蓄
光インキや、自動車用蓄光塗料のような応用製品の屋外
・水中での使用に際して、蓄光特性を長く維持出来るよ
うにした黄緑発光色蓄光体を得ることができる。しか
も、上記黄緑発光性SrO・rAl :Eu,D
y蓄光体を、低温度・短時間(例えば1150℃で30
分間)で焼成することができるので、バッチ式炉からキ
ャリア方式のトンネル炉にすることができて、大量連続
生産が容易になり、同時に、高い耐熱性(耐酸化焼成特
性)が要求される蓄光ガラスビーズや蓄光セラミックタ
イルといった製品のように、大気中焼成(500℃〜9
00℃)しても蓄光特性が低下せず、また、水性蓄光イ
ンキや自動車用蓄光塗料のような応用製品の屋外・水中
での使用に際して、蓄光特性を長く維持することが出来
る。
According to the yellow-green luminous color phosphor having the above structure and the method for producing the same, the conventional SrAl 2 O 4 : Eu,
The initial light emission luminance and afterglow time are further improved as compared with the Dy phosphor, and the ink has high heat resistance such that the phosphorescent property does not decrease even when fired in air (500 ° C. to 900 ° C.). Also, when an applied product such as a phosphorescent paint for automobiles is used outdoors or underwater, a yellow-green luminous phosphor that can maintain the phosphorescent characteristics for a long time can be obtained. Moreover, the yellow-green luminescent SrO.rAl 2 O 3 : Eu, D
y The phosphor is kept at low temperature for a short time (for example, 30 minutes at 1150 ° C.).
Minutes), so that a batch type furnace can be changed to a carrier type tunnel furnace, facilitating mass continuous production, and at the same time, a phosphorescent light that requires high heat resistance (oxidation resistance firing property). Fired in the air (500 ° C-9
(00 ° C.), the luminous properties are not reduced, and the luminous properties can be maintained for a long time when an applied product such as an aqueous luminous ink or a luminous paint for automobiles is used outdoors or in water.

【0011】[0011]

【発明の実施の形態】本発明に係る耐熱・耐水性・高輝
度・長残光性黄緑発光色蓄光体は、前記組成式で表さ
れ、単斜晶系で指数づけられる、フッ素含有ストロンチ
ウムアルミン酸塩を主体とするものであり、その黄緑発
光色蓄光体は、次のようにして製造することができる。
即ち、純度が高い(純度99%以上)上記組成式中のS
r,Al,Eu,Y,E’,Ln,B元素を含む単体粉
末あるいは化合物粉末もしくは溶液を、上記組成式の量
比になるように秤量すると共に、F元素を含む化合物粉
末または溶液を焼成して上記組成式の量比になるように
秤量したものを出発原料とし、それらを十分に混合した
後、乾燥、粉砕して得られた混合粉末を、セラミックス
等の耐熱容器に入れ、成型、あるいは粉末のままの状態
で、還元雰囲気中1000℃〜1500℃で30分〜2
時間焼成した後、冷却された焼成品を粉末状に粉砕する
ことにより、目的物の黄緑発光色蓄光体の粉末を得る。
BEST MODE FOR CARRYING OUT THE INVENTION The heat-resistant, water-resistant, high-brightness, long-persistent yellow-green luminescent color phosphor according to the present invention is represented by the above-mentioned composition formula and is indexed by a monoclinic system and is strontium containing fluorine. It is mainly composed of an aluminate, and its yellow-green luminous color phosphor can be produced as follows.
That is, high purity (purity 99% or more) in the above composition formula
A simple substance powder or a compound powder or a solution containing the elements r, Al, Eu, Y, E ', Ln and B is weighed so as to have the above-mentioned composition ratio, and the compound powder or the solution containing the element F is fired. The starting material was weighed so as to have the composition ratio of the above composition formula, and after thoroughly mixing them, the mixed powder obtained by drying and pulverization was placed in a heat-resistant container such as ceramics, molded, Alternatively, in the state of a powder, in a reducing atmosphere at 1000 to 1500 ° C. for 30 minutes to 2
After calcination for a period of time, the cooled calcined product is pulverized into a powder to obtain a target yellow-green luminescent phosphor powder.

【0012】本発明によって提供される蓄光体は、通
常、510〜520nmの範囲に最大発光強度を有し、
従来のフッ素含有しないSrAl :Eu・Dy
と比べ、初期輝度が高く、残光時間も長い特徴を持つ。
特に、硼素とフッ素を共に含有する事により、その効果
が極めて顕著なものになる。こうした効果は、Sr
Al11その他のストロンチウムアルミン酸塩を
主体とする青色または青緑色発光性蛍光蓄光体にも有効
である。たとえば、Sr Al11(硼酸存在無
し)の黄緑発光性蓄光体においては、フッ素を含有する
事で焼成温度が下げられ、しかも短時間(1時間以内)
で結晶性が高く、高輝度・長残光特性が得られる。
The luminous body provided by the present invention usually has a maximum emission intensity in the range of 510 to 520 nm,
Conventional fluorine-free SrAl 2 O 4 : Eu · Dy
Compared with, it has features of higher initial luminance and longer afterglow time.
In particular, by containing both boron and fluorine, the effect becomes extremely remarkable. These effects are due to Sr 2
It is also effective for a blue or blue-green luminescent phosphor mainly containing Al 6 O 11 or other strontium aluminate. For example, in a yellow-green luminous phosphor of Sr 2 Al 6 O 11 (no boric acid present), the sintering temperature can be reduced by containing fluorine, and the sintering temperature can be shortened (within 1 hour).
And high crystallinity, and high luminance and long afterglow characteristics can be obtained.

【0013】しかしながら、フッ素以外のハロゲン元素
であるCl,Br,Iのそれぞれについても、本発明の
実施例と同様な製法で含有させたところ、本発明のフッ
素を含有した場合のような効果は得られなかった。フッ
素源としては、NH F、SrF 、LiSiF
、KF、MnF、CaF 、SrF 、ZnF
、KTiF の他に、フッ素を含有する化合物であ
れば利用できるが、添加したフッ素が製造プロセスにお
いて一定の割合で蓄光体内に固溶することが不可欠であ
り、特に焼成条件(温度、時間、雰囲気、昇温速度な
ど)によって、どのような中間生成物が形成され、どの
ように結晶成長や欠陥構造の形成に影響するかなどにつ
いて、実施例に示すような配慮を加えながら、揮発性の
低い反応条件、焼成条件、さらにはフッ素源の種類を選
ぶことが肝要である。
However, when each of the halogen elements Cl, Br, and I other than fluorine was also contained in the same production method as in the embodiment of the present invention, the effect as in the case of containing fluorine of the present invention was not obtained. Could not be obtained. As the fluorine source, NH 4 F, SrF 2 , LiSiF
5 , KF, MnF 2 , CaF 2 , SrF 2 , ZnF
2. In addition to KTiF 6 , any compound containing fluorine can be used. However, it is indispensable that the added fluorine forms a solid solution in the phosphor at a constant rate in the manufacturing process. , Atmosphere, heating rate, etc.) to determine what intermediate products are formed and how they affect crystal growth and the formation of defect structures. It is important to select the reaction conditions and calcination conditions, which are low, and the type of the fluorine source.

【0014】本発明で、最適なフッ素源としては、ふっ
化リチウムを強く推薦することができるが、これは、上
述の要件を考慮し、他のフッ素を含有する化合物に比べ
て、生産管理上安全性が確保されると共に、蓄光体品質
の安定性ならびに再現性が高く、反応を制御することが
容易との判断に基づいている。実施例に述べた製造プロ
セスに限り、ふっ化リチウムを使用する場合に、その添
加量は、出発原料の0.5〜5wt%が適当であり、好
ましくは、1〜2wt%である。焼成温度は1300℃
以下の温度で、焼成時間は2時間以内が望ましい。
In the present invention, lithium fluoride can be strongly recommended as an optimum fluorine source. However, considering the above-mentioned requirements, it is more difficult to control production than other fluorine-containing compounds. Based on the judgment that the safety is ensured, the stability and reproducibility of the phosphor quality are high, and the reaction can be easily controlled. In the case of using lithium fluoride only in the production process described in the examples, the amount of addition is suitably 0.5 to 5% by weight of the starting material, and preferably 1 to 2% by weight. Firing temperature is 1300 ℃
At the following temperatures, the firing time is preferably within 2 hours.

【0015】硼素を同時添加する場合、つまり前記組成
式において0≦x≦0.1の場合、焼成後の蓄光体とし
て単一相が得られるフッ素添加量は、1モルSrOに対
して0.07モル以下になる。得られた蓄光体で所定の
発光特性および耐熱・耐水特性を得るには、前記組成式
のフッ素含有量xは0.01〜0.08モルが好まし
く、それより多いと少量のフッ素化合物が第二相として
混在する。フッ素を添加しない場合、硼酸の好ましい添
加量としては5〜8wt%であるが、フッ素と硼素を同
時に添加する場合においては、硼酸の最適添加量は、1
〜2wt%となる。フッ素と硼素を同時に添加する場合
には極めて高輝度・長残光性の良い蓄光体としての性能
が得られる。この発光挙動に加えて、耐水・耐熱性にも
効果があることを知見している。
When boron is added simultaneously, that is, when 0 ≦ x ≦ 0.1 in the above composition formula, the amount of fluorine added to obtain a single phase as a luminous body after firing is 0.1 mol / mol SrO. 07 mol or less. In order to obtain predetermined luminous characteristics and heat / water resistance characteristics in the obtained phosphor, the fluorine content x in the above composition formula is preferably 0.01 to 0.08 mol, and if it is more than that, a small amount of fluorine compound is used. Mixed as two phases. When fluorine is not added, the preferable addition amount of boric acid is 5 to 8 wt%, but when fluorine and boron are added simultaneously, the optimum addition amount of boric acid is 1%.
22 wt%. When fluorine and boron are added at the same time, performance as a light storage unit with extremely high luminance and long afterglow is obtained. In addition to this light emission behavior, it has been found that there is also an effect on water resistance and heat resistance.

【0016】以下に、本発明の蓄光体の他の組成につい
て、順次説明する。 E’:前記組成式中の構成成分E’としては、Mn,Z
n,Bi,Ca,Mg,Ba元素を、単一もしくは複合
して用いることができる。E’元素の量(モル値)は、
0≦n≦0.1、好ましくは、0.001≦n≦0.0
5の範囲である。Ba,Caを用いると発光輝度が減少
し、Mn,Zn,Bi,Mgを用いると発光輝度が増大
する。特に、Biの固溶による効果が大きく、適当な電
荷移動状態を形成することが可能となり、有効な励起緩
和過程を形成することによって、蓄光体の発光輝度を著
しく向上させることができる。
Hereinafter, other compositions of the phosphor according to the present invention will be sequentially described. E ′: The constituent component E ′ in the composition formula is Mn, Z
The elements n, Bi, Ca, Mg, and Ba can be used alone or in combination. The amount (molar value) of the E 'element is
0 ≦ n ≦ 0.1, preferably 0.001 ≦ n ≦ 0.0
5 range. The emission luminance decreases when Ba and Ca are used, and the emission luminance increases when Mn, Zn, Bi and Mg are used. In particular, the effect of the solid solution of Bi is great, and an appropriate charge transfer state can be formed. By forming an effective excitation relaxation process, the light emission luminance of the phosphor can be significantly improved.

【0017】Eu:発光センターEu2+の組成として
は、0<m≦0.05、好ましくは、0.001≦m≦
0.01の範囲が適している。m値が、0.0001未
満の場合は、発光中心となるイオン量が少ない事から所
定の発光強度は得られない。m値が0.05を越える
と、濃度消光がみえるようになり、蓄光特性が著しく劣
化する。 Ln:共賦活剤Lnは、0<k≦0.1、好ましくは、
0.001≦k≦0.03の範囲が適している。特に、
Dy3+のモル数は、Euの添加量によって最適値があ
り、Euモル数の1.5倍が最適となる。Dy3+とY
3+の複合使用で、発光輝度と長残光性に向上が見られ
る。
Eu: The composition of the light-emitting center Eu 2+ is 0 <m ≦ 0.05, preferably 0.001 ≦ m ≦
A range of 0.01 is suitable. When the m value is less than 0.0001, a predetermined emission intensity cannot be obtained because the amount of ions serving as the emission center is small. If the m value exceeds 0.05, density quenching becomes visible, and the light storage characteristics are significantly deteriorated. Ln: The coactivator Ln is 0 <k ≦ 0.1, preferably
A range of 0.001 ≦ k ≦ 0.03 is suitable. In particular,
The number of moles of Dy 3+ has an optimum value depending on the amount of Eu added, and 1.5 times the number of moles of Eu is optimal. Dy 3+ and Y
With the combined use of 3+ , the emission luminance and the long afterglow are improved.

【0018】フッ素と硼素の同時添加で示された高輝
度、長残光性及び耐水・耐熱性と低温での短時間焼成が
可能となった理由は、以下のように考えられる。 (1)同時に添加する場合における効果;LiF,Ca
,NH F,LiSiF 等のフッ素含有化合
物は、アルカリを含む炭酸塩、塩化物、硼化物等のよう
に、フラックスとして焼成反応中によく使用され、結晶
成長、拡散反応、焼成反応での温度を低下させる等の効
果が知られている。通常、フラックスとして、反応物の
数wt%〜10wt%の量が用いられる。例えば、Sr
O・rAl :Eu,Dy蓄光体では、出発原料
に対して3wt%〜10wt%の硼酸が添加される。硼
素は一部Alサイトに固溶置換され、溶解・析出のフラ
ックスとして粒成長に役立ち、高輝度、長残光に寄与す
ることがわかっている。
The reasons why the simultaneous addition of fluorine and boron has enabled high-brightness, long afterglow, water and heat resistance and low-temperature, short-time sintering to be possible are as follows. (1) Effect of simultaneous addition; LiF, Ca
Fluorine-containing compounds such as F 2 , NH 4 F, and LiSiF 5 are often used as fluxes during the firing reaction, such as alkali-containing carbonates, chlorides, borides, etc., during crystal growth, diffusion reaction, and firing reaction. There are known effects such as lowering the temperature. Usually, an amount of several wt% to 10 wt% of the reactant is used as the flux. For example, Sr
In the O.rAl 2 O 3 : Eu, Dy phosphor, 3 wt% to 10 wt% of boric acid is added to the starting material. It has been found that boron is partially substituted by solid solution at the Al site, and is useful for grain growth as a flux of dissolution and precipitation, and contributes to high luminance and long afterglow.

【0019】しかし、硼素を添加しないで合成した51
0〜520nm発光の蓄光体に硼素を添加すると、最大
発光波長が490nmにシフトする。発光特性を変化さ
せないようなフラックスとしては、ふっ化リチウムが最
適であり、加えて、ふっ化リチウムを出発原料に対し3
〜8wt%添加すると、最適焼成温度が1500℃から
1250℃に下げられ、しかも短時間で効率よい発光特
性をもつ蓄光体が得られる。ふっ化リチウムの代わり
に、炭酸リチウムを添加すると、焼成反応温度は低下す
るものの、発光特性が劣化する。次いで、他のフッ素含
有化合物、例えば、NH F,LiSiF について
言えば、フラックスとしての作用はあり、結晶性と耐熱
・耐水性は改善されるものの、蓄光体としての発光特
性、特に長残光性はふっ化リチウムほど改善されないこ
とがわかっている。
However, 51 synthesized without adding boron was used.
When boron is added to a phosphor that emits light at 0 to 520 nm, the maximum emission wavelength shifts to 490 nm. As a flux that does not change the light emission characteristics, lithium fluoride is the most suitable.
When 88 wt% is added, the optimum firing temperature is lowered from 1500 ° C. to 1250 ° C., and a phosphorescent material having efficient light emission characteristics can be obtained in a short time. When lithium carbonate is added instead of lithium fluoride, the firing reaction temperature decreases, but the light emission characteristics deteriorate. Next, with respect to other fluorine-containing compounds, for example, NH 4 F and LiSiF 5 , they have a function as a flux, and although the crystallinity and the heat and water resistance are improved, the luminous characteristics as a light accumulator, in particular, a long residue. It has been found that the light properties are not as improved as lithium fluoride.

【0020】以上の結論として、フッ素の添加は低い温
度での結晶成長や拡散反応の制御が可能となり、その
上、発光センターとしてのEu2+イオンと共賦活剤の
Ln イオンの格子への配分の均一化へ貢献し、高輝
度・長残光に寄与することが明らかになった。図1〜図
3に、1250℃で2時間焼成した蓄光体試料の破断面
の走査型電子顕微鏡写真を示す。図1は硼素もフッ素も
加えてない試料、図2はフッ素を加えた試料、図3は硼
素とフッ素とを同時に加えた試料を表わしている。図3
の1wt%のふっ化リチウムと1wt%の硼酸を添加し
た試料では、3〜10μmの大きさの結晶体で、他と比
較しても顕著な成長を起こしている様子がわかる。
From the above conclusions, the addition of fluorine makes it possible to control the crystal growth and diffusion reaction at a low temperature, and furthermore, the Eu 2+ ion as a luminescence center and the Ln 3 + ion of the co-activator are added to the lattice. It has been clarified that it contributes to uniform distribution and contributes to high luminance and long afterglow. FIGS. 1 to 3 show scanning electron micrographs of the fracture surface of the phosphor sample fired at 1250 ° C. for 2 hours. 1 shows a sample to which neither boron nor fluorine was added, FIG. 2 shows a sample to which fluorine was added, and FIG. 3 shows a sample to which boron and fluorine were added simultaneously. FIG.
In the sample to which 1% by weight of lithium fluoride and 1% by weight of boric acid were added, it can be seen that the crystal had a size of 3 to 10 μm, and that remarkable growth was caused as compared with the others.

【0021】(2)格子歪み効果;表1に、単斜晶系か
らなる蓄光体の格子定数と焼成条件をまとめている。同
表中で、SrAl に、出発原料に対し0%、1
wt%、3wt%のふっ化リチウムを添加し、及びふっ
化リチウム1wt%と硼酸3%とを添加して、混合・成
型後、1250℃で2時間焼成したものを、それぞれS
AF0、SAF1、SAF3、SABF1としている。
また、Sr0.987 Eu0.005 Dy0.008
Al :B .041 に、出発原料に対し0
%、1%、3wt%、5wt%のふっ化リチウムを添加
し、1250℃で2時間焼成したものを、SAEDBF
0、SAEDBF1、SAEDBF3、SAEDBF5
としている。
(2) Lattice distortion effect: Table 1 summarizes the lattice constants and firing conditions of the monoclinic phosphor. In the same table, SrAl 2 O 4 contains 0%,
wt%, 3 wt% of lithium fluoride, and 1 wt% of lithium fluoride and 3% of boric acid were added, mixed, molded, and fired at 1250 ° C. for 2 hours.
AF0, SAF1, SAF3 and SABF1.
Also, Sr 0.987 Eu 0.005 Dy 0.008
Al 2 O 4 : B 0 . At 041 , 0
%, 1%, 3% by weight, and 5% by weight of lithium fluoride, and calcined at 1250 ° C. for 2 hours.
0, SAEDBF1, SAEDBF3, SAEDBF5
And

【0022】粉末X線回折図形より求めた格子定数は、
フッ素の固溶置換により小さくなり、ピークのブロード
ニングより結晶歪みが生じたものと考えられるが、これ
らはいずれも高輝度・長残光性が得られる。
The lattice constant obtained from the powder X-ray diffraction pattern is
It is supposed that the crystallinity was reduced by the solid solution substitution of fluorine, and crystal distortion was caused by the broadening of the peak. However, all of them can obtain high luminance and long afterglow.

【0023】[0023]

【表1】 [Table 1]

【0024】1wt%ふっ化リチウムを添加し、125
0℃で2時間の焼成を行った試料は、単一相のSrAl
からなり、化学分析の結果、0.058モルの
フッ素を含むことがわかった。これに対し、5wt%の
ふっ化リチウムを添加し、1250℃で2時間の焼成を
行った後の試料には、SrF が混在した。一方で、
さらに再焼成を行うことにより、SrAl と同
じピークをもつ単一相が得られた。以上の結果より、添
加されたふっ化リチウムのF が、蓄光体格子のO
2−と一部置き換わること、O2−キラセンターの濃度
が減少する一方、一部の格子が歪み、輝度向上が図れた
ものと考えられる。
1 wt% lithium fluoride was added, and 125
The sample fired at 0 ° C. for 2 hours is a single-phase SrAl
It was composed of 2 O 4 and, as a result of chemical analysis, was found to contain 0.058 mol of fluorine. On the other hand, SrF 2 was mixed in the sample after adding 5 wt% of lithium fluoride and firing at 1250 ° C. for 2 hours. On the other hand,
Further re-calcination yielded a single phase having the same peak as SrAl 2 O 4 . From the above results, F of the added lithium fluoride was changed to O 2 of the phosphorescent lattice.
It is conceivable that the substitution with 2- and the reduction of the concentration of O 2 -kira center resulted in the distortion of a part of the lattice and the improvement of luminance.

【0025】(3)電荷バランス効果;硼素とフッ素と
を同時添加することにより、SrO・rAl
Eu,Dy蓄光体は、より活性化した母体、より活性化
されたEu2+発光センターとLn3+共賦活剤との均
一分散が実現できる。その結果、有効なエネルギー移動
がなされ、高輝度発光性能に寄与する。反応的に考える
と、フッ素、硼素の存在下では、SrCO →SrO
+CO ↑の反応がより促され、生成したSrOは反
応性に富むことから、Al との反応を短時間に
終了することができる。更には、フッ素の存在がEu
2+の安定に寄与している。
(3) Charge balance effect: By adding boron and fluorine simultaneously, SrO.rAl 2 O 3 :
The Eu, Dy phosphor can realize a more activated matrix, and a more activated Eu 2+ emission center and a uniform dispersion of the Ln 3+ coactivator. As a result, effective energy transfer is performed, which contributes to high-luminance light emission performance. Considering reactively, in the presence of fluorine and boron, SrCO 3 → SrO
The reaction of + CO 2 } is further promoted, and the generated SrO is rich in reactivity, so that the reaction with Al 2 O 3 can be completed in a short time. Furthermore, the presence of fluorine is Eu
It contributes to 2+ stability.

【0026】(4)酸素欠損の安定化効果;酸素イオン
の欠損によって生ずる格子不安定が水酸化物イオンでは
なく、フッ素イオンによって捕らわれるために、蓄光体
粒子の溶解を防ぎ、耐熱・耐水性が向上することに寄与
しているものと考えられる。
(4) Stabilizing effect of oxygen deficiency; lattice instability caused by oxygen ion deficiency is trapped not by hydroxide ions but by fluorine ions, so that dissolution of phosphor particles is prevented and heat resistance and water resistance are improved. It is considered that this contributes to improvement.

【0027】(5)発光挙動; 1).出発原料に対し1wt%〜5wt%のふっ化リチ
ウムを添加したものは、全て最大励起波長が205nm
〜208nmで、最大発光波長は512nm〜517n
mにある。また、ふっ化リチウム添加量の増加に伴い、
半値幅が次第に75nmから80nmと大きくなり、結
晶性の低下とともに初期発光輝度が低くなることが観察
された。焼成工程中でのフッ素の損失(AlF ↑、
HF↑)もしくは、副生成物としてのSrF 等の生
成により、蓄光体の組成が微小にずれる(非化学量論
比)と考えられるのに加えて、格子に取り込まれたフッ
素、硼素の影響により、結晶性は向上するが、特に4%
以上の添加では輝度が低下する。
(5) Light emission behavior; 1). All of the starting materials added with 1 wt% to 5 wt% of lithium fluoride have a maximum excitation wavelength of 205 nm.
208208 nm and the maximum emission wavelength is 512 nm〜517 n
m. Also, with the increase in the amount of lithium fluoride added,
It was observed that the half-value width gradually increased from 75 nm to 80 nm, and the initial light emission luminance was lowered as the crystallinity was lowered. Loss of fluorine during the firing process (AlF 3 ↑,
HF ↑) or the formation of SrF 2 or the like as a by-product, the composition of the phosphor is considered to be slightly shifted (non-stoichiometric ratio), and the influence of fluorine and boron taken into the lattice. Improves crystallinity, but especially 4%
The above addition lowers the luminance.

【0028】2).賦活剤及び共賦活剤を添加しないS
rAl :Fにおいて、長発光及び残光が観察さ
れた。SrCO とAl を等モルの割合で秤
量し、ふっ化リチウムを0%、1wt%、3wt%、5
wt%と添加した混合粉末をφ20に成型し、1250
℃、2時間、3%H 含有アルゴンガス中で焼成し、
さらに、ふっ化リチウム1wt%と硼酸1wt%とを同
時添加した試料(SABF)についても同条件で焼成し
た結果、ふっ化リチウム無添加の試料は、焼成後の体積
変化が殆どなく、紫外線ランプ照射下においても発光が
観察されなかった。これに対し、ふっ化リチウムを加え
た他の試料は、かなり収縮して緻密な組織を呈し、紫外
線励起下にて青緑の蛍光を示すと共に、励起停止後に残
光も観察された。特に、SABF試料は発光強度が大き
く、長残光性であった。このような高効率発光組成物に
Eu2+,Dy3+などを賦活すると、優れた蓄光特性
を発揮する。
2). S without adding activator and co-activator
In rAl 2 O 4 : F, long light emission and afterglow were observed. SrCO 3 and Al 2 O 3 were weighed at an equimolar ratio, and lithium fluoride was added in an amount of 0%, 1% by weight, 3% by weight, and 5% by weight.
wt% and the mixed powder added was molded into φ20, and 1250
At 2 ° C. for 2 hours in an argon gas containing 3% H 2 ,
Further, the sample (SABF) to which 1 wt% of lithium fluoride and 1 wt% of boric acid were simultaneously added was calcined under the same conditions. As a result, the sample without lithium fluoride had almost no change in volume after calcination, and was irradiated with an ultraviolet lamp. No light emission was observed below. On the other hand, the other samples to which lithium fluoride was added contracted considerably to exhibit a dense tissue, exhibited blue-green fluorescence under ultraviolet excitation, and observed afterglow after the excitation was stopped. In particular, the SABF sample had a high luminous intensity and a long persistence. When Eu 2+ , Dy 3+ or the like is activated in such a high-efficiency light-emitting composition, excellent light storage properties are exhibited.

【0029】本発明では、フッ素と硼素の同時添加で、
結晶成長が著しく、微粉でも高輝度・長残光性が安定に
維持できる蓄光体が得られる点に特徴がある。従来の蓄
光体の発光輝度と残光性は、粉末の粒径に影響を受け、
粒子が細かくなると発光輝度と残光性が顕著に悪くな
る。たとえば、平均粒径が10μmと30μmの蓄光体
を比較して、励起後3分の輝度は60:100の割合に
なるが、本発明の試料では95:100と極めて粒径の
影響が少ない。更に、本発明では、フッ素もしくはフッ
素と硼素の同時添加により、従来の硼酸のみ添加した焼
結体に比べて、焼結体硬度が低いことより、粉砕工程が
容易で、生産性が高くなるなどの特徴もある。
In the present invention, by simultaneous addition of fluorine and boron,
It is characterized in that a luminous body which has remarkable crystal growth and can stably maintain high luminance and long afterglow even with fine powder can be obtained. Luminance and afterglow of conventional phosphors are affected by the particle size of the powder,
When the particles are fine, the emission luminance and the afterglow remarkably deteriorate. For example, comparing a phosphor having an average particle size of 10 μm with a phosphorescent material having a mean particle size of 30 μm, the luminance at 3 minutes after excitation is 60: 100, but the sample of the present invention has an extremely small influence of particle size of 95: 100. Furthermore, in the present invention, by the simultaneous addition of fluorine or fluorine and boron, the hardness of the sintered body is lower than that of a conventional sintered body to which only boric acid is added, so that the pulverization step is easy and the productivity is increased. There is also a feature.

【0030】また、より低温での焼成が可能であり、特
に、蓄光粉末と樹脂とを混合して成型する際に金属容器
などからの汚染が小さく、輝度の劣化を防止できる大き
な特徴がある。更に、低温焼結が可能であることから、
現在のバッチ式炉からトンネル式連続炉が使用できるよ
うになり、加えて、耐熱ステンレス材が炉材として使用
可能となることなどから、設備費が安価な量産化のため
のシステム化を図るのが容易になる。
Further, it can be fired at a lower temperature, and has a great feature that contamination from a metal container or the like is small when molding by mixing a phosphorescent powder and a resin, and that deterioration of luminance can be prevented. Furthermore, since low-temperature sintering is possible,
A tunnel type continuous furnace can be used from the current batch type furnace, and heat-resistant stainless steel can be used as the furnace material. Becomes easier.

【0031】[0031]

【実施例】以下に実施例を示し、更に詳しく本発明につ
いて説明するが、それに先立ち、以下の実施例における
残光輝度測定、耐熱性試験、耐水性試験の方法について
説明する。
The present invention will be described in more detail with reference to the following examples. Prior to the description, methods for measuring afterglow luminance, a heat resistance test and a water resistance test in the following examples will be described.

【0032】先ず、残光輝度測定の方法は次の通りであ
る。実施例または比較例の蓄光体の粉末を、ポリエステ
ル樹脂等と共に均一に混合し、[蓄光体:ポリエステル
樹脂]が重量比で1:2の比率として、厚さ2.5mm
のシート状に成型、乾燥し、これを発光強度の経時変化
の測定試料とする。測定は、光遮断後24時間暗室に置
かれた測定試料に、15W白色蛍光灯を用いて、100
mmの垂直距離から15分間試料を照射した後、その発
光輝度の経時変化を測定する。表2及び表3にその測定
結果を示す。
First, the method of measuring the afterglow luminance is as follows. The powder of the luminous body of the example or the comparative example is uniformly mixed with a polyester resin or the like, and the weight ratio of the luminous body: polyester resin is 1: 2, and the thickness is 2.5 mm.
And dried, and this is used as a sample for measuring the change with time of the emission intensity. The measurement was performed on a measurement sample placed in a dark room for 24 hours after light blocking using a 15 W white fluorescent lamp for 100 hours.
After irradiating the sample from the vertical distance of 15 mm for 15 minutes, the change with time of the emission luminance is measured. Tables 2 and 3 show the measurement results.

【0033】耐熱性試験の方法は次の通りである。30
0μm以下の大きさをもつ蓄光粉末を5g秤量し、アル
ミナ坩堝に入れて電気炉中800℃及び900℃で1時
間大気中酸化焼成を行った試料を用い、発光輝度を測定
し、焼成前の残光輝度に対する輝度維持率を求める。表
4にその測定結果を示す。なお、本発明で得られた蓄光
体については、たとえ大気中900℃で加熱しても、尚
70%以上の輝度維持率を示した。加えて、10mm×
10mm×20mmの大きさに成型した蓄光体を120
0℃で180分間大気中で酸化焼成を行ったが、この場
合にも約43%の維持率を示した。
The method of the heat resistance test is as follows. 30
5 g of a phosphorescent powder having a size of 0 μm or less was weighed, placed in an alumina crucible, and oxidized and fired in an electric furnace at 800 ° C. and 900 ° C. for 1 hour in the air. A luminance maintenance ratio with respect to the afterglow luminance is obtained. Table 4 shows the measurement results. The luminous body obtained in the present invention still exhibited a luminance maintenance ratio of 70% or more even when heated at 900 ° C. in the atmosphere. In addition, 10mm ×
A luminous body molded into a size of 10 mm x 20 mm
Oxidation calcination was carried out at 0 ° C. for 180 minutes in the air, and in this case also, the retention was about 43%.

【0034】耐水性試験の方法は次の通りである。30
0mlビーカーに純水を200ml入れ、300μアン
ダーの蓄光体粉末を10g加え、24時間含浸させた
後、乾燥してその残光輝度を測定し、水処理前の残光輝
度に対する輝度維持率を求める。表5にその測定結果を
示す。
The method of the water resistance test is as follows. 30
200 ml of pure water is put into a 0 ml beaker, 10 g of a phosphor powder of 300 μ under is added, impregnated for 24 hours, then dried and the afterglow luminance is measured, and the luminance maintenance ratio with respect to the afterglow luminance before water treatment is obtained. . Table 5 shows the measurement results.

【0035】[実施例1]Sr0.987 Eu
0.005 Dy0.008 Al :B0.04
0.058 の化学組成式の量比になるように、出
発原料粉末(純度99.9%)としての、SrCO
,Al ,Eu ,Dy ,H
BO ,LiFを、それぞれ、 SrCO =0.987×147.63=145.7
1g Al =1×101.96=101.96g Eu =0.005×1/2×351.93=
0.88g Dy =0.008×1/2×373.000=
1.49g H BO =0.041×61.83=2.54g LiF=0.098×25.94=2.54g ずつ正確に秤量し、ボールミルにて24時間、純水によ
る湿式混合を行った。
Example 1 Sr 0.987 Eu
0.005 Dy 0.008 Al 2 O 4 : B 0.04
Such that the ratio of the chemical composition formula of 1 F 0.058, as the starting material powder (purity 99.9%), SrCO
3 , Al 2 O 3 , Eu 2 O 3 , Dy 2 O 3 , H
3 BO 3 and LiF were converted into SrCO 3 = 0.987 × 147.63 = 145.7, respectively.
1 g Al 2 O 3 = 1 × 101.96 = 101.96 g Eu 2 O 3 = 0.005 × 1/2 × 3511.93 =
0.88 g Dy 2 O 3 = 0.008 × 1/2 × 373.000 =
1.49 g H 3 BO 3 = 0.041 × 61.83 = 2.54 g LiF = 0.098 × 25.94 = 2.54 g Each was accurately weighed and wet-mixed with pure water for 24 hours in a ball mill. went.

【0036】次いで、140℃で乾燥し、混合粉末を得
た。この混合粉末をアルミナ性耐熱容器に詰め、ステン
レス製炉心管の電気炉を用いて、3%の水素含有アルゴ
ンガス中、1100℃で1時間焼成した。冷却後、回収
した試料を粉砕し、本発明の蓄光体粉末を得た。化学分
析の結果、フッ素含有量は0.058モルであった。粉
末X線回折法により、単一相の単斜晶系で指数付けする
事が出来た。また、SEM観察により、本蓄光体は低温
・短時間の焼成工程にもかかわらず、高い結晶性を示す
様子が観察された。
Next, the mixture was dried at 140 ° C. to obtain a mixed powder. This mixed powder was packed in an alumina heat-resistant container and fired at 1100 ° C. for 1 hour in an argon gas containing 3% of hydrogen using an electric furnace of a stainless steel furnace tube. After cooling, the collected sample was crushed to obtain the phosphor powder of the present invention. As a result of chemical analysis, the fluorine content was 0.058 mol. The powder X-ray diffraction method was able to index a single-phase monoclinic system. Further, according to SEM observation, it was observed that the present phosphor showed high crystallinity despite the low-temperature and short-time firing step.

【0037】図4に、260nmの紫外線で励起した時
の発光スペクトルを示す。これは最大発光波長が512
nm付近にある黄緑発光色蓄光体である。発光強度の時
間変化を測定するために、300μm以下の粒径をもつ
蓄光体粉末1.25gとポリエステル樹脂2.5gとを
秤量し、均一に混合した後、厚さ2.5mmのシートに
成型、乾燥したものを作製し、前述の方法により、励起
停止後の発光強度の変化を測定した。表2の実施例1の
欄にその結果を示す。また、耐熱性試験の結果を表4に
示す。
FIG. 4 shows an emission spectrum when excited by ultraviolet light of 260 nm. This means that the maximum emission wavelength is 512
It is a yellow-green luminescent color phosphor near nm. In order to measure the time change of the luminescence intensity, 1.25 g of the phosphor powder having a particle diameter of 300 μm or less and 2.5 g of polyester resin are weighed, uniformly mixed, and then molded into a sheet having a thickness of 2.5 mm. Then, a dried product was prepared, and the change in emission intensity after the excitation was stopped was measured by the method described above. The results are shown in the column of Example 1 in Table 2. Table 4 shows the results of the heat resistance test.

【0038】[実施例2〜18]実施例2〜18の具体
的な化学組成式と焼成条件を表2に示す。これらの実施
例については、実施例1と同様に、必要な出発原料粉末
SrCO ,CaCO ,Al ,Eu
,Dy ,Y ,Sm,Tm
,H BO ,LiF,MgO,MnO,Zn
O,Bi の所定量を秤量し、ボールミルにて2
4時間純水湿式混合を行った後、140℃で乾燥して、
混合粉末を得た。これをカーボンるつぼに入れ、アルミ
ナ炉材の電気炉を用いて、3%水素含有窒素ガス中で焼
成した。それぞれの試料は冷却後に粉砕し、300μm
以下の大きさをもつ粒子をふるいで分級し、本発明の蓄
光体を得た。
[Examples 2 to 18] Specific examples of Examples 2 to 18
Table 2 shows typical chemical composition formulas and firing conditions. These practices
For the example, as in Example 1, the necessary starting material powder
SrCO3 , CaCO 3 , Al2 O3 , Eu2 O
3 , Dy2 O3 , Y2 O3 , Sm2 O3, Tm2
 O3 , H3 BO3 , LiF, MgO, MnO, Zn
O, Bi2 O 3 Is weighed, and is weighed with a ball mill.
After performing pure water wet mixing for 4 hours, drying at 140 ° C.
A mixed powder was obtained. Put this in a carbon crucible,
Baking in a 3% hydrogen-containing nitrogen gas
Done. Each sample was crushed after cooling and 300 μm
Particles having the following sizes are sieved and classified, and stored according to the present invention.
I got a light body.

【0039】これらの実施例及び以下に述べる比較例の
発光輝度の時間変化(残光輝度)を表2及び表3に、耐
熱・耐水性試験における輝度維持率を表4及び表5にま
とめた。大気中、800℃で1時間の加熱処理による耐
熱性試験では、表4の耐熱性試験結果に示すように、本
発明の各実施例の蓄光体は高輝度を維持し、励起停止3
分後では、耐熱処理前の83%以上の維持率を示した。
これに対して、比較例として用いた全ての試料は白くな
り、輝度維持率は1%以下になった。また、耐水性につ
いては、本発明の蓄光体は85%以上の維持率を示し、
比較例の試料はその維持率が6.2%程度となった。
Tables 2 and 3 show the change over time (afterglow luminance) of the light emission luminance of these examples and the comparative examples described below, and Tables 4 and 5 show the luminance maintenance rates in the heat and water resistance tests. . In the heat resistance test by heat treatment at 800 ° C. for 1 hour in the air, as shown in the heat resistance test results in Table 4, the luminous bodies of the respective examples of the present invention maintain high brightness and stop excitation.
A minute later, the retention rate was 83% or more before the heat treatment.
On the other hand, all the samples used as comparative examples turned white, and the luminance retention ratio was 1% or less. Regarding water resistance, the luminous body of the present invention shows a maintenance rate of 85% or more,
The sample of the comparative example had a retention rate of about 6.2%.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】従来のアルミン酸塩蓄光体においては、硼
素が実質的になくてはならない添加組成であるのに対し
て、本発明においては、実施例17,18に示すよう
に、フッ素のみ含有しても高い発光性能を有している。
While the conventional aluminate phosphor has an additive composition which essentially requires boron, the present invention contains only fluorine as shown in Examples 17 and 18. It has high light emission performance.

【0045】[比較例1]Sr0.987 Eu
0.005 Dy0.008 Al :B0.04
の化学組成を有するフッ素を含有しない比較例1の
蓄光体を、次のようにして得た。純度99.9%の下記
出発原料粉末をそれぞれ秤量し、実施例1で示した方法
により混合し、表2に示すように、1400℃で2時間
の焼成条件により作製した。 SrCO 145.71g Al 101.96g Eu 0.88g Dy 1.49g H BO 2.54g
Comparative Example 1 Sr 0.987 Eu
0.005 Dy 0.008 Al 2 O 4 : B 0.04
The phosphorescent article of Comparative Example 1 containing no fluorine having 1 chemical composition, was obtained as follows. The following starting material powders having a purity of 99.9% were weighed, mixed by the method described in Example 1, and prepared under the firing conditions of 1400 ° C. for 2 hours as shown in Table 2. SrCO 3 145.71g Al 2 O 3 101.96g Eu 2 O 3 0.88g Dy 2 O 3 1.49g H 3 BO 3 2.54g

【0046】得られた試料の蓄光特性及び耐水・耐熱性
試験の結果は、表2〜表5中に示している。この比較例
1の試料は、表3に示すように、本発明の実施例4と比
較して、輝度・残光性とも低く、さらに、表4に示すよ
うに、大気中800℃にて加熱すると白くなり、その発
光性能を失った。また、表5に示すように、24時間水
処理した耐水性試験では、励起停止後の残光輝度は低
く、その維持率は6.2%程度であった。
Tables 2 to 5 show the luminous properties and the results of the water resistance / heat resistance tests of the obtained samples. As shown in Table 3, the sample of Comparative Example 1 had lower luminance and afterglow than that of Example 4 of the present invention, and was further heated at 800 ° C. in air as shown in Table 4. Then, it became white and lost its light emitting performance. Further, as shown in Table 5, in the water resistance test in which the water treatment was performed for 24 hours, the afterglow luminance after the excitation was stopped was low, and the maintenance ratio was about 6.2%.

【0047】[比較例2]Sr0.975 Eu
0.01Dy0.015 Al の化学組成を有
するフッ素及び硼素を添加しない比較例2の蓄光体を、
実施例1と同じ方法を用い、表2に示すように、150
0℃で2時間焼成して作製した。この比較例2の蓄光体
は、表2に示すように著しく発光輝度や残光性が低下し
た。
Comparative Example 2 Sr 0.975 Eu
The phosphor of Comparative Example 2, which has a chemical composition of 0.01 Dy 0.015 Al 2 O 4 and does not contain fluorine and boron,
Using the same method as in Example 1, as shown in Table 2,
It was produced by firing at 0 ° C. for 2 hours. As shown in Table 2, the luminous body of Comparative Example 2 had significantly reduced emission luminance and afterglow.

【0048】[0048]

【発明の効果】以上に詳述した本発明によれば、耐水・
耐熱性に優れ、極めて高い初期輝度と長い残光特性を持
つフッ素含有黄緑発光色蓄光体を得ることができる。ま
た、従来のSrAl :Eu,Dyよりも、フッ
素と硼素の含有によって、粉砕が容易で粉末製品が得や
すく、金属粉の汚染を防止するのにも役立つ。さらに、
本発明の製造方法は、高輝度を維持し、微粉状の蓄光体
を作製するのに好適なプロセスを有し、従来のように、
高温・長時間の焼成条件を、より低温・短時間とするこ
とが可能で、エネルギー節約、生産性向上などの量産化
のための好条件を有するものである。
According to the present invention described in detail above, water resistance and
A fluorine-containing yellow-green luminescent color phosphor having excellent heat resistance, extremely high initial luminance and long afterglow characteristics can be obtained. Further, compared to the conventional SrAl 2 O 4 : Eu, Dy, the inclusion of fluorine and boron facilitates pulverization and makes it easier to obtain a powder product, and also helps to prevent contamination of metal powder. further,
The manufacturing method of the present invention maintains a high luminance and has a process suitable for producing a fine powdery phosphor, and as in the prior art,
High-temperature and long-time sintering conditions can be set to lower temperature and short-time, and there are favorable conditions for mass production such as energy saving and productivity improvement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フッ素と硼素が無添加の場合の焼成蓄光体試料
の破断面の図面代用走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph instead of a drawing of a fractured surface of a fired phosphor sample when fluorine and boron are not added.

【図2】フッ素のみを添加した場合の焼成蓄光体試料の
破断面の図面代用走査型電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph instead of a drawing of a fractured surface of a fired phosphor sample when only fluorine is added.

【図3】フッ素と硼素を共に添加した場合の焼成蓄光体
試料の破断面の図面代用走査型電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph as a substitute for a drawing of a fractured surface of a fired phosphorescent sample when both fluorine and boron are added.

【図4】実施例1で得られた蓄光体の発光スペクトル
(励起波長:260nm,発光波長:512nm)を示
す図である。
FIG. 4 is a view showing an emission spectrum (excitation wavelength: 260 nm, emission wavelength: 512 nm) of the phosphor obtained in Example 1.

フロントページの続き Fターム(参考) 4H001 CF02 XA08 XA12 XA13 XA20 XA25 XA30 XA38 XA39 XA56 XA58 XA59 XA63 XA64 XA65 XA66 XA67 XA68 XA69 XA70 XA71 XA83 YA05 YA09 Continued on front page F-term (reference) 4H001 CF02 XA08 XA12 XA13 XA20 XA25 XA30 XA38 XA39 XA56 XA58 XA59 XA63 XA64 XA65 XA66 XA67 XA68 XA69 XA70 XA71 XA83 YA05 YA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】組成式が、 (Sr1−n−m−k−q E'Eu Ln
)Al :B,F (但し、 0≦n≦0.1 0<m≦0.05 0<k≦0.1 0≦q≦0.05 0≦x≦0.1 0<y≦0.1 であり、式中のE’は、Mn,Zn,Bi,Ca,M
g,Baの群から選択された一種以上の金属元素、Ln
は、Ce,Pr,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの群から選択された一種以上のランタノ
イド元素)で表され、単斜晶系で指数づけられる、フッ
素含有ストロンチウムアルミン酸塩を主体とする耐熱・
耐水性・高輝度・長残光性黄緑発光色蓄光体。
1. A composition formula, (Sr 1-n-m -k-q E 'n Eu m Ln k Y
q ) Al 2 O 4 : B x , F y (where 0 ≦ n ≦ 0.1 0 <m ≦ 0.05 0 <k ≦ 0.1 0 ≦ q ≦ 0.05 0 ≦ x ≦ 0.1 0 <y ≦ 0.1, where E ′ is Mn, Zn, Bi, Ca, M
one or more metal elements selected from the group consisting of g and Ba, Ln
Are Ce, Pr, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu, one or more lanthanoid elements selected from the group consisting of fluorinated strontium aluminate represented by a monoclinic system.
Water-resistant, high-brightness, long-lasting yellow-green luminescent phosphor.
【請求項2】組成式が、 (Sr1−n−m−k−q E'Eu Ln
)O・rAl:B ,F (但し、 0≦n≦0.1 0<m≦0.05 0<k≦0.1 0≦q≦0.05 1≦r≦1.50 0≦x≦0.1 0<y≦0.1 であり、式中のE’は、Mn,Zn,Bi,Ca,M
g,Baの群から選択された一種以上の金属元素、Ln
は、Ce,Pr,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの群から選択された一種以上のランタノ
イド元素)で表され、単斜晶系で指数づけられる、フッ
素含有ストロンチウムアルミン酸塩を主体とする耐熱・
耐水性・高輝度・長残光性黄緑発光色蓄光体。
2. A composition formula, (Sr 1-n-m -k-q E 'n Eu m Ln k Y
q ) O · rAl 2 O 3 : B x , F y (where 0 ≦ n ≦ 0.1 0 <m ≦ 0.05 0 <k ≦ 0.10 ≦ q ≦ 0.05 1 ≦ r ≦ 1 .500 0 ≦ x ≦ 0.1 0 <y ≦ 0.1, where E ′ is Mn, Zn, Bi, Ca, M
one or more metal elements selected from the group consisting of g and Ba, Ln
Are Ce, Pr, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu, one or more lanthanoid elements selected from the group consisting of fluorinated strontium aluminate represented by a monoclinic system.
Water-resistant, high-brightness, long-lasting yellow-green luminescent phosphor.
【請求項3】Sr,Al,Eu,Y,E’,Ln,B元
素(但し、E’は、Mn,Zn,Bi,Ca,Mg,B
aの群から選択された一種以上の金属元素、Lnは、C
e,Pr,Gd,Tb,Dy,Ho,Er,Tm,Y
b,Luの群から選択された一種以上のランタノイド元
素)を含む単体粉末あるいは化合物粉末もしくは溶液
を、 (Sr1−n−m−k−q E'Eu Ln
)Al :B,F 、または、 (Sr
1−n−m−k−q E'Eu Ln )O・
rAl :B ,F (但し、 0≦n≦0.1 0<m≦0.05 0<k≦0.1 0≦q≦0.05 1≦r≦1.50 0≦x≦0.1 0<y≦0.1 ) の組成式の量比になるように秤量すると共に、F元素を
含む化合物粉末または溶液を焼成して上記組成式の量比
になるように秤量したものを出発原料とし、それらを混
合した後、乾燥、粉砕して得られた混合粉末を耐熱容器
に入れ、成型、あるいは粉末のままの状態で、還元雰囲
気中1000℃〜1500℃で30分〜2時間焼成した
後、冷却された焼成品を粉末状に粉砕することを特徴と
するフッ素含有ストロンチウムアルミン酸塩系耐熱・耐
水性・高輝度・長残光性黄緑発光色蓄光体の製造法。
3. Elements of Sr, Al, Eu, Y, E ', Ln and B (where E' is Mn, Zn, Bi, Ca, Mg, B
Ln is one or more metal elements selected from the group of a.
e, Pr, Gd, Tb, Dy, Ho, Er, Tm, Y
b, and simple substance powder or a compound powder or a solution containing a lanthanoid element) of one or more kinds selected from the group of Lu, (Sr 1-n- m-k-q E 'n Eu m Ln k Y
q ) Al 2 O 4 : B x , F y , or (Sr
1-n-m-k- q E 'n Eu m Ln k Y q) O ·
rAl 2 O 3 : B x , F y (where 0 ≦ n ≦ 0.1 0 <m ≦ 0.05 0 <k ≦ 0.1 0 ≦ q ≦ 0.05 1 ≦ r ≦ 1.50 0 ≦ x ≦ 0.10 <y ≦ 0.1) while weighing so that the composition ratio of the composition formula is satisfied, and baking the compound powder or solution containing the F element to obtain the composition ratio of the above composition formula. The starting material is used as a starting material, and after mixing them, the mixed powder obtained by drying and pulverizing is placed in a heat-resistant container, and molded or kept in a powdery state in a reducing atmosphere at 1000 ° C to 1500 ° C for 30 minutes. After baking for ~ 2 hours, the cooled calcined product is pulverized into a powder to produce a fluorinated strontium aluminate heat / water resistant / high brightness / long afterglow yellow-green luminous phosphor. Law.
JP31662499A 1999-11-08 1999-11-08 Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same Expired - Fee Related JP3559210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31662499A JP3559210B2 (en) 1999-11-08 1999-11-08 Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31662499A JP3559210B2 (en) 1999-11-08 1999-11-08 Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2001131544A true JP2001131544A (en) 2001-05-15
JP3559210B2 JP3559210B2 (en) 2004-08-25

Family

ID=18079135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31662499A Expired - Fee Related JP3559210B2 (en) 1999-11-08 1999-11-08 Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same

Country Status (1)

Country Link
JP (1) JP3559210B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107623A (en) * 2002-06-28 2004-04-08 General Electric Co <Ge> Fluorescent material containing oxides of alkaline earth metal and group iiib metal, and light source incorporating the fluorescent material
JP2007197493A (en) * 2006-01-23 2007-08-09 Ez Bright Corp Luminous fluorescent substance
JP2011506684A (en) * 2007-12-12 2011-03-03 ゼネラル・エレクトリック・カンパニイ Persistent phosphor
WO2011008930A3 (en) * 2009-07-15 2011-03-31 Performance Indicator Llc Europium - and dysprosium - doped aluminate phosphors
JP2015067799A (en) * 2013-09-30 2015-04-13 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application thereof
JP2015126004A (en) * 2013-12-25 2015-07-06 凸版印刷株式会社 Test piece for calculating electron scattering distance and method for calculating electron scattering distance
CN115417440A (en) * 2022-09-20 2022-12-02 广东电网有限责任公司 Novel energy-storage waterproof long-afterglow luminescent material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107623A (en) * 2002-06-28 2004-04-08 General Electric Co <Ge> Fluorescent material containing oxides of alkaline earth metal and group iiib metal, and light source incorporating the fluorescent material
JP2007197493A (en) * 2006-01-23 2007-08-09 Ez Bright Corp Luminous fluorescent substance
JP2011506684A (en) * 2007-12-12 2011-03-03 ゼネラル・エレクトリック・カンパニイ Persistent phosphor
WO2011008930A3 (en) * 2009-07-15 2011-03-31 Performance Indicator Llc Europium - and dysprosium - doped aluminate phosphors
US8329061B2 (en) 2009-07-15 2012-12-11 Performance Indicator, Llc Phosphorescent phosphors
JP2015067799A (en) * 2013-09-30 2015-04-13 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application thereof
JP2015126004A (en) * 2013-12-25 2015-07-06 凸版印刷株式会社 Test piece for calculating electron scattering distance and method for calculating electron scattering distance
CN115417440A (en) * 2022-09-20 2022-12-02 广东电网有限责任公司 Novel energy-storage waterproof long-afterglow luminescent material and preparation method thereof

Also Published As

Publication number Publication date
JP3559210B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US11697765B2 (en) Phosphor and light-emitting equipment using phosphor
JP4565141B2 (en) Phosphors and light emitting devices
JP4362625B2 (en) Method for manufacturing phosphor
JP4568867B2 (en) Method for producing composite nitride phosphor
JP5970534B2 (en) Oxynitride phosphor
JP5140061B2 (en) Phosphor, production method thereof, and light source
JP2005112922A (en) Oxynitride phosphor
JP2007113019A (en) Method for production of phosphor
JP3559210B2 (en) Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same
JP3826210B2 (en) Rare earth complex oxide phosphor
JP2000026854A (en) Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
JP5105353B2 (en) Composite nitride phosphor
JP3268761B2 (en) High brightness and long afterglow aluminate phosphor with excellent heat and weather resistance
US8686626B2 (en) Oxynitride-based phosphor and light emitting device including the same
KR101565910B1 (en) Method of strontium aluminate phosphor with long after-glow property
EP3085752A1 (en) Luminescent material
JP2010196075A (en) Composite nitride phosphor
JP6741614B2 (en) Rare earth activated alkaline earth silicate compound Afterglow phosphor
JP2024040840A (en) phosphor
JP5388135B2 (en) Method for producing composite nitride phosphor
JP2002356677A (en) Ultraviolet-excitable rare earth-activated chloride phosphor
JP2018109082A (en) Green phosphor, light emitting element and light emitting device
JP2002012863A (en) Method for producing aluminate phosphor for light accumulation material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees