JP2002216850A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JP2002216850A
JP2002216850A JP11179498A JP11179498A JP2002216850A JP 2002216850 A JP2002216850 A JP 2002216850A JP 11179498 A JP11179498 A JP 11179498A JP 11179498 A JP11179498 A JP 11179498A JP 2002216850 A JP2002216850 A JP 2002216850A
Authority
JP
Japan
Prior art keywords
pulse
electrolyte secondary
negative electrode
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11179498A
Other languages
Japanese (ja)
Inventor
Deschamp Mark
デシャンプ マーク
Hitoshi Suzuki
仁 鈴木
Tomohiro Sato
智洋 佐藤
Shoichiro Mori
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11179498A priority Critical patent/JP2002216850A/en
Priority to DE69840833T priority patent/DE69840833D1/en
Priority to AU90951/98A priority patent/AU9095198A/en
Priority to US09/508,108 priority patent/US6670078B1/en
Priority to EP98943020A priority patent/EP1030399B1/en
Priority to CNB988112167A priority patent/CN1134083C/en
Priority to PCT/JP1998/004181 priority patent/WO1999016144A1/en
Publication of JP2002216850A publication Critical patent/JP2002216850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell with excellent cycle property, which can obtain high charging and discharging efficiency and high discharging capacity. SOLUTION: For the nonaqueous electrolyte secondary cell comprising a positive electrode and a negative electrode enabled to absorb and release lithium, a nonaqueous electrolyte composed of a solute and an organic solvent, a separator, and an outer casing, the organic solvent is made to contain ethylene sulfide, and a pulse current is added at the initial charging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に関する。詳しくは、エチレンサルファイトを含む
電解液を用いるリチウム二次電池の改良に関する。本発
明の電池は、初期に高い充放電効率と高い放電容量が得
られると共に、サイクル安定性が改良されているので、
非水系電解液二次電池の高性能化を図ることができる。
[0001] The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to an improvement of a lithium secondary battery using an electrolyte containing ethylene sulfite. Since the battery of the present invention can obtain high charge / discharge efficiency and high discharge capacity at the initial stage and has improved cycle stability,
The performance of the nonaqueous electrolyte secondary battery can be improved.

【0002】[0002]

【従来の技術】近年の電気製品の軽量化、小型化に伴な
い、高いエネルギー密度を持つリチウム二次電池が注目
され様々な研究が行われている。また、リチウム二次電
池の適用分野の拡大に伴い電池特性の改善も要望されて
いる。このようなリチウム二次電池の電解液の溶媒とし
て、エチレンサルファイトを含む電解液系が提案されて
いる(特開平6−302336号公報)。エチレンサル
ファイトは高誘電率、低融点を有する溶媒であり、低温
下においても高い電気伝導率を示すことから電解液の溶
媒として優れた性質を持つものである。
2. Description of the Related Art With the recent reduction in the weight and size of electric products, lithium secondary batteries having a high energy density have attracted attention and various studies have been conducted. In addition, with the expansion of the application field of the lithium secondary battery, improvement in battery characteristics is also demanded. As a solvent for the electrolyte of such a lithium secondary battery, an electrolyte containing ethylene sulfite has been proposed (JP-A-6-302336). Ethylene sulphite is a solvent having a high dielectric constant and a low melting point, and exhibits excellent electric conductivity even at a low temperature, and therefore has excellent properties as a solvent for an electrolytic solution.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、エチレ
ンサルファイトを含む電解液を使用した二次電池は、初
期の充放電効率が低い、可逆容量が低い、サイクル安定
性に劣るという欠点があった。本発明は、非水系電解液
二次電池の電解液の溶媒としてエチレンサルファイトを
含み、サイクル特性の優れた高エネルギー密度の非水系
電解液二次電池を提供するものである。
However, a secondary battery using an electrolyte containing ethylene sulfite has the drawbacks of low initial charge / discharge efficiency, low reversible capacity, and poor cycle stability. The present invention provides a non-aqueous electrolyte secondary battery having high energy density and excellent cycle characteristics, which contains ethylene sulfite as a solvent for the electrolyte of the non-aqueous electrolyte secondary battery.

【0004】[0004]

【課題を解決するための手段】本発明者らは、かかる事
情に鑑み鋭意検討した結果、非水系リチウム二次電池に
おいて、エチレンサルファイトを含む有機溶媒を用い、
初回充電時に電流パルスを加えることにより、初期放電
容量が増加し、且つサイクル安定性が改良されることを
見い出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in view of the above circumstances, and as a result, have found that in a nonaqueous lithium secondary battery, an organic solvent containing ethylene sulfite is used.
It has been found that by applying a current pulse at the time of the first charge, the initial discharge capacity is increased and the cycle stability is improved, and the present invention has been completed.

【0005】即ち、本発明の要旨は、リチウムを吸蔵・
放出することが可能な負極及び正極と、溶質及び有機系
溶媒とからなる非水系電解液と、セパレーター及び外缶
とを備えた非水系電解液電池において、前記有機系溶媒
としてエチレンサルファイトを包み、初回充電時に電流
パルスを加えることを特徴とする非水系電解液二次電
池、にある。
That is, the gist of the present invention is to store and store lithium.
A non-aqueous electrolyte solution comprising a negative electrode and a positive electrode capable of being released, a solute and an organic solvent, and a separator and an outer can, in which ethylene sulfite is wrapped as the organic solvent. A non-aqueous electrolyte secondary battery characterized by applying a current pulse at the time of initial charging.

【0006】[0006]

【作用】初回充電時に電流パルスを加えることにより、
負極電極上にエチレンサルファイトによる抵抗の小さ
い、安定な保護被膜が選択的に生成し、電解液の分解を
最小限に抑え、負極電極へのスムーズなリチウムの吸蔵
・放出が可能となると考えられる。
[Function] By applying a current pulse during the first charge,
It is thought that a stable protective film with low resistance by ethylene sulfite is selectively formed on the negative electrode, minimizing decomposition of the electrolyte, and enabling smooth absorption and desorption of lithium to the negative electrode. .

【0007】[0007]

【発明の実施の形態】本発明は、非水系電解液を用いる
リチウム二次電池において、エチレンサルファイトを含
む有機系溶媒を用い、且つ初回充電時に電流パルスを加
えることを特徴とするものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is characterized in that a lithium secondary battery using a non-aqueous electrolyte uses an organic solvent containing ethylene sulfite and applies a current pulse at the time of initial charging. .

【0008】電流パルスとしては、その波形は特に限定
されるものではなく、例えば矩形波、三角波、正弦波等
が使用できる。また、直流バイアス電流に電流パルスを
重畳した波形を使用してもよい。それらの中でも、矩形
波が電流制御の容易さという点から好ましい。矩形波電
流を使用したパルス充電時におけるパルス電流は、一般
に負極重量当り0.01〜100A/gであり、好まし
くは0.1〜10A/gの範囲で用いられる。パルス電
流が0.01A/g未満若しくはパルス電流が100A
/gを越えると、電流パルスを加える効果が小さく望ま
しくない。矩形波電流を使用したパルス充電時における
パルス幅は、一般に0.01〜300秒であり、好まし
くは0.1〜60秒の範囲で用いられる。パルス幅が
0.01秒より小さいと、電流パルス印加のための制御
が困難となり望ましくない。パルス幅が300秒を越え
ると、パルス電流を加えない場合に近くなり効果が小さ
く望ましくない。矩形波電流を使用したパルス充電時に
おけるパルス間隔は、一般に0.1〜300秒、好まし
くは1〜100秒の範囲で用いられる。矩形波電流を使
用したパルス充電時におけるパルス回数は一般に10〜
1000回、好ましくは50〜500回での範囲で用い
られる。これらのパルス電流は初回充電の際の初期に印
加することが必要であるが、充電容量の5〜80%、好
ましくは10〜50%程度パルス充電した後は定電流で
充電することもでき、好ましい方法である。
The waveform of the current pulse is not particularly limited. For example, a rectangular wave, a triangular wave, a sine wave, or the like can be used. Further, a waveform in which a current pulse is superimposed on a DC bias current may be used. Among them, a rectangular wave is preferable from the viewpoint of easy current control. The pulse current at the time of pulse charging using the rectangular wave current is generally 0.01 to 100 A / g, preferably 0.1 to 10 A / g, based on the weight of the negative electrode. Pulse current is less than 0.01 A / g or pulse current is 100 A
If it exceeds / g, the effect of applying the current pulse is small, which is not desirable. The pulse width at the time of pulse charging using a rectangular wave current is generally 0.01 to 300 seconds, and is preferably used in a range of 0.1 to 60 seconds. If the pulse width is smaller than 0.01 second, control for applying a current pulse becomes difficult, which is not desirable. If the pulse width exceeds 300 seconds, the effect is close to the case where no pulse current is applied, and the effect is small, which is not desirable. The pulse interval at the time of pulse charging using a rectangular wave current is generally in the range of 0.1 to 300 seconds, preferably 1 to 100 seconds. In general, the number of pulses during pulse charging using a square wave current is 10 to 10.
It is used in a range of 1,000 times, preferably 50 to 500 times. These pulse currents need to be applied at the initial stage of the first charge, but can be charged with a constant current after pulse charge of 5 to 80%, preferably about 10 to 50% of the charge capacity. This is the preferred method.

【0009】非水系電解液の溶媒中のエチレンサルファ
イトの割合は、一般に0.1〜60容量%であり、好ま
しくは1〜50容量%の範囲で用いられる。上記溶媒に
は前記エチレンサルファイト以外の第二の溶媒成分と
て、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート等の環状カーボネート類、ジメチ
ルカーボネート、ジエチルカーボネート、エチルメチル
カーボネート等の鎖状カーボネート類、γ−ブチロラク
トン、γ−バレロラクトン等の環状エステル類、酢酸メ
チル、プロピオン酸メチル等の鎖状エステル類、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン、テトラ
ヒドロピラン等の環状エーテル類、ジメトキシエタン、
ジメトキシメタン等の鎖状エーテル類、スルフォラン、
ジエチルスルホン等の含硫黄有機溶媒等を混合して使用
可能である。これらの溶媒は二種類以上混合して用いて
も良い。溶質としては、LiClO4 、LiPF6 、L
iBF4 等の無機リチウム塩又はLiCF3 SO3 、L
iN(CF3 SO2 2 、LiN(CF3 CF2
22 、LiN(CF3 SO2 )(C4 9
2 )、LiC(CF3 SO2 3等の含フッ素有機リ
チウム塩を用いることができる。これらの溶質は二種類
以上混合して用いても良い。電解液中の溶質のリチウム
塩のモル濃度は、0.5〜2.0モル/リットルである
ことが望ましい。0.5モル/リットル未満若しくは
2.0モル/リットルを越えると、電解液の電気伝導率
が低く、電池の性能が低下するため好ましくない。
The proportion of ethylene sulfite in the solvent of the non-aqueous electrolyte is generally 0.1 to 60% by volume, preferably 1 to 50% by volume. The solvent is a second solvent component other than the ethylene sulfite, ethylene carbonate, propylene carbonate,
Cyclic carbonates such as butylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, cyclic esters such as γ-butyrolactone and γ-valerolactone, and chain esters such as methyl acetate and methyl propionate , Tetrahydrofuran, 2-methyltetrahydrofuran, cyclic ethers such as tetrahydropyran, dimethoxyethane,
Chain ethers such as dimethoxymethane, sulfolane,
Sulfur-containing organic solvents such as diethyl sulfone can be mixed and used. These solvents may be used as a mixture of two or more kinds. As the solute, LiClO 4 , LiPF 6 , L
Inorganic lithium salt such as iBF 4 or LiCF 3 SO 3 , L
iN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 S
O 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 S
Fluorine-containing organic lithium salts such as O 2 ) and LiC (CF 3 SO 2 ) 3 can be used. These solutes may be used as a mixture of two or more kinds. The molar concentration of the solute lithium salt in the electrolyte is desirably 0.5 to 2.0 mol / liter. If the amount is less than 0.5 mol / L or exceeds 2.0 mol / L, the electric conductivity of the electrolytic solution is low, and the performance of the battery is undesirably reduced.

【0010】電池を構成する負極活物質材料としては、
X線回折における格子面(002面)のd値が0.33
5〜0.34nmの人造黒鉛及び精製天然黒鉛或いはこ
れらの黒鉛にピッチを含む種々の表面処理を施した材料
及び難黒鉛性炭素又は低温焼成炭素等の非黒鉛系炭素材
料、酸化錫、酸化珪素等の金属酸化物材料、更にはリチ
ウム金属並びに種々のリチウム合金が使用可能である。
負極の形状は、必要に応じて結着剤及び導電剤と共に混
合した後、集電体に塗布したシート電極及びプレス成形
を施したペレット電極が使用可能である。負極用集電体
の材質は、銅、ニッケル、ステンレス等の金属が使用さ
れ、これらの中でも薄膜に加工しやすいという点とコス
トの点から銅箔が好ましい。電池を構成するセパレータ
としては、ポリエチレン、ポリプロピレン等のポリオレ
フィンを原料とする多孔性シート又は不織布が使用可能
である。
The negative electrode active material constituting the battery includes:
The d value of the lattice plane (002 plane) in X-ray diffraction is 0.33
5 to 0.34 nm artificial graphite and purified natural graphite or materials obtained by subjecting these graphites to various surface treatments including pitch, non-graphitic carbon materials such as non-graphitizable carbon or low-temperature calcined carbon, tin oxide, silicon oxide And the like, and further, lithium metal and various lithium alloys can be used.
As the shape of the negative electrode, a sheet electrode which is mixed with a binder and a conductive agent as necessary and then applied to a current collector and a pellet electrode which has been subjected to press molding can be used. As the material of the current collector for the negative electrode, metals such as copper, nickel, and stainless steel are used, and among these, copper foil is preferable from the viewpoint of easy processing into a thin film and cost. As the separator constituting the battery, a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene can be used.

【0011】電池を構成する正極活物質材料としては、
リチウムコバルト酸化物、リチウムニッケル酸化物、リ
チウムマンガン酸化物等のリチウム遷移金属複合酸化物
材料等のリチウムを吸蔵・放出可能な材料が使用可能で
ある。正極の形状は、必要に応じて結着剤及び導電剤と
共に混合した後、集電体に塗布したシート電極及びプレ
ス成形を施したペレット電極が使用可能である。正極用
集電体の材質は、アルミニウム、チタン、タンタル等の
弁金属又はその合金が用いられる。これらの弁金属の中
で、特にアルミニウム又はその合金が軽量であるためエ
ネルギー密度の点で望ましい。弁金属以外の他の金属材
料、例えばステンレスを用いた場合には、エチレンサル
ファイトの酸化分解反応が進行し、サイクル特性が低下
するため好ましくない。
The positive electrode active material constituting the battery includes:
Materials that can occlude and release lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, can be used. As the shape of the positive electrode, a sheet electrode applied to a current collector after mixing with a binder and a conductive agent, if necessary, and a pellet electrode subjected to press molding can be used. As a material of the positive electrode current collector, a valve metal such as aluminum, titanium, and tantalum or an alloy thereof is used. Among these valve metals, aluminum or its alloy is particularly preferable in terms of energy density because of its light weight. It is not preferable to use a metal material other than the valve metal, for example, stainless steel, because the oxidative decomposition reaction of ethylene sulfite proceeds and the cycle characteristics deteriorate.

【0012】電池の形状は、シート電極及びセパレータ
ーをスパイラル状にしたシリンダータイプ、ペレット電
極及びセパレーターを組み合わせたインサイドアウト構
造のシリンダータイプ、ペレット電極及びセパレーター
を積層したコインタイプ等が使用可能である。電池の外
缶材質は、ステンレスが好適に用いられるが、正極と電
気的に接続され、且つ、電解液に接する部分はエチレン
サルファイトの酸化分解抑制のため、アルミニウム等の
弁金属であることが望ましい。また、外缶材質としてア
ルミニウムやアルミニウム合金を用いてもよい。なお、
ここで言う外缶とは電池内部に収納されているリード線
や電池内部の内圧が上昇したときに作動する安全弁等も
含まれる。
As the shape of the battery, a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are laminated can be used. As the material of the outer can of the battery, stainless steel is preferably used, but a portion electrically connected to the positive electrode and in contact with the electrolytic solution may be a valve metal such as aluminum to suppress oxidative decomposition of ethylene sulfite. desirable. Further, aluminum or an aluminum alloy may be used as the outer can material. In addition,
The outer can mentioned here includes a lead wire housed inside the battery, a safety valve that operates when the internal pressure inside the battery rises, and the like.

【0013】[0013]

【実施例】以下に、実施例及び比較例を挙げて、本発明
を更に具体的に説明するが、本発明は、その要旨を超え
ない限りこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples unless it exceeds the gist thereof.

【0014】(実施例1)正極活物質としてLiCoO
2 (85重量部)にカーボンブラック(6重量部)、ポ
リフッ化ビニリデン(9重量部)を加え混合し、N−メ
チル−2−ピロリドンで分散し、スラリー状としたもの
を正極集電体である厚さ20μmのアルミニウム箔上に
均一に塗布し、乾燥後、所定の形状に打ち抜いて正極と
した。負極活物質として人造黒鉛粉末KS−44(ティ
ムカル社製、商品名)(94重量部)にポリフッ化ビニ
リデン(6重量部)を混合し、N−メチル−2−ピロリ
ドンで分散させスラリー状としたものを負極集電体であ
る厚さ18μmの銅箔上に均一に塗布し、乾燥後、所定
の形状に打ち抜いて負極とした。電解液については、乾
燥アルゴン雰囲気下で、十分に乾燥を行った六フッ化リ
ン酸リチウム(LiPF6 )を溶質として用い、エチレ
ンサルファイト(ES)とプロピレンカーボネート(P
C)とを容量比5:95の組成で混合した溶液にLiP
6 を1モル/リットルの割合で溶解して調製した。
(Example 1) LiCoO as a positive electrode active material
2 (85 parts by weight), carbon black (6 parts by weight) and polyvinylidene fluoride (9 parts by weight) were added and mixed, and dispersed with N-methyl-2-pyrrolidone to form a slurry. A 20 μm-thick aluminum foil was uniformly coated, dried, and punched into a predetermined shape to obtain a positive electrode. Polyvinylidene fluoride (6 parts by weight) was mixed with artificial graphite powder KS-44 (manufactured by Timcal Co., Ltd., trade name) (94 parts by weight) as a negative electrode active material and dispersed in N-methyl-2-pyrrolidone to form a slurry. The resultant was uniformly coated on a copper foil having a thickness of 18 μm as a negative electrode current collector, dried, and punched into a predetermined shape to obtain a negative electrode. As for the electrolytic solution, fully dried lithium hexafluorophosphate (LiPF 6 ) was used as a solute in a dry argon atmosphere, and ethylene sulfite (ES) and propylene carbonate (P) were used.
C) and a solution having a composition ratio of 5:95 by volume.
The F 6 was prepared by dissolving at a rate of 1 mole / liter.

【0015】これらの正極、負極、電解液を用いて、図
1に示すようなコイン型非水系電解液電池を、乾燥アル
ゴン雰囲気下で作成した。以下、図1に基づき説明する
と、正極1と負極2とを、それぞれステンレス製の正極
缶3と封口板4に収容し、各電解液を含浸させたポリプ
ロピレンの微孔性フィルムからなるセパレーター5を介
して積層するが、このとき正極側の接液部分の材質を弁
金属とするために、予め正極缶3の内側をアルミ箔6で
覆って使用した。続いて、正極缶3と封口板4とをガス
ケット7を介してかしめ密封して、コイン型電池を作成
した。この電池に対し、初回充電時に図2に示すように
矩形波形を有する電流パルスを加えた。加えた電流パル
スは、パルス電流を負極活物質重量当り0.1A/g、
パルス幅を60秒、パルス間隔を300秒、パルス回数
を60回とした。この電池を25℃において、負極活物
質重量当り0.1A/gの定電流で充電終止電圧4.2
V、放電終止電圧2.5Vで100サイクルまで充放電
試験を行った。
Using these positive electrode, negative electrode, and electrolyte, a coin-type nonaqueous electrolyte battery as shown in FIG. 1 was prepared in a dry argon atmosphere. In the following, referring to FIG. 1, the positive electrode 1 and the negative electrode 2 are accommodated in a stainless steel positive electrode can 3 and a sealing plate 4, respectively, and a separator 5 made of a polypropylene microporous film impregnated with each electrolytic solution is formed. At this time, the inside of the positive electrode can 3 was used by previously covering the inside of the positive electrode can 3 with an aluminum foil 6 in order to use a valve metal as a material of the liquid contact portion on the positive electrode side. Subsequently, the positive electrode can 3 and the sealing plate 4 were caulked and sealed via the gasket 7 to complete a coin-type battery. A current pulse having a rectangular waveform was applied to the battery at the time of the first charge as shown in FIG. The applied current pulse has a pulse current of 0.1 A / g per negative electrode active material weight,
The pulse width was 60 seconds, the pulse interval was 300 seconds, and the number of pulses was 60 times. This battery was charged at a constant current of 0.1 A / g per weight of the negative electrode active material at 25 ° C. to a final charge voltage of 4.2.
A charge / discharge test was performed up to 100 cycles at V and a discharge end voltage of 2.5 V.

【0016】(比較例1)実施例1と同様の正極、負
極、電解液を用いてコイン型電池を作製し、初回充電時
に電流パルスを加えず、負極活物質重量当り0.1A/
gの定電流で充電終止電圧4.2V、放電終止電圧2.
5Vで100サイクルまで充放電試験を行った。
Comparative Example 1 A coin-type battery was manufactured using the same positive electrode, negative electrode, and electrolyte as in Example 1, and a current pulse was not applied at the time of the first charge.
g at a constant current of 4.2 V and a discharge end voltage of 4.2 V.
The charge / discharge test was performed up to 100 cycles at 5V.

【0017】(比較例2)実施例1と同様の正極、負
極、電解液を用いてコイン型電池を作製し、初回充電時
に電流パルスを加えず、負極活物質重量当り0.4A/
gの定電流充電を行った。以降、負極活物質重量当り
0.1A/gの定電流で充電終止電圧4.2V、放電終
止電圧2.5Vで100サイクルまで充放電試験を行っ
た。
Comparative Example 2 A coin-type battery was manufactured using the same positive electrode, negative electrode, and electrolyte as in Example 1, and a current pulse was not applied at the time of initial charging.
g of constant current charging. Thereafter, a charge / discharge test was performed at a constant current of 0.1 A / g per negative electrode active material weight at a charge end voltage of 4.2 V and at a discharge end voltage of 2.5 V up to 100 cycles.

【0018】(実施例2)エチレンサルファイト(E
S)とプロピレンカーボネート(PC)とを容量比1
0:90の組成で混合した溶液にLiPF6 を1モル/
リットルの割合で溶解した電解液を用い、実施例1と同
様の正極、負極を用いてコイン型電池を作成した。この
電池に対し、初回充電時に矩形波形を有する電流パルス
を加えた。加えた電流パルスは、パルス電流を負極活物
質重量当り0.4A/g、パルス幅を5秒、パルス間隔
を25秒、パルス回数を120回とした。この電池を2
5℃において、負極活物質重量当り0.1A/gの定電
流で充電終止電圧4.2V、放電終止電圧2.5Vで1
00サイクルまで充放電試験を行った。
Example 2 Ethylene sulfite (E
S) and propylene carbonate (PC) in a volume ratio of 1
LiPF 6 was added to the solution mixed at a composition of 0:90 at 1 mol / mol.
A coin-type battery was prepared using the same positive electrode and negative electrode as in Example 1 using an electrolytic solution dissolved at a liter ratio. A current pulse having a rectangular waveform was applied to the battery at the time of the first charge. The applied current pulse had a pulse current of 0.4 A / g per negative electrode active material weight, a pulse width of 5 seconds, a pulse interval of 25 seconds, and a pulse count of 120 times. Replace this battery with 2
At 5 ° C., at a constant current of 0.1 A / g per weight of the negative electrode active material, a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V, 1
A charge / discharge test was performed up to 00 cycles.

【0019】(実施例3)実施例2と同様の正極、負
極、電解液を用いてコイン型電池を作製し、初回充電時
に加えた矩形波形を有する電流パルスを、パルス電流を
負極活物質重量当り1A/g、パルス幅を1秒、パルス
間隔を10秒、パルス回数を70回とした。この電池を
25℃において、負極活物質重量当り0.1A/gの定
電流で充電終止電圧4.2V、放電終止電圧2.5Vで
100サイクルまで充放電試験を行った。
Example 3 A coin-type battery was manufactured using the same positive electrode, negative electrode, and electrolyte as in Example 2, and a current pulse having a rectangular waveform applied at the time of the first charge was applied. The pulse width was 1 A / g, the pulse width was 1 second, the pulse interval was 10 seconds, and the number of pulses was 70 times. This battery was subjected to a charge / discharge test at 25 ° C. at a constant current of 0.1 A / g per weight of the negative electrode active material, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V up to 100 cycles.

【0020】(実施例4)実施例2と同様の正極、負
極、電解液を用いてコイン型電池を作製し、初回充電時
に加えた矩形波形を有する電流パルスを、パルス電流を
負極活物質重量当り1A/g、パルス幅を1秒、パルス
間隔を20秒、パルス回数を250回とした。この電池
を25℃において、負極活物質重量当り0.1A/gの
定電流で充電終止電圧4.2V、放電終止電圧2.5V
で100サイクルまで充放電試験を行った。
Example 4 A coin-type battery was prepared using the same positive electrode, negative electrode, and electrolyte as in Example 2, and a current pulse having a rectangular waveform applied at the time of the first charge was applied. 1 A / g, pulse width was 1 second, pulse interval was 20 seconds, and the number of pulses was 250 times. The battery was charged at a constant current of 0.1 A / g per negative electrode active material weight at 25 ° C. at a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V.
And a charge / discharge test was performed up to 100 cycles.

【0021】(実施例5)実施例2と同様の正極、負
極、電解液を用いてコイン型電池を作製し、初回充電時
に加えた矩形波形を有する電流パルスを、パルス電流を
負極活物質重量当り2A/g、パルス幅を0.1秒、パ
ルス間隔を20秒、パルス回数を120回とした。この
電池を25℃において、負極活物質重量当り0.1A/
gの定電流で充電終止電圧4.2V、放電終止電圧2.
5Vで100サイクルまで充放電試験を行った。
Example 5 A coin-type battery was manufactured using the same positive electrode, negative electrode, and electrolyte as in Example 2, and a current pulse having a rectangular waveform applied at the time of the first charge was applied. 2 A / g, a pulse width of 0.1 second, a pulse interval of 20 seconds, and a pulse count of 120 times. At 25 ° C., the battery was charged at 0.1 A /
g at a constant current of 4.2 V and a discharge end voltage of 4.2 V.
The charge / discharge test was performed up to 100 cycles at 5V.

【0022】(実施例6)エチレンサルファイト(E
S)とプロピレンカーボネート(PC)とを容量比1
0:90の組成で混合した溶液にLiN(CF3 CF2
SO2 2 を1モル/リットルの割合で溶解した電解液
を用い、実施例1と同様の正極、負極を用いてコイン型
電池を作成した。この電池に対し、初回充電時に定電流
パルスを加えた。加えた矩形波形を有する電流パルス
は、パルス電流を負極活物質重量当り0.4A/g、パ
ルス幅を5秒、パルス間隔を25秒、パルス回数を12
0回とした。この電池を25℃において、負極活物質重
量当り0.1A/gの定電流で充電終止電圧4.2V、
放電終止電圧2.5Vで100サイクルまで充放電試験
を行った。これらの実施例1、2、3、4、5及び6並
びに比較例1及び2の電池における5サイクル目の負極
活物質重量当りの放電容量と5サイクル目の放電容量に
対する100サイクル目の放電容量の保持率を表1に示
す。実施例1、2、3、4、5及び6並びに比較例1及
び2から明らかなように、初回充電時に電流パルスを加
えると、初期容量の増加及びサイクル試験における容量
保持率が著しく改善されている。実施例1及び比較例1
の電池における20サイクルまでの各サイクルの充放電
効率を図3に示す。図3から明らかなように、初回充電
時に電流パルスを加えた電池の充放電効率が電流パルス
を加えない電池に比べて著しく改善されている。
Example 6 Ethylene Sulfite (E
S) and propylene carbonate (PC) in a volume ratio of 1
LiN (CF 3 CF 2) was added to the solution mixed with the composition of 0:90.
Using an electrolytic solution in which SO 2 ) 2 was dissolved at a ratio of 1 mol / liter, a coin-type battery was prepared using the same positive electrode and negative electrode as in Example 1. A constant current pulse was applied to this battery during the first charge. The current pulse having the added rectangular waveform has a pulse current of 0.4 A / g per negative electrode active material weight, a pulse width of 5 seconds, a pulse interval of 25 seconds, and a pulse number of 12
It was set to 0 times. The battery was charged at a constant current of 0.1 A / g per negative electrode active material weight at 25 ° C. with a charge end voltage of 4.2 V,
A charge / discharge test was performed up to 100 cycles at a discharge end voltage of 2.5 V. In the batteries of Examples 1, 2, 3, 4, 5 and 6, and Comparative Examples 1 and 2, the discharge capacity per 5% cycle negative electrode active material weight and the discharge capacity at the 100th cycle relative to the discharge capacity at the 5th cycle Is shown in Table 1. As is clear from Examples 1, 2, 3, 4, 5, and 6 and Comparative Examples 1 and 2, when a current pulse was applied during the initial charging, the initial capacity was increased and the capacity retention in the cycle test was significantly improved. I have. Example 1 and Comparative Example 1
FIG. 3 shows the charge / discharge efficiency of each cycle up to 20 cycles in the battery of FIG. As is clear from FIG. 3, the charging / discharging efficiency of the battery to which the current pulse was applied at the time of the initial charge is remarkably improved as compared with the battery to which the current pulse was not applied.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】非水系電解液二次電池の電解液の有機系
溶媒としてエチレンサルファイトを含有し、初回充電
時、電流パルス充電を行うと、初期に高い充放電効率と
高い放電容量が得られると共に、サイクル特性が優れた
電池を作成することができ、非水系電解液二次電池の高
性能化に寄与することができる。
According to the present invention, when a non-aqueous electrolyte secondary battery contains ethylene sulphite as an organic solvent of the electrolyte and performs current pulse charging at the time of initial charging, a high initial charge / discharge efficiency and a high discharge capacity can be obtained. In addition, a battery having excellent cycle characteristics can be produced, which can contribute to the performance enhancement of a non-aqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例及び比較例の各コイン型電池の
構造を示した断面図である。
FIG. 1 is a cross-sectional view showing the structure of each coin-type battery of an example of the present invention and a comparative example.

【図2】本発明の電流パルス充電方法を示した図であ
る。
FIG. 2 is a diagram showing a current pulse charging method of the present invention.

【図3】本発明の実施例6及び比較例1の各コイン型電
池の40サイクルまでの充放電効率を示した図である。
FIG. 3 is a diagram showing the charge / discharge efficiency of each coin-type battery of Example 6 of the present invention and Comparative Example 1 up to 40 cycles.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 正極缶 4 封口板 5 セパレーター 6 アルミ箔 7 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Positive electrode can 4 Sealing plate 5 Separator 6 Aluminum foil 7 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 智洋 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 森 彰一郎 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK03 AL02 AL06 AL07 AL12 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ04 CJ16 DJ02 DJ04 DJ07 EJ01 HJ00 HJ07 HJ17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Tomohiro Sato, Investigator, Tsukuba Research Laboratories, Mitsubishi Chemical Co., Ltd. No. 3-1 Mitsubishi Chemical Corporation Tsukuba Research Laboratory F term (reference) 5H029 AJ02 AJ03 AJ05 AK03 AL02 AL06 AL07 AL12 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ04 CJ16 DJ02 DJ04 DJ07 EJ01 HJ00 HJ07 HJ17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出することが可能な
負極及び正極と、溶質及び有機系溶媒とからなる非水系
電解液と、セパレーター及び外缶とを備えた非水系電解
液電池において、前記有機系溶媒としてエチレンサルフ
ァイトを含み、初回充電時に電流パルスを加えることを
特徴とする非水系電解液二次電池。
1. A non-aqueous electrolyte battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, a non-aqueous electrolytic solution comprising a solute and an organic solvent, a separator and an outer can. A non-aqueous electrolyte secondary battery comprising ethylene sulfite as an organic solvent and applying a current pulse at the time of initial charging.
【請求項2】 前記有機溶媒中のエチレンサルファイト
の含有量が、0.05〜60容量%であることを特徴と
する請求項1に記載の非水系電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the content of ethylene sulfite in the organic solvent is 0.05 to 60% by volume.
【請求項3】 前記電流パルスとして、定電流値が負極
活物質重量当り0.01〜100A/g、パルス幅が
0.01〜300秒、パルス間隔が0.1〜300秒且
つパルス印加回数が10〜1000回である矩形波を使
用することを特徴とする請求項1に記載の非水系電解液
二次電池。
3. The current pulse has a constant current value of 0.01 to 100 A / g per negative electrode active material weight, a pulse width of 0.01 to 300 seconds, a pulse interval of 0.1 to 300 seconds, and the number of times of pulse application. The non-aqueous electrolyte secondary battery according to claim 1, wherein a rectangular wave having a value of 10 to 1000 times is used.
【請求項4】 前記正極集電体及び正極側外缶の電解液
との接液部分の材質が弁金属又はその合金であることを
特徴とする請求項1に記載の非水系電解液二次電池。
4. The non-aqueous electrolyte secondary solution according to claim 1, wherein a material of a portion of the positive electrode current collector and the cathode side outer can that is in contact with the electrolyte is a valve metal or an alloy thereof. battery.
【請求項5】 前記弁金属又はその合金が、アルミニウ
ム又はその合金であることを特徴とする請求項4に記載
の非水系電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 4, wherein the valve metal or its alloy is aluminum or its alloy.
JP11179498A 1997-09-19 1998-04-22 Nonaqueous electrolyte secondary cell Pending JP2002216850A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11179498A JP2002216850A (en) 1998-04-22 1998-04-22 Nonaqueous electrolyte secondary cell
DE69840833T DE69840833D1 (en) 1997-09-19 1998-09-17 NON-AQUEOUS ELECTROLYTIC CELL
AU90951/98A AU9095198A (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell
US09/508,108 US6670078B1 (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell with a solvent including a S-O bond
EP98943020A EP1030399B1 (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell
CNB988112167A CN1134083C (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell
PCT/JP1998/004181 WO1999016144A1 (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11179498A JP2002216850A (en) 1998-04-22 1998-04-22 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JP2002216850A true JP2002216850A (en) 2002-08-02

Family

ID=14570330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11179498A Pending JP2002216850A (en) 1997-09-19 1998-04-22 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JP2002216850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021191112A (en) * 2020-05-29 2021-12-13 三菱電機株式会社 Priority calculation device and priority calculation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021191112A (en) * 2020-05-29 2021-12-13 三菱電機株式会社 Priority calculation device and priority calculation program
JP7418286B2 (en) 2020-05-29 2024-01-19 三菱電機株式会社 Priority calculation device and priority calculation program

Similar Documents

Publication Publication Date Title
JP3439085B2 (en) Non-aqueous electrolyte secondary battery
JP4948025B2 (en) Non-aqueous secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP4626020B2 (en) Non-aqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP2003203674A (en) Nonaqueous electrolyte secondary cell
JP2001256996A (en) Organic electrolytic solution and lithium secondary battery adopting it
JP2006202529A (en) Nonaqueous electrolyte secondary battery and its charging method
JP3560119B2 (en) Non-aqueous electrolyte secondary battery
JP3691987B2 (en) Lithium secondary battery
JP2003007336A (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JP2002260735A (en) Nonaqueous electrolyte solution secondary battery
JP2003297354A (en) Lithium secondary battery
JPH1173990A (en) Nonaqueous electrolyte solution secondary battery
JP4568920B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP2019110087A (en) Positive electrode for lithium ion secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP4085450B2 (en) Non-aqueous electrolyte secondary battery
JP2002216850A (en) Nonaqueous electrolyte secondary cell
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP2000188126A (en) Nonaqueous electrolyte secondary battery
JP2000215912A (en) Nonaqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A02 Decision of refusal

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A02