JP2002217858A - Amplitude correcting device - Google Patents

Amplitude correcting device

Info

Publication number
JP2002217858A
JP2002217858A JP2001011606A JP2001011606A JP2002217858A JP 2002217858 A JP2002217858 A JP 2002217858A JP 2001011606 A JP2001011606 A JP 2001011606A JP 2001011606 A JP2001011606 A JP 2001011606A JP 2002217858 A JP2002217858 A JP 2002217858A
Authority
JP
Japan
Prior art keywords
amplitude
signal
amplitude correction
power level
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001011606A
Other languages
Japanese (ja)
Inventor
Ho Ro
鋒 盧
Toru Sunaga
徹 須永
Hiromasa Takada
宏正 高田
Toshiyuki Maeyama
利幸 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
KDDI Corp
KDDI Research Inc
Original Assignee
Kyocera Corp
KDDI Corp
KDDI R&D Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, KDDI Corp, KDDI R&D Laboratories Inc filed Critical Kyocera Corp
Priority to JP2001011606A priority Critical patent/JP2002217858A/en
Publication of JP2002217858A publication Critical patent/JP2002217858A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an amplitude correcting device where the amplitude fluctuations of a received signal are corrected and are made to converge to a prescribed value in an OFDM reception device having the phase error correcting circuit of at least one stage. SOLUTION: An amplitude correcting device 10 is installed between a selector 6a and a phase error-detecting circuit 6b, in the primary phase error correcting part 6 of the OFDM reception device. The amplitude correcting device 10 is constituted of a received power calculating part 11, an amplitude correction coefficient generating part 12 and an amplitude correcting part 13. The received power calculating part 11 calculates the power level of the received signal from the output of the selector 6a and calculates the received power level signal. The amplitude correction coefficient generating part 12 outputs amplitude correction coefficients, corresponding to the power level of the received signal, in response to the received power level signal. The amplitude correcting part 13 multiples the reception signal by the amplitude correction coefficient, corrects the amplitude and outputs a signal, whose amplitude corrected to a prescribed value, to a phase error correction signal generating circuit 6c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無線ディジタル通
信システムに好適な振幅補正装置に係り、特に少なくと
も1段の位相誤差補正装置を有するOFDM(直交周波
数分割多重 Orthogonal Frequency Division Multiplex
ing)受信装置における受信信号の振幅補正に好適な装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amplitude correction device suitable for a wireless digital communication system, and more particularly to an OFDM (Orthogonal Frequency Division Multiplex) having at least one stage error correction device.
ing) The present invention relates to a device suitable for amplitude correction of a received signal in a receiving device.

【0002】[0002]

【従来の技術】図5はOFDM受信装置の一例を示す。
同図において、1は受信アンテナ、2はダウンコンバー
タ、3は直交復調器、4はA/Dコンバータ、5は周波
数誤差補正部、6は1次位相誤差補正部、7は2次位相
誤差補正部、8はFFT演算回路である。
2. Description of the Related Art FIG. 5 shows an example of an OFDM receiver.
In the figure, 1 is a receiving antenna, 2 is a down converter, 3 is a quadrature demodulator, 4 is an A / D converter, 5 is a frequency error correction unit, 6 is a primary phase error correction unit, and 7 is a secondary phase error correction. Reference numeral 8 denotes an FFT operation circuit.

【0003】受信アンテナ1で受信されたOFDM信号
はダウンコンバータ2によりIF信号に変換され、更に
直交復調器3でIF信号からI,Q成分のベースバンド
信号が復調される。このベースバンド信号はA/Dコン
バータ4によりディジタル信号に変換され周波数誤差補
正部5に入力される。例として図6に示したOFDM信
号フォーマットの場合、周波数誤差補正部5において、
セレクタ5aがディジタル変換されたOFDM信号のプ
リアンブル部のA,Bフィールド成分と、プリアンブル
部のCフィールド及びデータ部(ペイロード部)を識別
する。プリアンブル部のA,Bフィールド成分はタイミ
ング検出回路5bに入力され、該回路によりFFTタイ
ミング信号が検出され、また上記A,Bフィールド成分
より周波数誤差検出回路5cにおいて周波数誤差が検出
される。FFTタイミング信号はFFT演算回路8に入
力されると共に周波数誤差補正信号生成回路5dは上記
周波数誤差に基づいて周波数誤差補正信号を生成し、該
周波数誤差補正信号を、複素乗算回路5eで、前記Cフ
ィールド成分及びデータ部に複素乗算することにより、
周波数誤差を補正する。
The OFDM signal received by the receiving antenna 1 is converted into an IF signal by a down converter 2, and a baseband signal of I and Q components is demodulated from the IF signal by a quadrature demodulator 3. This baseband signal is converted into a digital signal by the A / D converter 4 and input to the frequency error correction unit 5. For example, in the case of the OFDM signal format shown in FIG.
The selector 5a identifies the A and B field components of the preamble part, the C field and the data part (payload part) of the preamble part of the digitally converted OFDM signal. The A and B field components of the preamble portion are input to a timing detection circuit 5b, which detects an FFT timing signal. The frequency error detection circuit 5c detects a frequency error from the A and B field components. The FFT timing signal is input to the FFT operation circuit 8, and the frequency error correction signal generation circuit 5d generates a frequency error correction signal based on the frequency error. By performing complex multiplication on the field component and the data part,
Correct the frequency error.

【0004】そしてFFT演算回路8は、上記FFTタ
イミング信号に基づいて周波数誤差補正部5からのデー
タ部をFFT演算して1次位相誤差補正部6に出力す
る。1次位相誤差補正部6はFFT演算のタイミングの
ずれから生じる前記位相誤差を補正するもので、図6を
例にした場合、セレクタ6aによりFFT演算回路8の
出力からプリアンブル部のCフィールド成分及びデータ
部を抽出すると共に位相誤差検出回路6bが上記Cフィ
ールド成分に基づいて位相誤差を検出し、この位相誤差
に基づいて位相誤差補正信号生成回路6cが位相誤差補
正信号を生成する。この位相誤差補正信号は複素乗算回
路6dで、上記データ部に複素乗算され、前記位相誤差
を補正する。
[0004] The FFT operation circuit 8 performs an FFT operation on the data portion from the frequency error correction unit 5 based on the FFT timing signal and outputs the result to the primary phase error correction unit 6. The primary phase error correction unit 6 corrects the phase error caused by the timing shift of the FFT operation. In the case of FIG. 6, for example, the selector 6a outputs the C field component of the preamble unit from the output of the FFT operation circuit 8 The data portion is extracted, and the phase error detection circuit 6b detects a phase error based on the C field component, and the phase error correction signal generation circuit 6c generates a phase error correction signal based on the phase error. The phase error correction signal is subjected to complex multiplication by the complex multiplication circuit 6d to the data section to correct the phase error.

【0005】2次位相誤差補正部7は、送信側クロック
と受信側クロック間の相対誤差に基づく位相誤差を補正
するために設けている。2次位相誤差補正部7は、送信
側クロックと受信側クロック間の相対誤差に起因して残
留する位相誤差を補正するもので、セレクタ7aにより
1次位相誤差補正部6の出力からデータ部のパイロット
信号を含むI,Q成分を分離する。上記成分はパイロッ
ト信号抽出部7bに入力され、これによりデータ部のシ
ンボル間のパイロット信号が抽出される。このパイロッ
ト信号の理論値との誤差は上記クロック間の相対誤差に
起因して残留する位相誤差に相当する位相を有している
ので、位相誤差補正信号生成回路7cにより上記パイロ
ット信号の共役信号を位相誤差補正信号として生成す
る。この共役信号は複素乗算回路7dによりデータ部の
パイロット信号に複素乗算され、前記位相誤差を補正す
る。
[0005] The secondary phase error correction unit 7 is provided to correct a phase error based on a relative error between the transmission clock and the reception clock. The secondary phase error correction unit 7 corrects a phase error remaining due to a relative error between the transmission side clock and the reception side clock. The selector 7a converts the output of the primary phase error correction unit 6 into a data part. The I and Q components including the pilot signal are separated. The above components are input to a pilot signal extraction section 7b, whereby pilot signals between symbols in the data section are extracted. Since the error of the pilot signal from the theoretical value has a phase corresponding to the phase error remaining due to the relative error between the clocks, the conjugate signal of the pilot signal is converted by the phase error correction signal generation circuit 7c. Generated as a phase error correction signal. This conjugate signal is subjected to complex multiplication of the pilot signal in the data section by the complex multiplication circuit 7d to correct the phase error.

【0006】上述したOFDM受信装置の詳細は特願2
000−400943に開示されている。また、2次位
相誤差補正装置として、上述した例とは、異なる作用の
ものを具備したOFDM装置としては、例えば、特願2
000−70186に開示したものがある。
For details of the above-mentioned OFDM receiver, refer to Japanese Patent Application No.
000-400943. Further, as an example of an OFDM apparatus having a function different from the above-described example as the secondary phase error correction apparatus, for example, Japanese Patent Application No.
000-70186.

【0007】上述したようにOFDM受信装置におい
て、種々の原因による位相誤差を補正するため、1次、
2次等の位相誤差補正回路が用いられており、その位相
誤差の補正方法としては、上述したように受信OFDM
信号の位相変動を打ち消すために逆位相の回転を与える
方法をとっている。そのため、例えば、簡易的な方法と
して共役演算などの方法もとられる。共役演算は、受信
OFDM信号の実部または虚部の符号変換という簡易な
演算で補正信号が得られるので、回路規模や演算時間の
短縮等の目的で良く利用される。
As described above, in the OFDM receiving apparatus, to correct the phase error due to various causes, the primary,
A phase error correction circuit of the second order or the like is used. As a method of correcting the phase error, as described above, the reception OFDM
In order to cancel the phase fluctuation of the signal, a method of giving an opposite phase rotation is adopted. Therefore, for example, a method such as a conjugate operation is used as a simple method. In the conjugate operation, a correction signal can be obtained by a simple operation of code conversion of a real part or an imaginary part of a received OFDM signal, and thus is often used for the purpose of reducing the circuit scale and the operation time.

【0008】[0008]

【発明が解決しようとする課題】而して、この時、問題
になるのは補正信号は受信信号に位相回転のみを与えれ
ば良く、その振幅に誤差を与えるものでないことが望ま
れるが、上記補正信号は受信信号から生成しているの
で、該受信信号の振幅が変動すると、その振幅変動がそ
のまま残留して位相補正後の信号に影響を及ぼしてしま
う。例えば、受信入力信号の振幅が1/2になると、そ
の信号が1段の位相誤差補正装置を通過した際、複素乗
算で補正した信号の振幅は1/4になってしまう。補正
を2種類行えば振幅は1/16倍となる。このような振
幅の変動(減衰)に対応できるようにするには補正信号
を生成する時に除算などの演算を必要とするが、この演
算をそのまま実行すると莫大な有効桁と演算量を要する
ので、回路規模もしくは演算時間を大きくしなければな
らず、実用的でない。
At this time, the problem is that the correction signal only needs to give the received signal a phase rotation only, and it is desired that the amplitude of the correction signal does not give an error. Since the correction signal is generated from the received signal, if the amplitude of the received signal fluctuates, the amplitude fluctuation remains as it is and affects the signal after the phase correction. For example, if the amplitude of the received input signal is 1 /, when the signal passes through the one-stage phase error correction device, the amplitude of the signal corrected by the complex multiplication becomes 1 /. If two types of correction are performed, the amplitude becomes 1/16 times. In order to cope with such amplitude fluctuation (attenuation), an operation such as division is required when generating a correction signal. However, if this operation is performed as it is, an enormous number of significant digits and an operation amount are required. The circuit scale or calculation time must be increased, which is not practical.

【0009】そこで本発明の目的は、OFDM受信装置
等の無線ディジタル通信システムにおける受信装置にお
いて、誤差補正信号の振幅を一定値に保持することを可
能にした振幅補正装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an amplitude correction device capable of holding the amplitude of an error correction signal at a constant value in a receiving device in a wireless digital communication system such as an OFDM receiving device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の振幅補正装置は、無線ディジタル通信シス
テムにおける受信装置において、受信信号の電力レベヒ
を算出し受信電力レベル信号を出力する受信電力算出手
段と、上記受信電力レベル信号に応答して受信信号の電
力レベルに対応する所定の振幅補正係数を出力する振幅
補正係数発生手段と、上記振幅補正係数を受信信号に乗
算して受信信号の振幅を補正する振幅補正手段と、を備
えたことを要旨とする。
In order to achieve the above object, an amplitude correction apparatus according to the present invention provides a receiving apparatus in a wireless digital communication system, which calculates a power level of a received signal and outputs a received power level signal. Calculating means, amplitude correction coefficient generating means for outputting a predetermined amplitude correction coefficient corresponding to the power level of the received signal in response to the received power level signal, and multiplying the received signal by the amplitude correction coefficient to calculate the received signal. The gist of the present invention is to provide an amplitude correcting means for correcting the amplitude.

【0011】本発明の装置において、前記振幅補正係数
発生手段は、前記振幅補正係数が受信信号の電力レベル
に対応して予め振幅補正用テーブルに設定されて保持し
ているように構成してもよい。
In the apparatus of the present invention, the amplitude correction coefficient generating means may be configured so that the amplitude correction coefficient is set and held in an amplitude correction table in advance corresponding to the power level of the received signal. Good.

【0012】また本発明の装置において、前記振幅補正
手段は、受信信号のビットシフト手段と、上記ビットシ
フト手段から前記振幅補正係数に応じたシフト量の出力
信号を取り出す制御手段と、取り出された出力信号を加
算する加算手段と、から構成してもよい。
Further, in the apparatus according to the present invention, the amplitude correction means includes: a bit shift means for receiving a signal; a control means for extracting an output signal having a shift amount corresponding to the amplitude correction coefficient from the bit shift means; And an adding unit for adding the output signal.

【0013】更に本発明の装置において、前記受信装置
は周波数補正装置と少なくとも1段の位相補正装置を有
するOFDM受信装置であり、上記位相補正装置内に、
前記受信電力算出手段、振幅補正係数発生手段及び振幅
補正手段から成る振幅補正回路を備えるように構成して
もよい。
Further, in the apparatus according to the present invention, the receiving apparatus is an OFDM receiving apparatus having a frequency correcting apparatus and at least one phase correcting apparatus.
An amplitude correction circuit including the reception power calculation unit, the amplitude correction coefficient generation unit, and the amplitude correction unit may be provided.

【0014】[0014]

【発明の実施の形態】本発明の振幅補正装置は誤差補正
信号の振幅を一定に保持することができるため、受信装
置上で誤差補正信号と受信信号との複素乗算による誤差
補正を何度行っても受信時の信号の振幅を一定に保持す
ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The amplitude correction apparatus of the present invention can maintain the amplitude of an error correction signal at a constant level. Therefore, the error correction is performed several times on the receiving apparatus by complex multiplication of the error correction signal and the received signal. However, the amplitude of the signal at the time of reception can be kept constant.

【0015】而してこの振幅補正では、原理的には、受
信信号の逆特性を求めて元の信号の振幅にその逆特性の
数値を乗算することによって実現することが可能であ
る。しかし、この原理によると、振幅補正回路として乗
算及び除算回路を組み込む必要があるので、回路規模の
増加、もしくは演算時間の増加などの問題を生じてしま
う。
In principle, this amplitude correction can be realized by finding the inverse characteristic of the received signal and multiplying the amplitude of the original signal by the numerical value of the inverse characteristic. However, according to this principle, since it is necessary to incorporate a multiplication and division circuit as an amplitude correction circuit, problems such as an increase in circuit scale or an increase in operation time occur.

【0016】そこで本発明の振幅補正装置では、前述し
たように、受信信号の電力レベルを算出し、この電力レ
ベルに対応する振幅補正係数で、受信信号の振幅を補正
して受信信号の振幅を一定値となるように補正する。
Therefore, in the amplitude correction apparatus of the present invention, as described above, the power level of the received signal is calculated, and the amplitude of the received signal is corrected by correcting the amplitude of the received signal with an amplitude correction coefficient corresponding to the power level. Correct so that it becomes a constant value.

【0017】図1は本発明の振幅補正装置10を、図5
に示すようなOFDM受信装置の1次位相誤差補正部6
内に組み込んだ一実施例を示す。同図において、セレク
タ6aにより抽出された信号(フィールド部、データ
部)を振幅補正することになるが、Cフィールド部やデ
ータ部のパイロット信号は元来各サブキャリアの振幅が
等しいものでなければならず、そのため振幅補正もサブ
キャリア毎に行う。
FIG. 1 shows an amplitude correction apparatus 10 according to the present invention, and FIG.
A first-order phase error correction section 6 of the OFDM receiver as shown in FIG.
1 shows an embodiment incorporated therein. In the figure, the amplitude of the signal (field portion, data portion) extracted by the selector 6a is corrected, but the pilot signal of the C field portion and the data portion is originally the same unless the amplitude of each subcarrier is equal. Instead, amplitude correction is also performed for each subcarrier.

【0018】図2は本発明の振幅補正装置の基本的構成
を示し、同図において、11は受信電力算出部、12は
振幅補正係数発生部、13は振幅補正部である。受信電
力算出部11では、セレクタ6aの出力から受信信号の
電力レベルを算出し、受信電力レベル信号を算出する。
振幅補正係数発生部12は、上記受信電力レベル信号に
応答して受信信号の電力レベルに対応する振幅補正係数
を出力する。振幅補正部13では、上記振幅補正係数を
受信信号に本発明における簡易的な手法で乗算してその
振幅を補正し、振幅を一定値に補正された信号を位相誤
差補正信号生成回路6cに出力する。
FIG. 2 shows the basic configuration of the amplitude correction device of the present invention. In FIG. 2, reference numeral 11 denotes a reception power calculation unit, 12 denotes an amplitude correction coefficient generation unit, and 13 denotes an amplitude correction unit. The reception power calculator 11 calculates the power level of the reception signal from the output of the selector 6a, and calculates the reception power level signal.
The amplitude correction coefficient generator 12 outputs an amplitude correction coefficient corresponding to the power level of the received signal in response to the received power level signal. The amplitude correction unit 13 corrects the amplitude by multiplying the received signal by the above-described amplitude correction coefficient by the simple method of the present invention, and outputs a signal whose amplitude has been corrected to a constant value to the phase error correction signal generation circuit 6c. I do.

【0019】図3は振幅補正装置10の演算を実行する
ための具体的構成の概念図である。同図において、11
aは電力計算回路、11bはセンサで、受信電力算出部
11を構成する。12aは振幅補正係数のテーブルが格
納されているメモリで、振幅補正係数発生部12を構成
する。13aはシフトレジスタ、13bは選択部、13
cは加算器、13dは制御回路で、振幅補正部13を構
成する。
FIG. 3 is a conceptual diagram of a specific configuration for executing the operation of the amplitude correction device 10. In FIG.
a is a power calculation circuit, 11b is a sensor, and constitutes the reception power calculation unit 11. Reference numeral 12a denotes a memory in which a table of amplitude correction coefficients is stored, which constitutes the amplitude correction coefficient generator 12. 13a is a shift register, 13b is a selector, 13
c is an adder, 13d is a control circuit, and constitutes the amplitude correction unit 13.

【0020】振幅補正部13では、上述したように振幅
補正のための簡易的な乗算が行われるが、この乗算を簡
易なものとするため、この乗算をビットシフトと加算だ
けで実現できる構成とし、かつ振幅補正係数は2のべき
乗の組み合わせで設定する。即ち、セレクタ6aの出力
信号を、シフトレジスタ13aで、例えば、4倍、2
倍、1倍、1/2倍、1/4倍した信号を作成し保持す
る。これらの信号は夫々上記出力信号をビットシフトす
るだけで得られるので、一般の乗算方法に比べて演算量
は軽微である。
The amplitude correction unit 13 performs simple multiplication for amplitude correction as described above. In order to simplify the multiplication, a configuration is adopted in which the multiplication can be realized only by bit shift and addition. , And the amplitude correction coefficient is set by a combination of powers of two. That is, the output signal of the selector 6a is, for example, quadrupled by the shift register 13a,
Generate, hold, multiply, multiply by 1, multiply by 1/2, and multiply by 1/4. These signals can be obtained only by bit-shifting the output signals, so that the amount of calculation is small as compared with a general multiplication method.

【0021】一方、電力計算回路11aで、上記出力信
号のI,Q両成分の自乗和を求め、センサ11bでこの
自乗和から受信信号の電力レベルを感知し、受信電力レ
ベル信号を算出する。この際、センサ11bの感知精度
に合わせて電力レベルの桁落としを行う。例えば、電力
レベル(自乗和)の上位bビットを残して、下位ビット
を切り捨てる。センサ11bは上記受信電力レベル信号
の電力レベルの値に応じてメモリ12aのテーブルを検
索し、上記電力レベルの値に対応する振幅補正係数を取
り出し、制御回路13dに与える。
On the other hand, the power calculation circuit 11a calculates the sum of squares of the I and Q components of the output signal, and the sensor 11b senses the power level of the received signal from the sum of squares to calculate the received power level signal. At this time, the digitization of the power level is performed in accordance with the sensing accuracy of the sensor 11b. For example, the lower bits are discarded, leaving the upper b bits of the power level (sum of squares). The sensor 11b searches a table in the memory 12a according to the value of the power level of the received power level signal, extracts an amplitude correction coefficient corresponding to the value of the power level, and provides it to the control circuit 13d.

【0022】制御回路13dは振幅補正係数に応じて選
択部13bの対応するスイッチSW1〜SW5をオン、
オフする。例えば、振幅補正係数が1.25であれば、
スイッチSW3,SW5をオンにし、他をオフにする。
そして選択された信号を加算器13cで加算すると、振
幅をほぼ一定に補正した信号を出力する。センサ11b
の感知精度が良いほど収束性は高まる。
The control circuit 13d turns on the corresponding switches SW1 to SW5 of the selector 13b in accordance with the amplitude correction coefficient,
Turn off. For example, if the amplitude correction coefficient is 1.25,
The switches SW3 and SW5 are turned on, and the others are turned off.
When the selected signals are added by the adder 13c, a signal whose amplitude is corrected to be substantially constant is output. Sensor 11b
The convergence is enhanced as the sensing accuracy of is better.

【0023】振幅補正用テーブル12aは、予め実験に
より電力レベルに応じた振幅補正係数を設定することに
より求めておく。またテーブルを補正信号のビット長と
センサ部11bの感度を決めれば自動的に作成すること
も可能である。この振幅補正係数は前記振幅補正演算と
しての乗算を容易にするため、この乗算をビットシフト
と加算だけで実現できる数値とする。
The amplitude correction table 12a is obtained in advance by setting an amplitude correction coefficient corresponding to the power level by an experiment. Also, the table can be automatically created if the bit length of the correction signal and the sensitivity of the sensor unit 11b are determined. In order to facilitate the multiplication as the amplitude correction operation, the amplitude correction coefficient is set to a numerical value that can be realized only by bit shift and addition.

【0024】振幅補正後の信号(I,Q成分)の目標ベ
クトルは2である(aは入力信号のビット数で、有効
桁の関係から実際の最大値は2−1)。振幅補正後は
この信号と振幅がオーバーフローを起こさないように、
かつなるべく目標値に近くなるように振幅補正係数を定
めている。ただし入力信号となるOFDM信号のプリア
ンブル或いはパイロット信号の全てのビットを有効桁と
すると、テーブルの容量や演算速度、演算容量などが増
大するので、入力信号の有効桁はある程度限定される。
The target vector of the signal (I, Q components) after the amplitude correction is 2a (a is the number of bits of the input signal, and the actual maximum value is 2a- 1 due to the relationship of the significant digits). After amplitude correction, this signal and amplitude do not cause overflow,
The amplitude correction coefficient is determined so as to be as close as possible to the target value. However, if all bits of the preamble or pilot signal of the OFDM signal to be an input signal are used as effective digits, the capacity of the table, the operation speed, the operation capacity, and the like increase, so that the effective digits of the input signal are limited to some extent.

【0025】図4は本発明による振幅補正信号作成の効
果を示す。同図において、S1は入力信号、S2は補正
出力信号、S3は振幅変動がなかった時の入力信号の目
標ベクトル長を半径とする円弧を表す。同図から振幅補
正後の信号は目標ベクトル長に対して接近しており、誤
差が少なく高い収束性を示していることがわかる。
FIG. 4 shows the effect of generating an amplitude correction signal according to the present invention. In the figure, S1 represents an input signal, S2 represents a corrected output signal, and S3 represents an arc having a radius corresponding to a target vector length of the input signal when there is no amplitude fluctuation. From the figure, it can be seen that the signal after the amplitude correction is close to the target vector length, and has a small error and high convergence.

【0026】本発明は、OFDM受信装置だけでなく、
他の無線ディジタル通信システムにおける受信装置に適
用できる。
The present invention is not limited to an OFDM receiver,
The present invention can be applied to a receiving device in another wireless digital communication system.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、入
力ディジタル信号の振幅補正を莫大な有効桁と演算量を
要することなく簡易に実行でき、しかも、補正後の振幅
値は高い収束性を示し、受信装置全般における回路規模
もしくは演算時間を大幅に短縮可能で、特に、OFDM
受信装置で、数段の位相誤差補正部を使用する場合に効
果大である。
As described above, according to the present invention, the amplitude correction of an input digital signal can be easily performed without requiring a huge number of significant digits and a large amount of calculation, and the corrected amplitude value has high convergence. Shows that the circuit scale or the operation time of the entire receiver can be greatly reduced.
This is particularly effective when the receiving apparatus uses several stages of phase error correction units.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の振幅補正装置をOFDM受信装置の1
次位相補正部内に組み込んだ一実施例を示すブロック図
である。
FIG. 1 shows an OFDM receiver as an amplitude correction device according to the present invention.
FIG. 7 is a block diagram showing an embodiment incorporated in a next phase correction unit.

【図2】本発明の振幅補正装置の基本的構成を示すブロ
ック図である。
FIG. 2 is a block diagram illustrating a basic configuration of an amplitude correction device according to the present invention.

【図3】振幅補正装置の演算を実行するための具体的構
成の概念図である。
FIG. 3 is a conceptual diagram of a specific configuration for executing an operation of the amplitude correction device.

【図4】本発明の振幅補正の効果を示す図である。FIG. 4 is a diagram illustrating the effect of amplitude correction of the present invention.

【図5】OFDM受信装置の一例を示すブロック図であ
る。
FIG. 5 is a block diagram illustrating an example of an OFDM receiver.

【図6】OFDM信号のフォーマットを示す図である。FIG. 6 is a diagram showing a format of an OFDM signal.

【符号の説明】[Explanation of symbols]

10 振幅補正装置 11 受信電力算出部 12 振幅補正係数発生部 13 振幅補正部 11a 電力計算回路 11b センサ 12a 振幅補正係数テーブル用メモリ 13a シフトレジスタ 13b 選択部 13c 加算器 13d 制御回路 Reference Signs List 10 amplitude correction device 11 reception power calculation unit 12 amplitude correction coefficient generation unit 13 amplitude correction unit 11a power calculation circuit 11b sensor 12a amplitude correction coefficient table memory 13a shift register 13b selection unit 13c adder 13d control circuit

フロントページの続き (72)発明者 盧 鋒 東京都渋谷区神宮前6−27−8 株式会社 京セラディーディーアイ未来通信研究所内 (72)発明者 須永 徹 東京都渋谷区神宮前6−27−8 株式会社 京セラディーディーアイ未来通信研究所内 (72)発明者 高田 宏正 東京都渋谷区神宮前6−27−8 株式会社 京セラディーディーアイ未来通信研究所内 (72)発明者 前山 利幸 東京都渋谷区神宮前6−27−8 株式会社 京セラディーディーアイ未来通信研究所内 Fターム(参考) 5K022 DD01 DD13 DD19 DD33 DD34Continued on the front page (72) Inventor Roh Feng 6-27-8 Jingumae, Shibuya-ku, Tokyo Inside Kyocera DDI Future Communication Research Laboratories (72) Inventor Toru Sunaga 6-27-8 Jingumae, Shibuya-ku, Tokyo In the Kyocera DDI Future Communication Research Laboratory (72) Hiromasa Takada 6-27-8 Jingumae, Shibuya-ku, Tokyo Inside the Kyocera DDI Future Communication Research Laboratories (72) Toshiyuki Maeyama 6-27 Jingumae, Shibuya-ku, Tokyo -8 F-term in Kyocera DDI Future Communication Research Laboratories (reference) 5K022 DD01 DD13 DD19 DD33 DD34

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無線ディジタル通信システムにおける受
信装置において、 受信信号の電力レベルを算出し受信電力レベル信号を出
力する受信電力算出手段と、 上記受信電力レベル信号に応答して受信信号の電力レベ
ルに対応する所定の振幅補正係数を出力する振幅補正係
数発生手段と、 上記振幅補正係数を受信信号に乗算して受信信号の振幅
を補正する振幅補正手段と、を備えたことを特徴とする
振幅補正装置。
1. A receiving apparatus in a wireless digital communication system, comprising: a receiving power calculating means for calculating a power level of a received signal and outputting a received power level signal; Amplitude correction coefficient generating means for outputting a corresponding predetermined amplitude correction coefficient; and amplitude correction means for multiplying the received signal by the amplitude correction coefficient to correct the amplitude of the received signal. apparatus.
【請求項2】 前記振幅補正係数発生手段は、前記振幅
補正係数が受信信号の電力レベルに対応して予め振幅補
正用テーブルに設定されて保持していることを特徴とす
る請求項1記載の振幅補正装置。
2. The amplitude correction coefficient generating means according to claim 1, wherein said amplitude correction coefficient is set in advance in an amplitude correction table corresponding to a power level of a received signal and held. Amplitude correction device.
【請求項3】 前記振幅補正手段は、受信信号のビット
シフト手段と、上記ビットシフト手段から前記振幅補正
係数に応じたシフト量の出力信号を取り出す制御手段
と、取り出された出力信号を加算する加算手段と、から
成ることを特徴とする請求項1記載の振幅補正装置。
3. The amplitude correction means adds a received signal bit shift means, a control means for extracting an output signal of a shift amount corresponding to the amplitude correction coefficient from the bit shift means, and the extracted output signal. 2. The amplitude correction device according to claim 1, further comprising an adding unit.
【請求項4】 前記受信装置は周波数補正装置と少なく
とも1段の位相補正装置を有するOFDM受信装置であ
り、上記位相補正装置内に、前記受信電力算出手段、振
幅補正係数発生手段及び振幅補正手段から成る振幅補正
回路を備えたことを特徴とする請求項1記載の振幅補正
装置。
4. The receiving apparatus is an OFDM receiving apparatus having a frequency correcting apparatus and at least one phase correcting apparatus, wherein the received power calculating means, the amplitude correcting coefficient generating means, and the amplitude correcting means are provided in the phase correcting apparatus. The amplitude correction device according to claim 1, further comprising an amplitude correction circuit comprising:
JP2001011606A 2001-01-19 2001-01-19 Amplitude correcting device Pending JP2002217858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001011606A JP2002217858A (en) 2001-01-19 2001-01-19 Amplitude correcting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001011606A JP2002217858A (en) 2001-01-19 2001-01-19 Amplitude correcting device

Publications (1)

Publication Number Publication Date
JP2002217858A true JP2002217858A (en) 2002-08-02

Family

ID=18878722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001011606A Pending JP2002217858A (en) 2001-01-19 2001-01-19 Amplitude correcting device

Country Status (1)

Country Link
JP (1) JP2002217858A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338823A (en) * 1993-05-26 1994-12-06 Nec Corp Voice limiter and voice sending device
JPH08265291A (en) * 1995-03-20 1996-10-11 Toshiba Corp Ofdm transmission system and ofdm transmitter-receiver
JP2000324529A (en) * 1999-05-14 2000-11-24 Toshiba Corp Mobile radio terminal and base station selecting method of same mobile radio terminal
JP2000332723A (en) * 1998-11-06 2000-11-30 Matsushita Electric Ind Co Ltd Ofdm transmitter-receiver and ofdm transmission reception method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338823A (en) * 1993-05-26 1994-12-06 Nec Corp Voice limiter and voice sending device
JPH08265291A (en) * 1995-03-20 1996-10-11 Toshiba Corp Ofdm transmission system and ofdm transmitter-receiver
JP2000332723A (en) * 1998-11-06 2000-11-30 Matsushita Electric Ind Co Ltd Ofdm transmitter-receiver and ofdm transmission reception method
JP2000324529A (en) * 1999-05-14 2000-11-24 Toshiba Corp Mobile radio terminal and base station selecting method of same mobile radio terminal

Similar Documents

Publication Publication Date Title
JP3237827B2 (en) Wireless data communication terminal
JP2850942B2 (en) Demodulator
JP3058870B1 (en) AFC circuit
US8798125B2 (en) Phase tracking in communications systems
JP4326015B2 (en) Receiving apparatus and receiving method
JP2002217858A (en) Amplitude correcting device
EP1517501A1 (en) Receiver device
JP3164944B2 (en) Sync detection circuit
KR20060015306A (en) Phase tracking for received signals using adaptive interpolation
US7873100B2 (en) Reception apparatus using spread spectrum communication scheme
JP4024602B2 (en) Sample rate converter and receiver using the same
JP4637661B2 (en) Modulation signal demodulator
JP4803379B2 (en) Wireless transmission device with quadrature modulator
JP2004173183A (en) Transformation device for lagrange interpolation sampling rate
WO2005104400A1 (en) Diversity receiver and diversity reception method
JPH1056442A (en) Path diversity receiving system for spread spectrum communication and device therefor
JPH11266230A (en) Radio receiver
JP2000295194A (en) Receiver
KR20040055551A (en) Apparatus and Method for Controlling Automatic Gain in Wireless Telecommunication System
JP2005303381A (en) Radio receiving device
JP2001251271A (en) Ofdm receiver
JP2000324191A (en) Delay detector and receiver
JPH11308149A (en) Four phase correlation unit
JPH06284016A (en) Error controller
JP2006157589A (en) Method for correcting received sample clock timing and digital signal receiver

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005