JP2002260735A - Nonaqueous electrolyte solution secondary battery - Google Patents

Nonaqueous electrolyte solution secondary battery

Info

Publication number
JP2002260735A
JP2002260735A JP2001075247A JP2001075247A JP2002260735A JP 2002260735 A JP2002260735 A JP 2002260735A JP 2001075247 A JP2001075247 A JP 2001075247A JP 2001075247 A JP2001075247 A JP 2001075247A JP 2002260735 A JP2002260735 A JP 2002260735A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
negative electrode
aqueous electrolyte
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001075247A
Other languages
Japanese (ja)
Other versions
JP2002260735A5 (en
JP4910239B2 (en
Inventor
Noriko Shima
紀子 島
Hirofumi Suzuki
裕文 鈴木
Kunihisa Shima
邦久 島
Hitoshi Suzuki
仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001075247A priority Critical patent/JP4910239B2/en
Publication of JP2002260735A publication Critical patent/JP2002260735A/en
Publication of JP2002260735A5 publication Critical patent/JP2002260735A5/ja
Application granted granted Critical
Publication of JP4910239B2 publication Critical patent/JP4910239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution secondary with reduced HF in the electrolyte solution which can be in a state where an HP portion is reduced even if water gets mixed from an electrode or the like at battery assembly. SOLUTION: With the nonaqueous electrolyte solution secondary battery provided with an anode which can at least absorb and discharge lithium, a cathode, a solute, and an organic solvent, ester phosphite expressed in formula (I) below is characteristically added by 0.01 to 0.9 wt.% against total electrolyte solution in the organic solvent. (In the formula, R<1> , R<2> , and R<3> represent, each independently, a methyl group or an ethyl group).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に関する。詳しくは、特定の亜リン酸エステルが少
量添加されてなる電解液を用いる非水系電解液二次電池
に関する。本発明によれば、電解液中の酸分が低いた
め、長期安定性、サイクル特性に優れた高エネルギー密
度の非水系電解液二次電池が得られる。
[0001] The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery using an electrolyte to which a small amount of a specific phosphite is added. ADVANTAGE OF THE INVENTION According to this invention, since the acid content in electrolyte solution is low, the non-aqueous electrolyte secondary battery of high energy density excellent in long-term stability and cycle characteristics is obtained.

【0002】[0002]

【従来の技術】近年、電気製品の軽量化、小型化に伴
い、高いエネルギー密度を持つリチウム二次電池が注目
されている。また、リチウム二次電池の適用分野の拡大
に伴い電池特性の改善も要望されている。このようなリ
チウム二次電池の電解液の溶媒としては、例えばエチレ
ンカーボネート、プロピレンカーボネート、ジエチルカ
ーボネート、γ−ブチロラクトン等のカーボネート類又
はエステル類の高誘電率非水系有機溶媒とジエチルカー
ボネート、ジメチルカーボネート、ジメトキシエタン等
の鎖状カーボネート類又はエーテル類を適宜混合したも
のが用いられている。また、溶質としてはLiCl
4 、LiPF6 、LiBF4 等の無機リチウム塩又は
LiCF3 SO3 、LiN(CF3 SO2 2 、LiN
(CF3 CF2 SO2 2 、LiN(CF3 SO2
(C4 9 SO2 )、LiC(CF3 SO23 等の有
機リチウム塩が用いられているが、この中でも特性が好
適なことからLiPF6 が最もよく使われている。しか
し一方、このLiPF6 或いはLiBF4 等の含フッ素
無機リチウムは水分と反応し、電解液中にHFが発生す
ることも知られている。HFは、電池缶の腐食を引き起
こすだけでなく、電池容量を低下させたり、サイクル特
性に悪影響を及ぼす。
2. Description of the Related Art In recent years, lithium secondary batteries having a high energy density have been attracting attention as electric appliances have become lighter and smaller. In addition, with the expansion of the application field of the lithium secondary battery, improvement in battery characteristics is also demanded. As a solvent for the electrolyte solution of such a lithium secondary battery, for example, ethylene carbonate, propylene carbonate, diethyl carbonate, a high dielectric constant non-aqueous organic solvent such as carbonates or esters such as γ-butyrolactone and diethyl carbonate, dimethyl carbonate, A mixture in which chain carbonates or ethers such as dimethoxyethane are appropriately mixed is used. The solute is LiCl
Inorganic lithium salts such as O 4 , LiPF 6 , LiBF 4, or LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN
(CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 )
Organic lithium salts such as (C 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 are used. Among them, LiPF 6 is most often used because of its favorable characteristics. However, it is also known that this fluorine-containing inorganic lithium such as LiPF 6 or LiBF 4 reacts with moisture to generate HF in the electrolyte. HF not only causes corrosion of the battery can, but also reduces battery capacity and adversely affects cycle characteristics.

【0003】上記のような問題点を改善するため、モレ
キュラーシーブで処理して水分を除去した非水溶媒を用
いた電解液(特開平10−270074号公報)や、電
解液中のHFを除去するため、水素化リチウム、リチウ
ムエトキサイド等のようなリチウム化合物を添加して処
理した電解液(特開平10−270077号公報)が提
案されている。しかしながら、特開平10−27007
4号公報の方法では、電解液中に最初から含まれている
水分は除去できるが、電池として組み立てる際に他の部
材から水分が持ち込まれ、これによってHFが発生する
ので、必ずしも満足すべき特性の電池が得られないとい
う問題がある。
In order to solve the above problems, an electrolytic solution using a non-aqueous solvent which has been treated with a molecular sieve to remove water (Japanese Patent Application Laid-Open No. Hei 10-2700074), and HF in the electrolytic solution has been removed. In order to solve this problem, there has been proposed an electrolytic solution (JP-A-10-270077) which is treated by adding a lithium compound such as lithium hydride and lithium ethoxide. However, JP-A-10-27007
According to the method disclosed in Japanese Patent Application Laid-Open No. 4 (1999) -1995, moisture contained in the electrolyte solution from the beginning can be removed, but when assembled as a battery, moisture is brought in from other members, thereby generating HF. Battery cannot be obtained.

【0004】また、特開平10−270077号公報の
方法では、用いる添加剤はいずれも溶解性が低いため、
濾過して添加剤を除いたものを電解液として用いるの
で、電池に組み立てた後に発生するHF分を除去するこ
とはできないという問題がある。また充放電効率の改良
のため、非水電解液に亜リン酸エステルを添加すること
が提案されている(特開平3−43960号、同5−1
90204号各公報)。これらの公報に記載の発明では
1〜20重量%の亜リン酸エステルが添加されている
が、多量の亜リン酸エステルの添加は電解液の電気伝導
度を低下させ、かつ好ましからざる副反応を起こす可能
性がある。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. Hei 10-270077, since all the additives used have low solubility,
There is a problem that HF generated after assembling into a battery cannot be removed because an electrolyte obtained by filtering and removing an additive is used as an electrolytic solution. In order to improve the charge / discharge efficiency, it has been proposed to add a phosphite to a non-aqueous electrolyte (Japanese Patent Application Laid-Open Nos. 3-43960 and 5-1).
No. 90204). In the inventions described in these publications, 1 to 20% by weight of a phosphite is added. However, the addition of a large amount of the phosphite lowers the electric conductivity of the electrolytic solution and causes undesirable side reactions. May cause.

【0005】[0005]

【発明が解決しようとする課題】本発明は、電解液中の
HFを低減し、且つ電池組立時に電極として用いる部材
等から水分が混入してもHF分を低減させた状態を維持
することのできる非水系電解液二次電池を提供しようと
するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce HF in an electrolytic solution and to maintain a state in which HF is reduced even when moisture is mixed in from a member used as an electrode during battery assembly. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that can be used.

【0006】[0006]

【課題を解決するための手段】本発明者らは、かかる事
情に鑑み鋭意検討した結果、電解液に亜リン酸エステル
を少量添加することにより、この目的を達成し得ること
を見出した。亜リン酸エステルは1モルが最大で3モル
のHFと反応するので、電解液中の多くても数十ppm
オーダの酸分を除去するには、少量の添加で十分であ
る。また亜リン酸エステルの添加量が少量であれば電解
液の電気伝導度の低下は抑制し得る。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above circumstances, and as a result, have found that this object can be achieved by adding a small amount of a phosphite to an electrolytic solution. Since 1 mol of phosphite reacts with 3 mol of HF at the maximum, at most several tens of ppm in the electrolytic solution.
A small amount of addition is sufficient to remove the acid content of the order. If the amount of the phosphite is small, the decrease in the electric conductivity of the electrolytic solution can be suppressed.

【0007】本発明はこのような知見に基づいて完成さ
れたもので、その要旨は、少なくともリチウムを吸蔵・
放出することが可能な負極及び正極、溶質並びに有機系
溶媒を含む非水系電解液を備えた非水系電解液二次電池
において、有機系溶媒中に下記構造式(I)で示される
亜リン酸エステルが電解液総量に対して0.01〜0.
9重量%添加されてなることを特徴とする非水系電解液
二次電池、にある。
[0007] The present invention has been completed based on such knowledge, and the gist of the present invention is that at least lithium is absorbed and stored.
In a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte solution containing a negative electrode and a cathode capable of being released, a solute and an organic solvent, a phosphorous acid represented by the following structural formula (I) is contained in an organic solvent. The amount of the ester is 0.01 to 0.
9% by weight of a non-aqueous electrolyte secondary battery.

【0008】[0008]

【化2】 (式中、R1 、R2 及びR3 は、それぞれ独立して、メ
チル基又はエチル基を表す)
Embedded image (Wherein, R 1 , R 2 and R 3 each independently represent a methyl group or an ethyl group)

【0009】[0009]

【発明の実施の形態】本発明に係る非水電解液二次電池
は、典型的にはリチウムを吸蔵・放出することが可能な
負極及び正極と、この両極を隔てるセパレーターと、負
極集電体及び正極集電体とを外缶に収容し、これに溶質
及び有機系溶媒を含み、かつ式(1)の亜リン酸エステ
ルが電解液総量に対して0.01〜0.9重量%添加さ
れている非水系電解液を注入した構造を有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to the present invention typically comprises a negative electrode and a positive electrode capable of inserting and extracting lithium, a separator separating the two electrodes, and a negative electrode current collector. And a positive electrode current collector in an outer can, containing a solute and an organic solvent, and adding a phosphite of the formula (1) in an amount of 0.01 to 0.9% by weight based on the total amount of the electrolyte. It has a structure in which a non-aqueous electrolyte solution is injected.

【0010】(非水系電解液)非水系電解液は、溶質、
有機系溶媒及び添加剤の亜リン酸エステルを含有してな
る。有機系溶媒としては、特に限定されるものではない
が、通常、非プロトン性の有機溶媒が用いられる。
(Non-Aqueous Electrolyte) The non-aqueous electrolyte is a solute,
It contains an organic solvent and an additive phosphite. The organic solvent is not particularly limited, but usually an aprotic organic solvent is used.

【0011】非プロトン性有機溶媒の具体例としては、
例えばエチレンカーボネート、プロピレンカーボネート
等の環状カーボネート類、ジメチルカーボネート、ジエ
チルカーボネート、エチルメチルカーボネート等の鎖状
カーボネート類、γ−ブチロラクトン、γ−バレロラク
トン等の環状エステル類、酢酸メチル、プロピオン酸メ
チル等の鎖状エステル類、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、テトラヒドロピラン等の環状
エーテル類、ジメトキシエタン、ジメトキシメタン等の
鎖状エーテル類、スルフォラン、ジエチルスルホン等の
含硫黄有機溶媒等を挙げることができる。これらの中、
環状カーボネート類、鎖状カーボネート類、環状エステ
ル類、鎖状エステル類が好ましい。なお、これらの溶媒
は、単独で、或いは二種以上混合して用いてもよい。本
発明においては、有機系溶媒に一般式(I)で示される
亜リン酸エステルが添加される。
Specific examples of the aprotic organic solvent include:
For example, ethylene carbonate, cyclic carbonates such as propylene carbonate, dimethyl carbonate, diethyl carbonate, chain carbonates such as ethyl methyl carbonate, γ-butyrolactone, cyclic esters such as γ-valerolactone, methyl acetate, methyl propionate and the like Examples thereof include chain esters, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, and tetrahydropyran; chain ethers such as dimethoxyethane and dimethoxymethane; and sulfur-containing organic solvents such as sulfolane and diethyl sulfone. Of these,
Preferred are cyclic carbonates, chain carbonates, cyclic esters, and chain esters. These solvents may be used alone or in combination of two or more. In the present invention, a phosphite represented by the general formula (I) is added to an organic solvent.

【0012】[0012]

【化3】 (式中、R1 、R2 及びR3 は、それぞれ独立して、メ
チル基又はエチル基を表す)
Embedded image (Wherein, R 1 , R 2 and R 3 each independently represent a methyl group or an ethyl group)

【0013】すなわち亜リン酸エステルとしては、亜リ
ン酸トリメチル、亜リン酸ジメチルエチル、亜リン酸メ
チルジエチル、亜リン酸トリエチルのいずれをも用いる
ことができ、またこれらは単独でも、いくつかを併用す
ることもできる。亜リン酸エステルの添加量は、電解液
総量に対して0.01〜0.9重量%、好ましくは0.
03〜0.8重量%、より好ましくは0.05〜0.7
重量%である。溶質としては、LiPF6 、LiBF4
から選ばれる無機リチウム塩を用いるのが好ましい。電
解液中の溶質のリチウム塩のモル濃度は、0.5〜2.
0モル/リットルであることが好ましい。0.5モル/
リットルより少ないか2.0モル/リットルを越える
と、電解液の電気伝導率が低く、電池の性能が低下する
ため好ましくない。
That is, as the phosphite, any of trimethyl phosphite, dimethylethyl phosphite, methyldiethyl phosphite, and triethyl phosphite can be used. They can be used together. The phosphite is added in an amount of 0.01 to 0.9% by weight, preferably 0.1% by weight, based on the total amount of the electrolytic solution.
03-0.8% by weight, more preferably 0.05-0.7% by weight
% By weight. As solutes, LiPF 6 , LiBF 4
It is preferable to use an inorganic lithium salt selected from The molar concentration of the solute lithium salt in the electrolyte is 0.5 to 2.
It is preferably 0 mol / liter. 0.5 mol /
If the amount is less than 1 liter or exceeds 2.0 mol / liter, the electric conductivity of the electrolytic solution is low, and the performance of the battery is undesirably reduced.

【0014】(負極)電池を構成する負極の材料として
は、様々な熱分解条件での有機物の熱分解物や人造黒
鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材
料、酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な
金属酸化物材料、リチウム金属、種々のリチウム合金を
用いることができる。これらの負極材料は二種類以上混
合して用いてもよい。黒鉛系の炭素質材料を負極材料と
して用いる場合は、主として種々の原料から得た易黒鉛
性ピッチの高温熱処理によって製造された人造黒鉛又は
天然黒鉛、或いはこれらの黒鉛に種々の表面処理を施し
たものが用いられる。これらの黒鉛材料は、X線回折で
求めた格子面(002面)のd値(層間距離)が0.3
35〜0.34nm、特に0.335〜0.337nm
であるものが好ましい。
(Negative Electrode) Materials for the negative electrode constituting the battery include pyrolysis products of organic substances under various pyrolysis conditions, carbonaceous materials capable of occluding and releasing lithium such as artificial graphite and natural graphite, tin oxide, and the like. Metal oxide materials capable of occluding and releasing lithium such as silicon oxide, lithium metal, and various lithium alloys can be used. These negative electrode materials may be used as a mixture of two or more. When a graphite-based carbonaceous material is used as a negative electrode material, artificial graphite or natural graphite produced mainly by high-temperature heat treatment of easily-graphitizable pitch obtained from various raw materials, or various surface treatments are applied to these graphites Things are used. These graphite materials have a d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction of 0.3.
35-0.34 nm, especially 0.335-0.337 nm
Is preferred.

【0015】これらの負極材料を用いて負極を製造する
には常法により行えばよい。例えば、負極材料に、必要
に応じて結着剤、増粘剤、導電材、溶媒等を加えてスラ
リー状とし、集電体の基板に塗布し、乾燥することによ
り負極を製造することができるし、また、該負極材料を
そのままロール成形してシート電極としたり、圧縮成形
によりペレット電極とすることもできる。
The production of a negative electrode using these negative electrode materials may be carried out by a conventional method. For example, a negative electrode can be manufactured by adding a binder, a thickener, a conductive material, a solvent, and the like to a negative electrode material as needed to form a slurry, applying the slurry to a current collector substrate, and drying. Alternatively, the negative electrode material can be roll-formed as it is to form a sheet electrode, or can be formed into a pellet electrode by compression molding.

【0016】結着剤としては、電極製造時に使用する溶
媒や電解液に対して安定な材料であれば、特に限定され
ない。その具体例としては、ポリフッ化ビニリデン、ポ
リテトラフルオロエチレン、スチレン・ブタジエンゴ
ム、イソプレンゴム、ブタジエンゴム等を挙げることが
できる。増粘剤としては、カルボキシメチルセルロー
ス、メチルセルロース、ヒドロキシメチルセルロース、
エチルセルロース、ポリビニルアルコール、酸化スター
チ、リン酸化スターチ、カゼイン等が挙げられる。導電
材としては、銅やニッケル等の金属材料、グラファイ
ト、カーボンブラック等のような炭素材料が挙げられ
る。
The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and the electrolyte used in the production of the electrode. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, and butadiene rubber. As the thickener, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose,
Ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and the like can be mentioned. Examples of the conductive material include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black.

【0017】(負極集電体)負極用集電体には、銅、ニ
ッケル、ステンレス等の金属が使用され、これらの中で
薄膜に加工しやすいという点とコストの点から銅箔が好
ましい。
(Negative Electrode Current Collector) Metals such as copper, nickel, and stainless steel are used for the negative electrode current collector, and among these, copper foil is preferable in terms of easy processing into a thin film and cost.

【0018】(正極)本発明の電池を構成する正極の材
料としては、リチウムを吸蔵及び放出可能な材料、なか
でもリチウムコバルト酸化物、リチウムニッケル酸化
物、リチウムマンガン酸化物等のリチウム遷移金属複合
酸化物が主として用いられる。正極の製造方法も特に限
定されるものではなく、例えば上記の負極の製造方法に
準じて製造することができる。すなわち正極材料に必要
に応じて結着剤、導電材、溶媒等を加えて混合後、集電
体の基板に塗布してシート電極としたり、プレス成形を
施してペレット電極とすることができる。
(Positive Electrode) As the material of the positive electrode constituting the battery of the present invention, a material capable of inserting and extracting lithium, especially a lithium transition metal composite such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide is used. Oxides are mainly used. The method for manufacturing the positive electrode is not particularly limited, either. For example, the positive electrode can be manufactured according to the above-described method for manufacturing the negative electrode. That is, a binder, a conductive material, a solvent, and the like may be added to the positive electrode material, if necessary, followed by mixing, followed by application to a current collector substrate to form a sheet electrode, or press molding to form a pellet electrode.

【0019】(正極集電体)正極用集電体には、アルミ
ニウム、チタン、タンタル等の金属又はその合金が用い
られる。これらの中で、特にアルミニウム又はその合金
が軽量であるためエネルギー密度の点で望ましい。
(Positive Electrode Current Collector) A metal such as aluminum, titanium, and tantalum or an alloy thereof is used for the positive electrode current collector. Among these, aluminum or its alloy is desirable in terms of energy density because it is lightweight.

【0020】(セパレータ)本発明の電池に使用するセ
パレータの材質や形状については、特に限定されない。
但し、電解液に対して安定で、保液性の優れた材料の中
から選ぶのが好ましく、ポリエチレン、ポリプロピレン
等のポリオレフィンを原料とする多孔性シート又は不織
布等を用いるのが好ましい。
(Separator) The material and shape of the separator used in the battery of the present invention are not particularly limited.
However, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene as a raw material.

【0021】本発明に係る非水電解液二次電池は、上述
の材料を用いて常法に従って組立てることができる。ま
た、電池の形状についても特に限定されず、シート電極
及びセパレータをスパイラル状にしたシリンダータイ
プ、ペレット電極及びセパレータを組み合わせたインサ
イドアウト構造のシリンダータイプ、ペレット電極及び
セパレータを積層したコインタイプなど、常用の任意の
形状とすることができる。図1にコインタイプの非水系
電解液電池の断面図を示す。図中、1は正極、2は負
極、3は正極缶、4は封口板、5はセパレータ、6はガ
スケット、7は正極集電体、8は負極集電体である。非
水系電解液は、一般にセパレータに含浸される。
The non-aqueous electrolyte secondary battery according to the present invention can be assembled according to a conventional method using the above-mentioned materials. Also, the shape of the battery is not particularly limited, and is commonly used, such as a cylinder type in which a sheet electrode and a separator are spirally formed, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are stacked. Of any shape. FIG. 1 shows a sectional view of a coin-type non-aqueous electrolyte battery. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a positive electrode can, 4 is a sealing plate, 5 is a separator, 6 is a gasket, 7 is a positive electrode current collector, and 8 is a negative electrode current collector. The non-aqueous electrolyte is generally impregnated in the separator.

【0022】[0022]

【実施例】以下、実施例により、本発明を更に具体的に
説明するが、本発明はその要旨を越えない限りこれらの
実施例に限定されるものではない。 (実施例1、比較例1)乾燥アルゴン雰囲気下で、六フ
ッ化リン酸リチウム(LiPF6 )を十分に乾燥した。
エチレンカーボネート(EC)及びジエチルカーボネー
ト(DEC)を表−1に示す組成で混合した溶液に、上
記の六フッ化リン酸リチウム を1モル/リットルとな
るように溶解して電解液を調製した。これに亜リン酸ト
リメチルを表−1に示す各濃度で添加したのち、各電解
液の酸分を測定した。結果を表−1に示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist of the present invention. (Example 1, Comparative Example 1) Under a dry argon atmosphere, lithium hexafluorophosphate (LiPF 6 ) was sufficiently dried.
In a solution in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed with the composition shown in Table 1, the above-mentioned lithium hexafluorophosphate was dissolved at a concentration of 1 mol / liter to prepare an electrolytic solution. After adding trimethyl phosphite to each of the concentrations shown in Table 1, the acid content of each electrolytic solution was measured. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2、比較例2)実施例1、比較例
1において、調製した電解液に水を500ppm添加し
たのち、乾燥アルゴン雰囲気下で12時間静置してから
各電解液の酸分を測定した。結果を表−2に示す。
Example 2, Comparative Example 2 In Example 1, Comparative Example 1, 500 ppm of water was added to the prepared electrolytic solution, and the mixture was allowed to stand in a dry argon atmosphere for 12 hours, and then the acid of each electrolytic solution was changed. The minute was measured. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】(実施例3、比較例3)正極材料としての
LiCoO2 (85重量部)にカーボンブラック(6重
量部)及びポリフッ化ビニリデン(9重量部)を加えて
混合し、N−メチル−2−ピロリドンで分散してスラリ
ー状とした。これを正極集電体である厚さ20μmのア
ルミニウム箔上に均一に塗布し、乾燥後、直径12.5
mmの円板状に打ち抜いて正極とした。負極材料とし
て、X線回折における格子面(002面)のd値が0.
336nmである人造黒鉛粉末KS−44(ティムカル
社製、商品名)(94重量部)に、ポリフッ化ビニリデ
ン(6重量部)を混合し、N−メチル−2−ピロリドン
で分散させスラリー状とした。これを負極集電体である
厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径1
2.5mmの円板状に打ち抜いて負極とした。電解液に
ついては実施例1−1及び比較例1で調製したものを用
いた。これらの正極、負極、電解液を用いて、図1に示
すようなコイン型非水系電解液電池を、乾燥アルゴン雰
囲気下で作成した。すなわち、正極1と負極2とを、そ
れぞれステンレス製の正極缶3と封口板4に収容し、こ
れらを電解液を含浸させたポリプロピレンの微孔性フィ
ルムからなるセパレータ5を介して重ね合わせた。続い
て、正極缶3と封口板4とをガスケット7を介してかし
め密封して、コイン型電池を作成した。これらの電池に
つき、25℃において、0.5mAの定電流で充電終止
電圧4.2V、放電終止電圧2.5Vで充放電試験を行
った。これらの電池の100サイクル後の放電容量維持
率を表−3に示す。
(Example 3, Comparative Example 3) Carbon black (6 parts by weight) and polyvinylidene fluoride (9 parts by weight) were added to LiCoO 2 (85 parts by weight) as a positive electrode material, and mixed. It was dispersed in 2-pyrrolidone to form a slurry. This was uniformly coated on a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and then dried to a diameter of 12.5 μm.
mm was punched out into a disk to form a positive electrode. As a negative electrode material, the d value of the lattice plane (002 plane) in X-ray diffraction is 0.1.
Polyvinylidene fluoride (6 parts by weight) was mixed with 336 nm artificial graphite powder KS-44 (manufactured by Timcal Co., trade name) (94 parts by weight) and dispersed in N-methyl-2-pyrrolidone to form a slurry. . This was uniformly coated on an 18 μm-thick copper foil as a negative electrode current collector, dried, and then dried to a diameter of 1 μm.
A 2.5 mm disk was punched out to obtain a negative electrode. As the electrolytic solution, those prepared in Example 1-1 and Comparative Example 1 were used. Using these positive electrode, negative electrode and electrolyte, a coin-type non-aqueous electrolyte battery as shown in FIG. 1 was prepared in a dry argon atmosphere. That is, the positive electrode 1 and the negative electrode 2 were accommodated in a positive electrode can 3 and a sealing plate 4 made of stainless steel, respectively, and they were overlapped via a separator 5 made of a polypropylene microporous film impregnated with an electrolytic solution. Subsequently, the positive electrode can 3 and the sealing plate 4 were caulked and sealed via the gasket 7 to complete a coin-type battery. These batteries were subjected to a charge / discharge test at 25 ° C. at a constant current of 0.5 mA, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. Table 3 shows the discharge capacity retention ratio of these batteries after 100 cycles.

【0027】[0027]

【表3】 [Table 3]

【0028】表−3より亜リン酸トリメチルを含有する
電解液は、酸分が除去されているので、サイクル特性が
向上している。
As shown in Table 3, the electrolytic solution containing trimethyl phosphite has improved cycle characteristics because the acid content has been removed.

【0029】[0029]

【発明の効果】非水系電解液二次電池の電解液に少量の
亜リン酸エステルを添加することによって、電解液中に
もともと存在する酸分、更には、電池部材由来の水分と
溶質が反応して発生する酸分を除去することができるの
で、長期安定性及びサイクル特性に優れた電池を作成す
ることができる。
According to the present invention, by adding a small amount of phosphite to the electrolyte of a non-aqueous electrolyte secondary battery, the acid originally present in the electrolyte, and the water and solute derived from the battery members react with each other. Therefore, a battery having excellent long-term stability and cycle characteristics can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コイン型電池の構造を示した断面図である。FIG. 1 is a cross-sectional view showing the structure of a coin-type battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 正極缶 4 封口板 5 セパレータ 6 ガスケット 7 正極集電体 8 負極集電体 Reference Signs List 1 positive electrode 2 negative electrode 3 positive electrode can 4 sealing plate 5 separator 6 gasket 7 positive electrode current collector 8 negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島 邦久 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 鈴木 仁 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 Fターム(参考) 5H029 AJ03 AJ04 AJ05 AJ07 AJ13 AK03 AL02 AL06 AL07 AL12 AL18 AM03 AM04 AM05 AM07 CJ08 DJ08 DJ09 EJ11 HJ01 HJ02 HJ10 HJ13 5H050 AA07 AA08 AA09 AA13 AA18 BA17 CA08 CA09 CB02 CB07 CB08 CB12 CB29 FA17 FA19 HA13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kunihisa Shima 8-3-1 Chuo, Ami-machi, Inashiki-gun, Ibaraki Prefecture Inside the Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (72) Inventor Jin Suzuki 8-Chome, Ami-cho, Inashiki-gun, Ibaraki Prefecture No.3-1 F-term in Tsukuba Research Laboratory, Mitsubishi Chemical Corporation (reference) CB07 CB08 CB12 CB29 FA17 FA19 HA13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくともリチウムを吸蔵・放出するこ
とが可能な負極及び正極、溶質並びに有機系溶媒を含む
非水系電解液を備えた非水系電解液二次電池において、
有機系溶媒中に下記構造式(I)で示される亜リン酸エ
ステルが電解液総量に対して0.01〜0.9重量%添
加されてなることを特徴とする非水系電解液二次電池。 【化1】 (式中、R1 、R2 及びR3 は、それぞれ独立して、メ
チル基又はエチル基を表す)
1. A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing at least a negative electrode and a positive electrode capable of inserting and extracting lithium, a solute and an organic solvent.
A non-aqueous electrolyte secondary battery characterized in that a phosphite represented by the following structural formula (I) is added to an organic solvent in an amount of 0.01 to 0.9% by weight based on the total amount of the electrolyte. . Embedded image (Wherein, R 1 , R 2 and R 3 each independently represent a methyl group or an ethyl group)
【請求項2】 溶質がLiPF6 又はLiBF4 である
請求項1に記載の二次電池。
2. The secondary battery according to claim 1, wherein the solute is LiPF 6 or LiBF 4 .
【請求項3】 非水系電解液中の溶質濃度が0.5〜
2.0モル/リットルである請求項1又は2に記載の二
次電池。
3. A solute concentration in a non-aqueous electrolyte solution of 0.5 to 0.5.
3. The secondary battery according to claim 1, wherein the amount is 2.0 mol / liter.
【請求項4】 リチウムを吸蔵・放出することが可能な
正極がリチウムを吸蔵・放出することが可能なリチウム
遷移金属複合酸化物材料からなる請求項1ないし3のい
ずれかに記載の二次電池。
4. The secondary battery according to claim 1, wherein the positive electrode capable of inserting and extracting lithium is made of a lithium transition metal composite oxide material capable of inserting and extracting lithium. .
【請求項5】 リチウムを吸蔵・放出することが可能な
負極がリチウムを吸蔵・放出することが可能な炭素質材
料、金属酸化物材料、リチウム金属及びリチウム合金か
ら選ばれる少なくとも一種からなる請求項1ないし4の
いずれかに記載の二次電池。
5. The negative electrode capable of occluding and releasing lithium comprises at least one selected from a carbonaceous material capable of occluding and releasing lithium, a metal oxide material, a lithium metal, and a lithium alloy. 5. The secondary battery according to any one of 1 to 4.
【請求項6】 リチウムを吸蔵・放出することが可能な
負極が、X線回折における格子面(002面)のd値が
0.335〜0.34nmの炭素材料からなる請求項1
ないし4のいずれかに記載の二次電池。
6. A negative electrode capable of inserting and extracting lithium is made of a carbon material having a lattice plane (002 plane) having a d value of 0.335 to 0.34 nm in X-ray diffraction.
5. The secondary battery according to any one of claims 1 to 4.
JP2001075247A 2000-12-25 2001-03-16 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4910239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001075247A JP4910239B2 (en) 2000-12-25 2001-03-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000392414 2000-12-25
JP2000392414 2000-12-25
JP2000-392414 2000-12-25
JP2001075247A JP4910239B2 (en) 2000-12-25 2001-03-16 Non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2002260735A true JP2002260735A (en) 2002-09-13
JP2002260735A5 JP2002260735A5 (en) 2008-05-15
JP4910239B2 JP4910239B2 (en) 2012-04-04

Family

ID=26606497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001075247A Expired - Fee Related JP4910239B2 (en) 2000-12-25 2001-03-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4910239B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251685A (en) * 2004-03-08 2005-09-15 Toshiba Corp Method for inspecting nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2006004746A (en) * 2004-06-17 2006-01-05 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using it
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
WO2010150508A1 (en) * 2009-06-22 2010-12-29 日立ビークルエナジー株式会社 Lithium-ion secondary battery
JP2011003498A (en) * 2009-06-22 2011-01-06 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US20110151336A1 (en) * 2009-12-22 2011-06-23 Samsung Sdi Co., Ltd. Lithium battery
CN103107363A (en) * 2013-01-31 2013-05-15 深圳新宙邦科技股份有限公司 Non-water electrolysis solution of lithium ion battery and corresponding lithium ion battery thereof
JP2013137873A (en) * 2011-12-28 2013-07-11 Toyota Industries Corp Lithium ion secondary battery
CN105355965A (en) * 2015-11-13 2016-02-24 华南师范大学 An electrolyte containing phosphate additives, a preparing method thereof and applications of the electrolyte
CN113690490A (en) * 2021-08-27 2021-11-23 中节能万润股份有限公司 Phosphite lithium ion battery electrolyte additive and application thereof
CN115360423A (en) * 2022-09-20 2022-11-18 济南大学 Method for improving electrical property of metal secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343960A (en) * 1989-07-11 1991-02-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH05190204A (en) * 1992-01-09 1993-07-30 Matsushita Electric Ind Co Ltd Lithium secondary battery
JPH08321313A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11283668A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery
JP2000215912A (en) * 1999-01-26 2000-08-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
JP2002025609A (en) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343960A (en) * 1989-07-11 1991-02-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH05190204A (en) * 1992-01-09 1993-07-30 Matsushita Electric Ind Co Ltd Lithium secondary battery
JPH08321313A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11283668A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Lithium ion battery
JP2000215912A (en) * 1999-01-26 2000-08-04 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution secondary battery
JP2002025609A (en) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251685A (en) * 2004-03-08 2005-09-15 Toshiba Corp Method for inspecting nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2006004746A (en) * 2004-06-17 2006-01-05 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution for secondary battery and nonaqueous electrolytic solution secondary battery using it
JP4599901B2 (en) * 2004-06-17 2010-12-15 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP2007027084A (en) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution secondary battery
EP2448056A4 (en) * 2009-06-22 2013-01-09 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2011003498A (en) * 2009-06-22 2011-01-06 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
EP2448056A1 (en) * 2009-06-22 2012-05-02 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
WO2010150508A1 (en) * 2009-06-22 2010-12-29 日立ビークルエナジー株式会社 Lithium-ion secondary battery
US20110151336A1 (en) * 2009-12-22 2011-06-23 Samsung Sdi Co., Ltd. Lithium battery
US8435674B2 (en) * 2009-12-22 2013-05-07 Samsung Sdi Co., Ltd. Lithium battery
KR101621383B1 (en) * 2009-12-22 2016-05-16 삼성에스디아이 주식회사 Lithium battery
JP2013137873A (en) * 2011-12-28 2013-07-11 Toyota Industries Corp Lithium ion secondary battery
CN103107363A (en) * 2013-01-31 2013-05-15 深圳新宙邦科技股份有限公司 Non-water electrolysis solution of lithium ion battery and corresponding lithium ion battery thereof
CN105355965A (en) * 2015-11-13 2016-02-24 华南师范大学 An electrolyte containing phosphate additives, a preparing method thereof and applications of the electrolyte
CN113690490A (en) * 2021-08-27 2021-11-23 中节能万润股份有限公司 Phosphite lithium ion battery electrolyte additive and application thereof
CN113690490B (en) * 2021-08-27 2022-09-20 中节能万润股份有限公司 Phosphite lithium ion battery electrolyte additive and application thereof
CN115360423A (en) * 2022-09-20 2022-11-18 济南大学 Method for improving electrical property of metal secondary battery

Also Published As

Publication number Publication date
JP4910239B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4691871B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2000133304A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP2004031079A (en) Nonaqueous electrolyte secondary battery
JP2003282138A (en) Nonaqueous electrolyte secondary battery and electrolyte used in it
JP2008311211A (en) Nonaqueous electrolyte secondary battery
JP4934917B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2004014134A (en) Nonaqueous electrolyte secondary battery and electrolyte used for it
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP2000235866A (en) Nonaqueous electrolyte secondary battery
JP3560119B2 (en) Non-aqueous electrolyte secondary battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
JP4211159B2 (en) Non-aqueous electrolyte secondary battery
JP2001126764A (en) Nonaqueous electrolyte secondary battery
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
JP2003132944A (en) Nonaqueous system electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4876313B2 (en) Non-aqueous electrolyte secondary battery
JP2002298912A (en) Nonaqueous electrolyte secondary battery and electrolyte used for the same
JP4288976B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4197785B2 (en) Non-aqueous electrolyte secondary battery
JP2002352851A (en) Nonaqueous electrolyte secondary cell
JP3870584B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
JP4085450B2 (en) Non-aqueous electrolyte secondary battery
JP2001297794A (en) Nonaqueous electrolyte secondary cell and electrolyte used by the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees