JP2007002086A - Method for producing electron beam-excited red phosphor - Google Patents

Method for producing electron beam-excited red phosphor Download PDF

Info

Publication number
JP2007002086A
JP2007002086A JP2005183317A JP2005183317A JP2007002086A JP 2007002086 A JP2007002086 A JP 2007002086A JP 2005183317 A JP2005183317 A JP 2005183317A JP 2005183317 A JP2005183317 A JP 2005183317A JP 2007002086 A JP2007002086 A JP 2007002086A
Authority
JP
Japan
Prior art keywords
electron beam
phosphor
europium
yttrium
red phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005183317A
Other languages
Japanese (ja)
Inventor
Tokuo Fukita
徳雄 吹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2005183317A priority Critical patent/JP2007002086A/en
Publication of JP2007002086A publication Critical patent/JP2007002086A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor that emits light by electron beam excitation, especially a red phosphor suitably used for a field emission display (FED). <P>SOLUTION: In a method for producing the electron beam-excited red phosphor, a mixture of a yttrium compound and a europium compound or a yttrium-europium complex compound is fired in a non-reducing atmosphere to obtain a crude phosphor which is subsequently ground and re-fired in the atmosphere. The phosphor which is excellent in emission luminance achieved by electron beam radiation, has a small median diameter and is suitably made into a paste form can be obtained through the method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電界放出型ディスプレイ(FED)等の電子線励起発光素子に用いる赤色蛍光体の製造方法に関する。   The present invention relates to a method for producing a red phosphor used for an electron beam excited light emitting device such as a field emission display (FED).

電子線励起発光素子に用いられる赤色蛍光体としては、ユーロピウムで賦活した酸化イットリウム(Y1-xEuが知られている。このものはイットリウムの一部をユーロピウムで置換することにより電子線を照射した際に赤色発光するのであるが、その発光特性は十分ではなく、発光輝度向上、発光開始電圧の低電圧化等に向けた検討がなされている。例えば、発光開始電圧の低電圧化に関しては還元性雰囲気下で再焼成(アニール)する製造方法が知られている(特許文献1参照)。また、発光輝度の向上に関しては、例えば、亜鉛を共賦活剤として用いる技術が知られている(特許文献2参照)。 As a red phosphor used for an electron beam-excited light emitting element, yttrium oxide (Y 1-x Eu x ) 2 O 3 activated with europium is known. This one emits red light when irradiated with an electron beam by substituting a part of yttrium with europium, but its light emission characteristics are not sufficient, aiming at improving the light emission luminance, lowering the light emission start voltage, etc. Consideration has been made. For example, a manufacturing method in which re-firing (annealing) is performed in a reducing atmosphere is known for lowering the light emission starting voltage (see Patent Document 1). Further, for example, a technique using zinc as a co-activator is known (see Patent Document 2).

特開2000‐265168号公報JP 2000-265168 A 特開2000‐319654号公報JP 2000-319654 A

特許文献1に記載の赤色蛍光体は、発光開始電圧の低電圧化は図られるものの、電界放出型ディスプレイ(FED)の赤色発光素子として用いるには、更なる発光輝度の向上が求められている。   Although the red phosphor described in Patent Document 1 can reduce the light emission start voltage, further improvement in light emission luminance is required for use as a red light emitting element of a field emission display (FED). .

本発明者は、より一層発光輝度の向上した赤色蛍光体を見出すべく種々の研究を重ねたところ、ユーロピウム賦活酸化イットリウム系赤色蛍光体において、蛍光体原料を非還元性雰囲気下で焼成して得られる粗蛍光体を粉砕した後、前記焼成時の雰囲気と同じ雰囲気下で再焼成することで、電子線照射による発光輝度がより一層向上することを見出し、本発明を完成した。   The present inventor has made various studies to find a red phosphor having further improved emission luminance. As a result, in the europium-activated yttrium oxide red phosphor, the phosphor material is obtained by firing in a non-reducing atmosphere. After the obtained crude phosphor was pulverized, it was found that the luminance of light emitted by electron beam irradiation was further improved by re-baking in the same atmosphere as that during the baking, and the present invention was completed.

すなわち、本発明は、イットリウム化合物及びユーロピウム化合物の混合物若しくはイットリウム・ユーロピウム複合化合物を非還元性雰囲気下で焼成して粗蛍光体を得、次いで、粗蛍光体を粉砕した後、前記焼成時の雰囲気と同じ雰囲気下で再焼成することを特徴とする電子線励起赤色蛍光体の製造方法である。   That is, the present invention provides a crude phosphor by firing a mixture of yttrium compound and europium compound or yttrium-europium composite compound in a non-reducing atmosphere, and then pulverizing the crude phosphor and then the atmosphere during the firing. It is a manufacturing method of the electron beam excitation red fluorescent substance characterized by rebaking in the same atmosphere.

本発明の電子線励起赤色蛍光体の製造方法は、電子線照射による発光輝度がより一層優れ、しかもメジアン径も小さく、ペースト化に適した蛍光体を得ることのできる製造方法である。   The method for producing an electron beam-excited red phosphor of the present invention is a method for producing a phosphor suitable for making into a paste, which is further excellent in emission luminance by electron beam irradiation and has a small median diameter.

本発明は、電子線励起赤色蛍光体の製造方法であって、イットリウム化合物及びユーロピウム化合物の混合物若しくはイットリウム・ユーロピウム複合化合物を非還元性雰囲気下で焼成して粗蛍光体を得、次いで、粗蛍光体を粉砕した後、前記焼成時の雰囲気と同じ雰囲気下で再焼成することを特徴とする。   The present invention relates to a method for producing an electron beam-excited red phosphor, which is obtained by firing a mixture of an yttrium compound and a europium compound or an yttrium-europium complex compound in a non-reducing atmosphere, and then obtaining a crude phosphor. After the body is pulverized, it is re-fired in the same atmosphere as that at the time of firing.

本発明の製造方法においては、まず、イットリウム化合物及びユーロピウム化合物の混合物若しくはイットリウム・ユーロピウム複合化合物を原料として用い、このものを非還元性雰囲気下で焼成して粗蛍光体を得る。使用することのできるイットリウム化合物としては、酸化イットリウム、水酸化イットリウム、蓚酸イットリウム、炭酸イットリウムが挙げられ、ユーロピウム化合物としては、酸化ユーロピウム、水酸化ユーロピウム、蓚酸ユーロピウム、炭酸ユーロピウム、塩化ユーロピウム、硝酸ユーロピウムが挙げられる。また、イットリウム・ユーロピウム複合化合物としては、(Y1-xEu)(OH)3 、(Y1-xEu23 ・nH2O、 (Y1-xEu2(C243等が挙げられる。さらに、イットリウムとユーロピウムの配合比はモル比(Eu/Y)で表して 0.03〜0.20の範囲とすると、ユーロピウムの配合量に見合った発光輝度が得られ、しかも発光色の色純度にも優れたものが得られるため好ましい。 In the production method of the present invention, first, a mixture of yttrium compound and europium compound or yttrium-europium composite compound is used as a raw material, and this is fired in a non-reducing atmosphere to obtain a crude phosphor. Yttrium compounds that can be used include yttrium oxide, yttrium hydroxide, yttrium oxalate, and yttrium carbonate. Europium compounds include europium oxide, europium hydroxide, europium oxalate, europium carbonate, europium chloride, and europium nitrate. Can be mentioned. As the yttrium-europium complex compound, (Y 1-x Eu X ) (OH) 3, (Y 1-x Eu X) 2 O 3 · nH 2 O, (Y 1-x Eu X) 2 (C 2 O 4 ) 3 and the like. Furthermore, when the blending ratio of yttrium and europium is expressed in terms of molar ratio (Eu / Y) and is in the range of 0.03 to 0.20, light emission luminance corresponding to the blending amount of europium is obtained, and the color purity of the luminescent color. In addition, it is preferable because an excellent product is obtained.

上記複合化合物、例えば、(Y1-xEu)(OH)3 はイットリウムとユーロピウムを含む硝酸塩溶液をアンモニア水で中和する、(Y1-xEu23 ・nH2Oは(Y1-xEu)(OH)3 をろ過水洗した後、加熱部分脱水する、(Y1-xEu2(C243はイットリウムとユーロピウムを含む硝酸塩溶液に蓚酸溶液を添加するなどして製造することができる。 The composite compound, for example, (Y 1-x Eu X ) (OH) 3 neutralizes a nitrate solution containing yttrium and europium with aqueous ammonia, (Y 1-x Eu X ) 2 O 3 .nH 2 O is (Y 1-x Eu X ) (OH) 3 is filtered and washed with water, and then partially dehydrated by heating. (Y 1-x Eu X ) 2 (C 2 O 4 ) 3 is a oxalic acid solution in a nitrate solution containing yttrium and europium. It can manufacture by adding.

焼成の雰囲気は、非還元性雰囲気であって、例えば、大気等の酸素を含有する酸化性雰囲気、若しくは窒素等の非酸化性・非還元性ガスを含む中性雰囲気が挙げられる。   The firing atmosphere is a non-reducing atmosphere, for example, an oxidizing atmosphere containing oxygen such as air, or a neutral atmosphere containing a non-oxidizing / non-reducing gas such as nitrogen.

粗蛍光体を得るに際しては、イットリウム化合物及びユーロピウム化合物の混合物若しくはイットリウム・ユーロピウム複合化合物を造粒した後、焼成すると、粒度の揃った粗蛍光体が得られ易いので好ましい。造粒する方法としては、噴霧乾燥機、フラッシュジエットドライヤ−、スラリ−ドライヤ−、オムテックス等、公知の造粒/乾燥機を用いることができる。本発明においては噴霧乾燥機を用いると、後述するとおり融剤との混合も均一になり、また球形で粒度が揃った造粒物になるため好ましい。   In obtaining the crude phosphor, it is preferable to granulate a mixture of yttrium compound and europium compound or yttrium-europium complex compound and then calcinate it, since it is easy to obtain a crude phosphor with uniform particle size. As a granulation method, a known granulator / dryer such as a spray dryer, a flash jet dryer, a slurry dryer, or Omtex can be used. In the present invention, it is preferable to use a spray dryer because mixing with the flux becomes uniform as will be described later, and a granulated product having a uniform spherical particle size is obtained.

上記原料を融剤の存在下で焼成すると、得られる粗蛍光体の結晶化が促進されるため好ましい。使用することのできる融剤としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、リン酸カリウム、リン酸ナトリウム、塩化ナトリウム、塩化リチウム等が挙げられ、これらを単独で用いたり、あるいは併用することができる。なかでも、フッ化リチウムを用いると、焼成後に得られる粗蛍光体に融剤が残留しにくいため好ましい。フッ化リチウムとリン酸カリウムを併用すると粒子形状が球形になりやすいので好ましい。
融剤の使用量は、原料に対して1〜15モル%の範囲が好ましい。また、融剤は焼成前に予め上記原料と十分に混合されていることが好ましく、例えば、上記原料と融剤とを予め十分に固相で混合したり、上記原料と融剤とを水系で十分に混合してスラリーとした後、該スラリーを乾燥させるとよく、特に噴霧乾燥法により乾燥したものは、乾燥物(二次粒子)の粒度の揃ったものが得られやすく好ましい。
Firing the raw material in the presence of a flux is preferable because crystallization of the resulting crude phosphor is promoted. Examples of the flux that can be used include lithium fluoride, sodium fluoride, potassium fluoride, potassium phosphate, sodium phosphate, sodium chloride, lithium chloride and the like. These can be used alone or in combination. be able to. Among these, it is preferable to use lithium fluoride because the flux hardly remains in the crude phosphor obtained after firing. It is preferable to use lithium fluoride and potassium phosphate together because the particle shape tends to be spherical.
The amount of the flux used is preferably in the range of 1 to 15 mol% relative to the raw material. Further, it is preferable that the flux is sufficiently mixed with the raw material in advance before firing. For example, the raw material and the flux are sufficiently mixed in a solid phase in advance, or the raw material and the flux are mixed in an aqueous system. After thoroughly mixing to make a slurry, the slurry may be dried. In particular, a product dried by a spray drying method is preferable because a dried product (secondary particle) having a uniform particle size is easily obtained.

焼成の温度は、原料化合物が反応してユーロピウムがドープされた酸化イットリウムが生成される範囲の温度であれば特に制限はないが、800〜1500℃の範囲が好ましい。融剤の存在下で焼成する場合には、850〜1400℃の範囲が好ましい温度範囲である。   The firing temperature is not particularly limited as long as it is in a range in which the starting compound reacts to produce yttrium oxide doped with europium, but a range of 800 to 1500 ° C. is preferable. When firing in the presence of a flux, a preferred temperature range is 850 to 1400 ° C.

次いで、焼成により得られる粗蛍光体を粉砕して粒度を揃える。粉砕の程度としては、粒度をメジアン径で表した時、15μm以下が好ましい。しかしながら、粒度を揃えるために粉砕すると、通常は発光輝度が低下するという問題がある。本発明においては、この様な粉砕によって低下した発光輝度を焼成時と同じ雰囲気下で再焼成することで、粉砕前の粗蛍光体の発光輝度を上回る発光輝度を有し、しかも粒度の揃った蛍光体を得ることができる。   Next, the coarse phosphor obtained by firing is pulverized to uniform the particle size. The degree of pulverization is preferably 15 μm or less when the particle size is expressed in median diameter. However, when pulverized to make the particle size uniform, there is usually a problem that the emission luminance is lowered. In the present invention, the emission luminance reduced by such pulverization is refired in the same atmosphere as at the time of firing, so that the emission luminance exceeds the emission luminance of the crude phosphor before pulverization and the particle size is uniform. A phosphor can be obtained.

再焼成の温度は400〜1200℃の範囲が好ましく、より好ましくは600〜1100℃の範囲である。上記範囲より再焼成温度が低いと、発光輝度の向上が十分ではなく、また、上記範囲より高い温度で再焼成すると、再び粒子同士が焼結し易くなり、また発光輝度の更なる向上を期待することも難しい。   The re-baking temperature is preferably in the range of 400 to 1200 ° C, more preferably in the range of 600 to 1100 ° C. If the re-baking temperature is lower than the above range, the emission luminance is not sufficiently improved. If re-baking at a temperature higher than the above range, the particles are easily sintered again, and further improvement in the emission luminance is expected. It is also difficult to do.

再焼成することにより得られる本発明の蛍光体は、粒度の揃ったものであるため、更なる粉砕等は必ずしも必要ではないが、解砕等の軽い粉砕処理を施してもよい。また、焼成に際して融剤を用いた場合は、蛍光体に残留する融剤を除去するために再焼成後の蛍光体を水系で洗浄する操作を施してもよい。   Since the phosphor of the present invention obtained by refiring has a uniform particle size, further pulverization or the like is not always necessary, but light pulverization such as crushing may be performed. In addition, when a flux is used during firing, an operation of washing the phosphor after re-baking with an aqueous system may be performed in order to remove the flux remaining on the phosphor.

電子線励起発光現象を利用したフラットパネルディスプレイとして電界放出型ディスプレイ(FED)があるが、これは100〜3000Vの電圧で加速された電子線を励起源とする低電圧型と、3000V以上の電圧で加速された電子線を励起源とする高電圧型の2種類が検討されている。本発明の赤色蛍光体は少なくとも1000V程度で加速された電子線でも良好な発光が得られるので、上記何れの型でも使用することができる。   There is a field emission display (FED) as a flat panel display using the electron beam excitation light emission phenomenon. This is a low voltage type using an electron beam accelerated by a voltage of 100 to 3000 V as an excitation source and a voltage of 3000 V or more. Two types of high-voltage type using an electron beam accelerated by the above as an excitation source have been studied. The red phosphor of the present invention can be used in any of the above-mentioned types because good light emission can be obtained even with an electron beam accelerated at least at about 1000V.

以下、本発明を実施例により説明するが、本発明はそれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

比較例1
酸化イットリウム(Y)125gと酸化ユーロピウム(Eu)19.482gに純水400ミリリットルを加えてスラリー化した。これに濃硝酸(濃度61%)268ミリリットルを添加して溶解した後、純水で希釈して液量を8リットルにした。次いで、60℃に昇温し、攪拌下で濃アンモニア水(12.62N)283ミリリットルを添加し、5時間熟成した後、ろ過水洗して複水酸化物(Y0.909Eu0.091)(OH)3 を得た。
(Y0.909Eu0.09123 換算で90gに相当する前記複水酸化物を純水3リットルに再分散し、さらにフッ化リチウム0.723gを添加した後、1時間攪拌してスラリー(試料a)を得た。試料aを120℃の温度で蒸発乾固した。粉砕により粒径(メジアン径)を15μmに調整した後、大気中950℃の温度で5時間、引き続き1350℃の温度で5時間焼成後、洗浄して粗蛍光体(試料A)を得た。
Comparative Example 1
400 ml of pure water was added to a slurry of 125 g of yttrium oxide (Y 2 O 3 ) and 19.482 g of europium oxide (Eu 2 O 3 ). To this was added 268 ml of concentrated nitric acid (concentration 61%) and dissolved, and then diluted with pure water to make the volume 8 l. Next, the temperature was raised to 60 ° C., 283 ml of concentrated aqueous ammonia (12.62N) was added with stirring, the mixture was aged for 5 hours, washed with filtered water and double hydroxide (Y 0.909 Eu 0.091 ) (OH) 3 Got.
(Y 0.909 Eu 0.091 ) The double hydroxide corresponding to 90 g in terms of 2 O 3 was redispersed in 3 liters of pure water, 0.723 g of lithium fluoride was further added, and the mixture was stirred for 1 hour to give a slurry (sample a) was obtained. Sample a was evaporated to dryness at a temperature of 120 ° C. After adjusting the particle diameter (median diameter) to 15 μm by pulverization, firing was performed in the atmosphere at a temperature of 950 ° C. for 5 hours, and subsequently at a temperature of 1350 ° C. for 5 hours, followed by washing to obtain a crude phosphor (sample A).

比較例2
比較例1で得られた粗蛍光体(試料A)を遠心粉砕機(Retsch社製、タイプZM100)を用いて粉砕して蛍光体(試料B)を得た。
Comparative Example 2
The crude phosphor (sample A) obtained in Comparative Example 1 was pulverized using a centrifugal pulverizer (type ZM100, manufactured by Retsch) to obtain a phosphor (sample B).

実施例1
比較例2で得られた蛍光体(試料B)を焼成時の雰囲気と同じ大気雰囲気下、900℃の温度で2時間再焼成して本発明の蛍光体(試料C)を得た。
Example 1
The phosphor (sample B) obtained in Comparative Example 2 was refired at a temperature of 900 ° C. for 2 hours in the same air atmosphere as the firing atmosphere to obtain the phosphor of the present invention (sample C).

比較例3
比較例1で得られた粗蛍光体(試料A)を焼成時の雰囲気と同じ大気雰囲気下、900℃の温度で2時間再焼成して蛍光体(試料D)を得た。
Comparative Example 3
The crude phosphor (sample A) obtained in Comparative Example 1 was refired at 900 ° C. for 2 hours in the same air atmosphere as the firing atmosphere to obtain a phosphor (sample D).

比較例4
比較例1で得られたスラリー(試料a)を噴霧乾燥機(ニロ社製、デスクアトマイザ−タイプ)を用いて噴霧乾燥してメジアン径12μの球状粒子を得た。次いで、大気中950℃の温度で5時間、引き続いて1350℃の温度で5時間焼成した後、洗浄して粗蛍光体(試料E)を得た。
Comparative Example 4
Comparative Example 1 The resulting slurry (sample a) a spray dryer (Niro Inc., desk atomizer - type) to obtain spherical particles of median size 12 [mu m was spray dried using. Subsequently, after baking at a temperature of 950 ° C. in the atmosphere for 5 hours and subsequently at a temperature of 1350 ° C. for 5 hours, washing was performed to obtain a crude phosphor (sample E).

比較例5
比較例4で得られた粗蛍光体(試料E)を遠心粉砕機(Retsch社製、タイプZM100)を用いて粉砕して蛍光体(試料F)を得た。
Comparative Example 5
The crude phosphor (sample E) obtained in Comparative Example 4 was pulverized using a centrifugal pulverizer (Retsch, type ZM100) to obtain a phosphor (sample F).

実施例2
比較例5で得られた蛍光体(試料F)を焼成時の雰囲気と同じ大気雰囲気下、900℃の温度で2時間再焼成して本発明の蛍光体(試料G)を得た。
Example 2
The phosphor (sample F) obtained in Comparative Example 5 was refired at a temperature of 900 ° C. for 2 hours in the same air atmosphere as the firing atmosphere to obtain the phosphor of the present invention (sample G).

比較例6
比較例4で得られた粗蛍光体(試料E)を焼成時の雰囲気と同じ大気雰囲気下、900℃の温度で2時間再焼成して蛍光体(試料H)を得た。
Comparative Example 6
The crude phosphor (sample E) obtained in Comparative Example 4 was refired at a temperature of 900 ° C. for 2 hours in the same air atmosphere as the firing atmosphere to obtain a phosphor (sample H).

実施例1〜2及び比較例1〜6で得られた試料A〜Hを用いて電子線励起発光輝度、比表面積及びメジアン径を測定した。結果を表1に示した。なお、電子線励起発光輝度及びメジアン径は以下の方法にて測定した。   Using the samples A to H obtained in Examples 1 and 2 and Comparative Examples 1 to 6, electron beam excitation light emission luminance, specific surface area, and median diameter were measured. The results are shown in Table 1. In addition, electron beam excitation luminescence brightness and median diameter were measured by the following methods.

(電子線励起発光輝度の測定方法)
試料をアルミニウム板に薄く塗布したものを圧力10−5Pa以下の高真空容器に入れて、電子銃から電子線を照射して試料からの発光を測定した。電子銃は加熱された陰極から出る熱電子を用いた。電子線の加速電圧と試料に流れ込む電子線の電流量は独立に調整できる。輝度は加速電圧5kVで加速した電子線を試料に照射し、試料からの発光スペクトルをマルチチャンネル・スペクトルメータを用いて測定した。試料に流した電流密度は150μA/cm2である。得られた発光スペクトからCIE1931表色系におけるY値(発光輝度)を求めた。なお、表1には、試料Aの発光輝度を100とする相対値で表した。
(Measurement method of luminance excited by electron beam)
The sample thinly coated on an aluminum plate was placed in a high vacuum container with a pressure of 10 −5 Pa or less, and the emission from the sample was measured by irradiating an electron beam from an electron gun. The electron gun used thermoelectrons emitted from a heated cathode. The acceleration voltage of the electron beam and the amount of current of the electron beam flowing into the sample can be adjusted independently. The luminance was measured by irradiating the sample with an electron beam accelerated at an acceleration voltage of 5 kV, and measuring the emission spectrum from the sample using a multichannel spectrometer. The current density passed through the sample is 150 μA / cm 2 . The Y value (emission luminance) in the CIE 1931 color system was determined from the obtained emission spectrum. In Table 1, the light emission luminance of Sample A is expressed as a relative value with 100.

(メジアン径の測定方法)
堀場製作所製レ−ザ−回折/散乱式粒子径分布測定装置LA-950で測定した。
(Measurement method of median diameter)
It was measured with a laser diffraction / scattering particle size distribution measuring apparatus LA-950 manufactured by Horiba.

Figure 2007002086
Figure 2007002086

表1より、本発明の製造方法で得られる赤色蛍光体は、電子線励起による発光輝度に優れ、しかもメジアン径も小さく、ペースト化に適したものであることがわかった。   From Table 1, it was found that the red phosphor obtained by the production method of the present invention is excellent in light emission luminance by electron beam excitation and has a small median diameter and is suitable for pasting.

本発明の蛍光体は、電界放出型ディスプレイ(FED)等の電子線励起発光素子用の赤色蛍光体として有用である。


The phosphor of the present invention is useful as a red phosphor for an electron beam-excited light emitting device such as a field emission display (FED).


Claims (7)

イットリウム化合物及びユーロピウム化合物の混合物若しくはイットリウム・ユーロピウム複合化合物を非還元性雰囲気下で焼成して粗蛍光体を得、次いで、粗蛍光体を粉砕した後、前記焼成時の雰囲気と同じ雰囲気下で再焼成することを特徴とする電子線励起赤色蛍光体の製造方法。 A mixture of yttrium compound and europium compound or yttrium-europium composite compound is fired in a non-reducing atmosphere to obtain a crude phosphor, and then the crude phosphor is pulverized and then re-reacted in the same atmosphere as that for firing. A method for producing an electron beam-excited red phosphor, characterized by firing. 400〜1200℃の範囲の温度で再焼成することを特徴とする請求項1に記載の電子線励起赤色蛍光体の製造方法。 The method for producing an electron beam-excited red phosphor according to claim 1, wherein re-baking is performed at a temperature in the range of 400 to 1200 ° C. イットリウム化合物及びユーロピウム化合物の混合物若しくはイットリウム・ユーロピウム複合化合物を造粒した後、焼成することを特徴とする請求項1に記載の電子線励起赤色蛍光体の製造方法。 2. The method for producing an electron beam-excited red phosphor according to claim 1, wherein the mixture is sintered after granulating a mixture of an yttrium compound and a europium compound or an yttrium-europium composite compound. 噴霧乾燥機を用いて造粒することを特徴とする請求項3に記載の電子線励起赤色蛍光体の製造方法。 4. The method for producing an electron beam-excited red phosphor according to claim 3, wherein the granulation is performed using a spray dryer. 融剤の存在下で焼成することを特徴とする請求項1に記載の電子線励起赤色蛍光体の製造方法。 The method for producing an electron beam-excited red phosphor according to claim 1, wherein firing is performed in the presence of a flux. 融剤としてフッ化リチウム及び/又はリン酸カリウムを用いることを特徴とする請求項5に記載の電子線励起赤色蛍光体の製造方法。 The method for producing an electron beam-excited red phosphor according to claim 5, wherein lithium fluoride and / or potassium phosphate is used as a flux. 焼成及び再焼成の雰囲気が酸化性雰囲気であることを特徴とする請求項1に記載の電子線励起赤色蛍光体の製造方法。

The method for producing an electron beam-excited red phosphor according to claim 1, wherein the firing and re-firing atmosphere is an oxidizing atmosphere.

JP2005183317A 2005-06-23 2005-06-23 Method for producing electron beam-excited red phosphor Pending JP2007002086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183317A JP2007002086A (en) 2005-06-23 2005-06-23 Method for producing electron beam-excited red phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183317A JP2007002086A (en) 2005-06-23 2005-06-23 Method for producing electron beam-excited red phosphor

Publications (1)

Publication Number Publication Date
JP2007002086A true JP2007002086A (en) 2007-01-11

Family

ID=37687986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183317A Pending JP2007002086A (en) 2005-06-23 2005-06-23 Method for producing electron beam-excited red phosphor

Country Status (1)

Country Link
JP (1) JP2007002086A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062251B2 (en) 2010-06-09 2015-06-23 Shin-Etsu Chemical Co., Ltd. Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
US9617469B2 (en) 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062251B2 (en) 2010-06-09 2015-06-23 Shin-Etsu Chemical Co., Ltd. Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
US9617469B2 (en) 2011-01-06 2017-04-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles, making method, and light-emitting diode

Similar Documents

Publication Publication Date Title
JP5225539B2 (en) Phosphors containing phosphates and / or boric acid of group IIIA, IVA, and lanthanide series metals, and light sources incorporating the phosphors
JP2005133063A (en) Phosphor containing boron and metal belonging to groups iiia and iiib
JP2015042753A (en) Method of producing aluminate luminophore, bam, yag and cat by alum method
George et al. Luminescence characteristics of rare-earth-doped barium hexafluorogermanate BaGeF 6 nanowires: fast subnanosecond decay time and high sensitivity in H 2 O 2 detection
JP3699991B2 (en) Method for producing high-luminance luminescent material
JP2001521055A (en) Use of thulium-containing lanthanum phosphate as a phosphor in a plasma or X-ray system
JP3833617B2 (en) Method for manufacturing illuminant
JP2007002086A (en) Method for producing electron beam-excited red phosphor
WO2010137533A1 (en) Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles
JP2007002085A (en) Method for producing electron beam-excited red phosphor
US20100148658A1 (en) Methods for preparation of nanocrystalline rare earth phosphates for lighting applications
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof
WO2018147185A1 (en) Fluorescent material powder, light-emitting device, and method for producing fluorescent material powder
KR101496959B1 (en) Red-emitting phosphors with highly enhanced luminescent efficiency and their preparation methods
JP2006335898A (en) Phosphor for low energy electron beam, phosphor paste and fluorescent display device
WO2016111200A1 (en) Fluorescent material, light-emitting device, and method for producing fluorescent material
JP2001131544A (en) Yellow-green emitting luminous body of heat-resistance, water resistance, high luminance and long luminescent persistency and production thereof
KR101026533B1 (en) a novel red-emitting phosphor for UV radiation
JP2001234165A (en) Vacuum ultraviolet-excited fluorescent substance
JP2003183644A (en) Method of production for silicate fluorescent substance
KR20010073118A (en) Lanthanum, Lutetium, Yttrium or Gadolinium Borate Comprising Two Doping Agents and Its Precursor, Use in Plasma or X-ray Systems
JP2001220582A (en) Preparation process of aluminate phosphor
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
JP2004263088A (en) Process for producing fluorescent substance