JP3870584B2 - Non-aqueous electrolyte and lithium secondary battery - Google Patents

Non-aqueous electrolyte and lithium secondary battery Download PDF

Info

Publication number
JP3870584B2
JP3870584B2 JP35448498A JP35448498A JP3870584B2 JP 3870584 B2 JP3870584 B2 JP 3870584B2 JP 35448498 A JP35448498 A JP 35448498A JP 35448498 A JP35448498 A JP 35448498A JP 3870584 B2 JP3870584 B2 JP 3870584B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
phenyl
methylphenyl
carbonate
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35448498A
Other languages
Japanese (ja)
Other versions
JP2000182663A (en
Inventor
仁 鈴木
智洋 佐藤
稔 古田土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP35448498A priority Critical patent/JP3870584B2/en
Publication of JP2000182663A publication Critical patent/JP2000182663A/en
Application granted granted Critical
Publication of JP3870584B2 publication Critical patent/JP3870584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機溶媒中に電解質を溶解してなる非水電解液、及びこれを用いたリチウム二次電池に関するものである。
【0002】
【従来の技術】
近年、電気製品の軽量化、小型化に伴い、高いエネルギー密度を有するリチウム二次電池が注目されており、その一部は既に実用化されている。リチウム二次電池の電解液としては、カーボネートやラクトン等の有機溶媒に無機又は有機リチウム塩を溶解した非水電解液が用いられている。
【0003】
【発明が解決しようとする課題】
然しながら、リチウム二次電池は電圧が高く、またリチウムは極めて活性なので、充放電過程において電解液が分解するという問題がある。電解液の分解は充放電効率を低下させ、かつサイクル特性も悪化させる。従って本発明は、充放電過程における分解が抑制された非水電解液、及びこれを用いた充放電効率が高く、かつサイクル特性の優れたリチウム二次電池を提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明に係るリチウム二次電池用非水電解液は、ベンゼン環に炭素数1〜3のアルキル置換基を有していてもよいベンジルアルキルカーボネート、並びにジヒドロ−5−フェニル−2(3H)−フラノン、ジヒドロ−3−フェニル−2(3H)−フラノン、テトラヒドロ−6−フェニル−2H−ピラン−2−オン、テトラヒドロ−3−フェニル−2H−ピラン−2−オン、ジヒドロ−5−(4−メチルフェニル)−2(3H)−フラノン、ジヒドロ−3−(4−メチルフェニル)−2(3H)−フラノン、テトラヒドロ−6−(4−メチルフェニル)−2H−ピラン−2−オン及びテトラヒドロ−3−(4−メチルフェニル)−2H−ピラン−2−オンから選ばれるフェニル基を有する5員環または6員環のラクトンの少なくとも一方を含有する有機溶媒に電解質を溶解したものである。
【0005】
【発明の実施の形態】
本発明に係る電解液に用いるベンジルアルキルカーボネートのベンジル基のベンゼン環に置換するアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基などの炭素数1〜3のアルキル基が好ましい。ベンゼン環に置換するアルキル基の数は通常は1個であるが、2個以上であってもよい。また、ベンジル基と共にカーボネートを形成するアルキルとしては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、tert−ブチル基などの炭素数1〜4のアルキル基が好ましい。ベンジルアルキルカーボネートのいくつかを例示すると、ベンジルメチルカーボネート、ベンジルエチルカーボネート、p−メチルフェニルメチル−メチルカーボネート、p−メチルフェニルメチル−エチルカーボネート、o−メチルフェニルメチル−メチルカーボネート、o−メチルフェニルメチル−エチルカーボネート、m−メチルフェニルメチル−メチルカーボネート、及びm−メチルフェニルメチル−エチルカーボネートなどが挙げられる。
【0006】
本発明に係る電解液に用いるラクトンは5員環以上であればよいが、5員環又は6員環が好ましい。ラクトン環にはフェニル基が結合していることが必要である。フェニル基に置換するアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基などの炭素数1〜3のアルキル基が好ましい。フェニル基に置換するアルキル基の数は通常は1個であるが、2個以上であってもよい。このようなラクトンのいくつかを例示すると、ジヒドロ−5−フェニル−2(3H)−フラノン、ジヒドロ−3−フェニル−2(3H)−フラノン、テトラヒドロ−6−フェニル−2H−ピラン−2−オン、テトラヒドロ−3−フェニル−2H−ピラン−2−オン、ジヒドロ−5−(4−メチルフェニル)−2(3H)−フラノン、ジヒドロ−3−(4−メチルフェニル)−2(3H)−フラノン、テトラヒドロ−6−(4−メチルフェニル)−2H−ピラン−2−オン、テトラヒドロ−3−(4−メチルフェニル)−2H−ピラン−2−オンなどが挙げられる。
【0007】
本発明に係る電解液において、これらのベンジルアルキルカーボネート及びラクトンは、有機溶媒に占める容積が、30℃で測定して通常0.05〜60容量%、好ましくは0.1〜30容量%となるように用いられる。なお、これらのベンジルアルキルカーボネート及びラクトンは通常は1種類を用いるが、所望ならばいくつかを併用することもできる。
【0008】
ベンジルアルキルカーボネート及びラクトンと共に本発明に係る電解液の有機溶媒を構成する溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどのアルキレンカーボネート類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどのジアルキルカーボネート類;γ−ブチロラクトン、γ−バレロラクトンなどのラクトン類;酢酸メチル、プロピオン酸メチルなどのカルボン酸エステル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピランなどの環状エーテル類;ジメトキシメタン、ジメトキエタンなどの鎖状エーテル類;スルフォラン、ジエチルスルホンなどの含硫黄有機溶媒など、非水電解液の溶媒として知られているもののなかから、適宜選択して用いればよい。なかでもアルキレンカーボネートを用いるのが好ましい。特に好ましくはアルキレンカーボネートとアルキルカーボネートを併用する。そして上記のベンジルアルキルカーボネート、フェニル基を有する5員環以上のラクトン、アルキレンカーボネート及びジアルキルカーボネートの合計が、有機溶媒の70容量%以上を占めるようにする。この合計量が80容量%以上、特に90容量%以上を占めるようにするのが好ましい。
【0009】
有機溶媒と共に電解液を構成する電解質としては、LiClO4 、LiPF6 、LiBF4 などの無機リチウム塩や、LiCF3 SO3 、LiN(CF3 SO2 2 、LiN(C2 5 SO2 2 、LiN(CF3 SO2 )(C4 9 SO2 )、LiC(CF3 SO2 3 などの含フッ素有機リチウム塩などが用いられる。これらは2種以上を併用することもできる。電解液中のこれらの電解質の濃度は通常0.5〜2.0モル/lである。電解質の濃度が高過ぎても低過ぎても電解液の電導度は低下する。
【0010】
本発明に係る非水電解液は、常用の負極活物質及び正極活物質と組合せて、リチウム二次電池に用いることができる。負極活物質としては黒鉛が好ましいが、酸化錫や酸化珪素などのリチウムを吸蔵・放出可能な金属酸化物、更にはリチウム金属、リチウム合金などを用いることもできる。負極用集電体としては銅、ニッケル、ステンレス鋼などが用いられるが、加工性と価格の点からして銅が好ましい。
【0011】
正極活物質としては、LiCoO2 、LiNiO2 、LiMn2 4 などのリチウム遷移金属複合酸化物やフッ化黒鉛などが用いられる。正極用集電体としてはアルミニウム、チタン、タンタルやその合金などが用いられるが、アルミニウムを用いるのが好ましい。負極と正極とを隔離するセパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフィンの多孔性フィルムや不織布などが用いられる。
電池の構造は、シート状の電極とセパレーターとを重ねて渦巻き状に巻いたシリンダータイプ、又は薄片状の電極とセパレーターとを積層したコインタイプなど、従来公知の任意の構造とすることができる。
【0012】
【実施例】
以下に実施例により、本発明をさらに具体的に説明する。
正極の製作;LiCoO2 85重量部にカーボンブラック6重量部及びポリフッ化ビニリデン(呉羽化学社製、KF−1000)9重量部を加えてよく混合した。この混合物にN−メチルピロリドンを加えてスラリーとし、これを厚さ20μmのアルミニウム箔に均一厚さとなるように塗布して乾燥した。これを直径12.5mmの円板状に打抜いて正極とした。
【0013】
負極の製作;天然黒鉛粉末(関西熱化学社製品、NG−7)94重量部にポリフッ化ビニリデン6重量部を加えてよく混合した。これにN−メチルピロリドンを加えてスラリーとし、厚さ18μmの銅箔に均一厚さとなるように塗布して乾燥した。これを直径12.5mmの円板状に打抜いて負極とした。
【0014】
電解液の調製;エチレンカーボネートと他のカーボネートとの混合溶媒95容量部に、ベンジルアルキルカーボネート又はフェニル基で置換されたラクトン5容量部を添加した。この非水溶媒に乾燥アルゴン雰囲気下で十分に乾燥した六フッ化リン酸リチウム(LiPF6 )を1モル/lとなるように溶解して電解液とした。
【0015】
電池の製作;正極導電体を兼ねるステンレス鋼製の正極缶に正極を収容し、その上に電解液を含浸させたセパレーターを介して負極を載置した。負極上に負極導電体を兼ねるステンレス鋼製の封口板をかぶせ、正極缶と封口板とを電気絶縁性のガスケットを介してかしめて密封し、コイン型電池を製作した。
【0016】
充放電試験;上記で得た電池について、25℃で0.5mAの定電流で、充電終止電圧4.2V、放電終止電圧2.5Vで、充放電試験を行った。それぞれの電池の5サイクル目の充放電効率(%)を表−1に示す。
充放電効率(%)=(放電容量/充電容量)×100
また、充放電のサイクルと放電容量との関係を図1に示す。
【0017】
【表1】

Figure 0003870584

【図面の簡単な説明】
【図1】実施例1の電池と比較例1の電池の充放電サイクル数と放電容量との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolytic solution obtained by dissolving an electrolyte in an organic solvent, and a lithium secondary battery using the nonaqueous electrolytic solution.
[0002]
[Prior art]
2. Description of the Related Art In recent years, lithium secondary batteries having a high energy density have attracted attention as electric products have become lighter and smaller, and some of them have already been put into practical use. As an electrolytic solution for a lithium secondary battery, a nonaqueous electrolytic solution in which an inorganic or organic lithium salt is dissolved in an organic solvent such as carbonate or lactone is used.
[0003]
[Problems to be solved by the invention]
However, the lithium secondary battery has a high voltage, and lithium is extremely active, so that there is a problem that the electrolytic solution is decomposed during the charge and discharge process. The decomposition of the electrolytic solution lowers the charge / discharge efficiency and also deteriorates the cycle characteristics. Accordingly, an object of the present invention is to provide a nonaqueous electrolytic solution in which decomposition in the charge / discharge process is suppressed, and a lithium secondary battery having high charge / discharge efficiency and excellent cycle characteristics.
[0004]
[Means for Solving the Problems]
The non-aqueous electrolyte for a lithium secondary battery according to the present invention includes a benzyl alkyl carbonate optionally having an alkyl substituent having 1 to 3 carbon atoms in the benzene ring , and dihydro-5-phenyl-2 (3H)-. Furanone, dihydro-3-phenyl-2 (3H) -furanone, tetrahydro-6-phenyl-2H-pyran-2-one, tetrahydro-3-phenyl-2H-pyran-2-one, dihydro-5- (4- Methylphenyl) -2 (3H) -furanone, dihydro-3- (4-methylphenyl) -2 (3H) -furanone, tetrahydro-6- (4-methylphenyl) -2H-pyran-2-one and tetrahydro- contains at least one of 3- (4-methylphenyl) 2H-5-membered ring having a phenyl group selected from pyran-2-one or 6-membered ring lactone That it is obtained by dissolving an electrolyte in an organic solvent.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The alkyl group substituted on the benzene ring of the benzyl group of the benzyl alkyl carbonate used in the electrolytic solution according to the present invention is an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, or an i-propyl group. Is preferred. The number of alkyl groups substituted on the benzene ring is usually one, but may be two or more. Examples of the alkyl that forms carbonate with benzyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, and tert-butyl group. An alkyl group having 1 to 4 carbon atoms is preferred. Some examples of benzyl alkyl carbonates are benzyl methyl carbonate, benzyl ethyl carbonate, p-methylphenyl methyl-methyl carbonate, p-methylphenyl methyl-ethyl carbonate, o-methylphenyl methyl-methyl carbonate, o-methylphenyl methyl. -Ethyl carbonate, m-methylphenylmethyl-methyl carbonate, m-methylphenylmethyl-ethyl carbonate and the like.
[0006]
The lactone used in the electrolytic solution according to the present invention may be a 5-membered ring or more, but a 5-membered ring or a 6-membered ring is preferable. It is necessary that a phenyl group is bonded to the lactone ring. As the alkyl group substituted on the phenyl group, an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group is preferable. The number of alkyl groups substituted on the phenyl group is usually one, but may be two or more. Some examples of such lactones are dihydro-5-phenyl-2 (3H) -furanone, dihydro-3-phenyl-2 (3H) -furanone, tetrahydro-6-phenyl-2H-pyran-2-one Tetrahydro-3-phenyl-2H-pyran-2-one, dihydro-5- (4-methylphenyl) -2 (3H) -furanone, dihydro-3- (4-methylphenyl) -2 (3H) -furanone Tetrahydro-6- (4-methylphenyl) -2H-pyran-2-one, tetrahydro-3- (4-methylphenyl) -2H-pyran-2-one, and the like.
[0007]
In the electrolytic solution according to the present invention, these benzyl alkyl carbonates and lactones have a volume occupied in an organic solvent of usually 0.05 to 60% by volume, preferably 0.1 to 30% by volume measured at 30 ° C. Used as follows. These benzyl alkyl carbonates and lactones are usually used alone, but some can be used together if desired.
[0008]
Examples of the solvent constituting the organic solvent of the electrolytic solution according to the present invention together with benzyl alkyl carbonate and lactone include alkylene carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Lactones such as γ-butyrolactone and γ-valerolactone; carboxylic acid esters such as methyl acetate and methyl propionate; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran; and chain structures such as dimethoxymethane and dimethoethane Ethers; appropriately selected from those known as solvents for non-aqueous electrolytes, such as sulfur-containing organic solvents such as sulfolane and diethyl sulfone Can be used. Among them, it is preferable to use alkylene carbonate. Particularly preferably, an alkylene carbonate and an alkyl carbonate are used in combination. And the total of said benzyl alkyl carbonate, the lactone of 5 or more member ring which has a phenyl group, alkylene carbonate, and dialkyl carbonate occupies 70 volume% or more of an organic solvent. It is preferable that the total amount occupies 80% by volume or more, particularly 90% by volume or more.
[0009]
Examples of the electrolyte that constitutes the electrolyte solution together with the organic solvent include inorganic lithium salts such as LiClO 4 , LiPF 6 , and LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ). 2 , fluorine-containing organic lithium salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 are used. Two or more of these may be used in combination. The concentration of these electrolytes in the electrolytic solution is usually 0.5 to 2.0 mol / l. Even if the concentration of the electrolyte is too high or too low, the conductivity of the electrolytic solution decreases.
[0010]
The nonaqueous electrolytic solution according to the present invention can be used in a lithium secondary battery in combination with a normal negative electrode active material and a positive electrode active material. As the negative electrode active material, graphite is preferable, but metal oxides capable of occluding and releasing lithium such as tin oxide and silicon oxide, lithium metal, lithium alloy, and the like can also be used. As the current collector for the negative electrode, copper, nickel, stainless steel or the like is used, but copper is preferable from the viewpoint of workability and cost.
[0011]
As the positive electrode active material, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , graphite fluoride, and the like are used. As the positive electrode current collector, aluminum, titanium, tantalum or an alloy thereof is used, and aluminum is preferably used. As the separator that separates the negative electrode and the positive electrode, a porous film of polyolefin such as polyethylene or polypropylene, a nonwoven fabric, or the like is used.
The structure of the battery may be any conventionally known structure such as a cylinder type in which a sheet-like electrode and a separator are overlapped and wound in a spiral shape, or a coin type in which a flaky electrode and a separator are laminated.
[0012]
【Example】
The present invention will be described more specifically with reference to the following examples.
Production of positive electrode: 6 parts by weight of carbon black and 9 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., KF-1000) were added to 85 parts by weight of LiCoO 2 and mixed well. N-methylpyrrolidone was added to this mixture to form a slurry, which was applied to an aluminum foil having a thickness of 20 μm so as to have a uniform thickness and dried. This was punched into a disk shape with a diameter of 12.5 mm to obtain a positive electrode.
[0013]
Production of negative electrode: 6 parts by weight of polyvinylidene fluoride was added to 94 parts by weight of natural graphite powder (product of Kansai Thermal Chemical Co., Ltd., NG-7) and mixed well. N-methylpyrrolidone was added to this to form a slurry, which was applied to a 18 μm thick copper foil to a uniform thickness and dried. This was punched into a disk shape having a diameter of 12.5 mm to obtain a negative electrode.
[0014]
Preparation of electrolytic solution: To 95 parts by volume of a mixed solvent of ethylene carbonate and other carbonates, 5 parts by volume of benzyl alkyl carbonate or a lactone substituted with a phenyl group was added. Lithium hexafluorophosphate (LiPF 6 ) sufficiently dried under a dry argon atmosphere was dissolved in this non-aqueous solvent so as to be 1 mol / l to obtain an electrolytic solution.
[0015]
Production of battery: The positive electrode was housed in a stainless steel positive electrode can also serving as a positive electrode conductor, and the negative electrode was placed thereon via a separator impregnated with an electrolytic solution. A stainless steel sealing plate that also serves as a negative electrode conductor was placed on the negative electrode, and the positive electrode can and the sealing plate were sealed with an electrically insulating gasket to produce a coin-type battery.
[0016]
Charge / Discharge Test: The battery obtained above was subjected to a charge / discharge test at a constant current of 0.5 mA at 25 ° C. with a charge end voltage of 4.2 V and a discharge end voltage of 2.5 V. Table 1 shows the charge / discharge efficiency (%) at the fifth cycle of each battery.
Charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100
The relationship between the charge / discharge cycle and the discharge capacity is shown in FIG.
[0017]
[Table 1]
Figure 0003870584

[Brief description of the drawings]
1 is a graph showing the relationship between the number of charge / discharge cycles and the discharge capacity of the battery of Example 1 and the battery of Comparative Example 1. FIG.

Claims (6)

有機溶媒に電解質を溶解してなるリチウム二次電池用非水電解液において、有機溶媒がベンゼン環に炭素数1〜3のアルキル置換基を有していてもよいベンジルアルキルカーボネート、並びにジヒドロ−5−フェニル−2(3H)−フラノン、ジヒドロ−3−フェニル−2(3H)−フラノン、テトラヒドロ−6−フェニル−2H−ピラン−2−オン、テトラヒドロ−3−フェニル−2H−ピラン−2−オン、ジヒドロ−5−(4−メチルフェニル)−2(3H)−フラノン、ジヒドロ−3−(4−メチルフェニル)−2(3H)−フラノン、テトラヒドロ−6−(4−メチルフェニル)−2H−ピラン−2−オン及びテトラヒドロ−3−(4−メチルフェニル)−2H−ピラン−2−オンから選ばれるフェニル基を有する5員環または6員環のラクトンの少なくとも一方を含有することを特徴とするリチウム二次電池用非水電解液。In a non-aqueous electrolyte for a lithium secondary battery obtained by dissolving an electrolyte in an organic solvent, the organic solvent may have a benzene alkyl optionally having an alkyl substituent of 1 to 3 carbon atoms on the benzene ring , and dihydro-5 -Phenyl-2 (3H) -furanone, dihydro-3-phenyl-2 (3H) -furanone, tetrahydro-6-phenyl-2H-pyran-2-one, tetrahydro-3-phenyl-2H-pyran-2-one Dihydro-5- (4-methylphenyl) -2 (3H) -furanone, dihydro-3- (4-methylphenyl) -2 (3H) -furanone, tetrahydro-6- (4-methylphenyl) -2H- 5- or 6-membered ring having a phenyl group selected from pyran-2-one and tetrahydro-3- (4-methylphenyl) -2H-pyran-2-one Lithium secondary battery nonaqueous electrolytic solution characterized by containing at least one of the lactone. 有機溶媒に占める当該ベンジルアルキルカーボネート及びラクトンの合計量が0.1〜30容量%であることを特徴とする請求項1記載の非水電解液。  The non-aqueous electrolyte according to claim 1, wherein the total amount of the benzyl alkyl carbonate and lactone in the organic solvent is 0.1 to 30% by volume. 有機溶媒がアルキレンカーボネートを含有することを特徴とする請求項1又は2記載の非水電解液。  The non-aqueous electrolyte according to claim 1 or 2, wherein the organic solvent contains alkylene carbonate. 電解質が、LiClO4、LiPF6、LiBF4、LiCF3SO3、 LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)及びLiC(CF3SO23よりなる群から選ばれたものであることを特徴とする請求項1ないし3のいずれかに記載の非水電解液。The electrolyte is LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO The nonaqueous electrolytic solution according to any one of claims 1 to 3, wherein the nonaqueous electrolytic solution is selected from the group consisting of 2 ) and LiC (CF 3 SO 2 ) 3 . 電解液中の電解質の濃度が0.5〜2.0モル/lであることを特徴とする請求項1ないし4のいずれかに記載の非水電解液。  The nonaqueous electrolytic solution according to claim 1, wherein the concentration of the electrolyte in the electrolytic solution is 0.5 to 2.0 mol / l. 請求項1ないし5のいずれかに記載の非水電解液を用いたことを特徴とするリチウム二次電池。  A lithium secondary battery using the nonaqueous electrolytic solution according to any one of claims 1 to 5.
JP35448498A 1998-12-14 1998-12-14 Non-aqueous electrolyte and lithium secondary battery Expired - Fee Related JP3870584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35448498A JP3870584B2 (en) 1998-12-14 1998-12-14 Non-aqueous electrolyte and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35448498A JP3870584B2 (en) 1998-12-14 1998-12-14 Non-aqueous electrolyte and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000182663A JP2000182663A (en) 2000-06-30
JP3870584B2 true JP3870584B2 (en) 2007-01-17

Family

ID=18437886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35448498A Expired - Fee Related JP3870584B2 (en) 1998-12-14 1998-12-14 Non-aqueous electrolyte and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3870584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780409B2 (en) 2012-03-30 2017-10-03 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery employing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960662A (en) 2008-02-29 2011-01-26 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JP5589287B2 (en) * 2008-02-29 2014-09-17 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
EP2869389B1 (en) * 2012-06-29 2019-11-13 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous electrolytic solution cell using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780409B2 (en) 2012-03-30 2017-10-03 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and nonaqueous-electrolyte battery employing the same

Also Published As

Publication number Publication date
JP2000182663A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5666287B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2007220321A (en) Lithium secondary cell
KR20070103296A (en) Nonaqueous secondary cell
JP2008108689A (en) Nonaqueous electrolyte secondary battery
JP4794172B2 (en) Non-aqueous electrolyte secondary battery and charging method thereof
JP2008071559A (en) Lithium-ion secondary battery
JP6509363B2 (en) ELECTRODE FOR ELECTROCHEMICAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME
JPWO2011065538A1 (en) Nonaqueous electrolyte secondary battery
JP2010177124A (en) Nonaqueous electrolyte secondary battery
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP3870584B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP4568920B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4288976B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4197785B2 (en) Non-aqueous electrolyte secondary battery
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP4919771B2 (en) Nonaqueous electrolyte secondary battery
JPH10241684A (en) Nonaqueous electrolyte battery
JP2001307717A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees