JP2002216841A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JP2002216841A
JP2002216841A JP27862697A JP27862697A JP2002216841A JP 2002216841 A JP2002216841 A JP 2002216841A JP 27862697 A JP27862697 A JP 27862697A JP 27862697 A JP27862697 A JP 27862697A JP 2002216841 A JP2002216841 A JP 2002216841A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
electrolyte secondary
secondary battery
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27862697A
Other languages
Japanese (ja)
Other versions
JP4085450B2 (en
Inventor
Shoichiro Mori
彰一郎 森
Hitoshi Suzuki
仁 鈴木
Minoru Kotado
稔 古田土
Deschamp Mark
デシャンプ マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27862697A priority Critical patent/JP4085450B2/en
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to US09/508,108 priority patent/US6670078B1/en
Priority to PCT/JP1998/004181 priority patent/WO1999016144A1/en
Priority to AU90951/98A priority patent/AU9095198A/en
Priority to DE69840833T priority patent/DE69840833D1/en
Priority to CNB988112167A priority patent/CN1134083C/en
Priority to EP98943020A priority patent/EP1030399B1/en
Publication of JP2002216841A publication Critical patent/JP2002216841A/en
Application granted granted Critical
Publication of JP4085450B2 publication Critical patent/JP4085450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell having excellent low temperature property, stability for long time, recycle property, and high energy density. SOLUTION: The nonaqueous electrolyte secondary cell comprises a negative electrode at least containing graphite as a partial component of negative electrode material for absorbing and releasing lithium, a positive electrode, negative and positive current collectors, a nonaqueous electrolyte containing a solute and an organic solvent, and separator. A mixture of solvents containing ethylene sulfide and propylene carbonate is used as the organic solvent, and the material, used at the part where the positive electrode current collector and an outside case of positive electrode are contacting with nonaqueous electrolyte, is made of valve metal or an alloy of the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温特性、長期安
定性、サイクル特性に優れた高エネルギー密度の非水系
電解液二次電池に関するものである。
The present invention relates to a high energy density non-aqueous electrolyte secondary battery having excellent low-temperature characteristics, long-term stability, and cycle characteristics.

【0002】[0002]

【従来の技術】近年、電気製品の軽量化、小型化にとも
ない、高いエネルギー密度を持つリチウム二次電池が注
目されている。また、リチウム二次電池の適用分野の拡
大に伴い電池特性の改善も要望されている。このような
リチウム二次電池の電解液の溶媒としては、例えばエチ
レンカーボネート、プロピレンカーボネート、ジエチル
カーボネート、γ−ブチロラクトン等のカーボネート類
またはエステル類の非水系有機溶媒が用いられてきた。
2. Description of the Related Art In recent years, lithium secondary batteries having a high energy density have attracted attention as electric appliances become lighter and smaller. In addition, with the expansion of the application field of the lithium secondary battery, improvement in battery characteristics is also demanded. Non-aqueous organic solvents such as carbonates or esters such as ethylene carbonate, propylene carbonate, diethyl carbonate, and γ-butyrolactone have been used as the solvent for the electrolyte solution of such a lithium secondary battery.

【0003】これらのなかでもプロピレンカーボネート
は高誘電率溶媒であり、リチウム塩系溶質(電解質)を
よく溶かし、低温下においても高い電気伝導率を示すこ
とから電解液の主溶媒として優れた性能を持つものであ
る。しかしながら、黒鉛系の種々の電極材を単独で、あ
るいは、リチウムを吸蔵・放出可能な他の負極材と混合
して負極として使用する場合、プロピレンカーボネート
が黒鉛電極表面で激しく分解するために、一般に黒鉛電
極へのスムーズなリチウムの吸蔵・放出が不可能なこと
が知られている(7th International
Symposium on Li Batterie
s,P259,1995年)。
[0003] Among them, propylene carbonate is a solvent having a high dielectric constant, dissolves lithium salt-based solute (electrolyte) well, and exhibits high electric conductivity even at a low temperature, so that it has excellent performance as a main solvent of an electrolytic solution. Have. However, when various graphite-based electrode materials are used alone or as a negative electrode by mixing with other negative electrode materials capable of inserting and extracting lithium, propylene carbonate is generally decomposed vigorously on the graphite electrode surface. It is known that it is impossible to smoothly insert and extract lithium into a graphite electrode (7th International)
Symposium on Li Batterie
s, P259, 1995).

【0004】現在エチレンカーボネートがこのような分
解が少なく、黒鉛系負極を用いた非水系電解液二次電池
の電解液の溶媒として多用されているが、エチレンカー
ボネートはプロピレンカーボネートに比べ、凝固点が3
6.4℃と高いためにジメチルカーボネート、ジエチル
カーボネート等のジアルキルカーボネート、ジメトキシ
エタン、ジオキソラン等の低粘度溶媒と混合して用いら
れる(「機能材料」、第15巻、4月号、第48頁、1
995年)。しかし、低温下では、電解液の固化並びに
低い導電率が問題にされることも多く、黒鉛系負極材を
含む負極においてもプロピレンカーボネートを主溶媒と
して用いることが期待されている。また、エチレンカー
ボネート系で混合溶媒として用いられている低粘度溶媒
は沸点も低い場合が多いため、一般的に大量に添加した
場合に電池内の蒸気圧が高くなり、溶媒の漏洩が安全性
の面で不安を残している。
At present, ethylene carbonate is less likely to decompose and is widely used as a solvent for an electrolyte of a non-aqueous electrolyte secondary battery using a graphite-based negative electrode. However, ethylene carbonate has a freezing point of 3 times as compared with propylene carbonate.
Since it is as high as 6.4 ° C., it is used as a mixture with a low-viscosity solvent such as dialkyl carbonate such as dimethyl carbonate and diethyl carbonate, dimethoxyethane and dioxolane (“Functional Materials”, Vol. 15, April, p. 48). , 1
995). However, at low temperatures, solidification of the electrolyte solution and low conductivity are often regarded as problems, and it is expected that propylene carbonate is used as a main solvent even in a negative electrode containing a graphite-based negative electrode material. Also, low-viscosity solvents used as mixed solvents in ethylene carbonate systems often have a low boiling point, so when added in large amounts, the vapor pressure in the battery generally increases, and leakage of the solvent is a safety issue. Leaves anxiety in terms of aspects.

【0005】[0005]

【発明が解決しようとする課題】本発明は前記問題点を
鑑みてなされたものであり、黒鉛系負極を用いた非水系
電解液二次電池の電解液の主溶媒としてプロピレンカー
ボネートを使用し、低温特性、長期安定性、サイクル特
性の優れた高エネルギー密度の非水系電解液二次電池を
提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and uses propylene carbonate as a main solvent of an electrolyte for a non-aqueous electrolyte secondary battery using a graphite anode. An object of the present invention is to provide a high energy density non-aqueous electrolyte secondary battery having excellent low-temperature characteristics, long-term stability, and cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明はリチウムを吸蔵
・放出することが可能な負極材として少なくともその一
構成成分として黒鉛を含む負極及び正極と、負極集電体
及び正極集電体と、溶質及び有機系溶媒とからなる非水
系電解液と、セパレータ及び外缶とを備えた非水系電解
液二次電池において、前記有機系溶媒はプロピレンカー
ボネートとエチレンサルファイトを含むものであり、か
つ、正極集電体及び正極側外缶の非水系電解液との接液
部分の材質に弁金属またはその合金を用いることを特徴
とする非水系電解液二次電池を提供するものである。
According to the present invention, a negative electrode and a positive electrode containing graphite as at least one component thereof as a negative electrode material capable of inserting and extracting lithium, a negative electrode current collector and a positive electrode current collector, Non-aqueous electrolyte comprising a solute and an organic solvent, and a non-aqueous electrolyte secondary battery including a separator and an outer can, wherein the organic solvent contains propylene carbonate and ethylene sulfite, and An object of the present invention is to provide a non-aqueous electrolyte secondary battery characterized in that a valve metal or an alloy thereof is used as a material of a portion of a positive electrode current collector and a positive electrode side outer can contacting a non-aqueous electrolyte.

【0007】[0007]

【作用】プロピレンカーボネートとエチレンサルファイ
トを含有する混合溶媒を使用することにより、黒鉛系電
極上にかなりの安定な保護被膜がリチウムの吸蔵に先立
って生成し、電解液の分解を最小限に抑え、黒鉛系電極
へのスムーズなリチウムの吸蔵・放出が可能となる。さ
らに弁金属はその表面が酸化被膜で覆われているため正
極集電体や正極側外缶での電解液との接液部分でのエチ
レンサルファイトの酸化分解反応を防止することができ
る。
[Function] By using a mixed solvent containing propylene carbonate and ethylene sulfite, a considerably stable protective film is formed on a graphite-based electrode prior to occlusion of lithium, minimizing decomposition of the electrolyte. In addition, the smooth insertion and extraction of lithium into and from the graphite-based electrode becomes possible. Further, since the surface of the valve metal is covered with an oxide film, it is possible to prevent the oxidative decomposition reaction of ethylene sulfite at a portion where the valve metal comes into contact with the electrolytic solution in the positive electrode current collector or the positive electrode outer can.

【0008】[0008]

【発明の実施の形態】本発明の非水系電解液二次電池は
リチウムを吸蔵・放出することが可能な負極材として少
なくともその一構成成分として黒鉛を含む負極及び正極
と、負極集電体と正極集電体と、溶質及び有機系溶媒と
からなる非水系電解液と、セパレータ及び外缶とを備え
た非水系電解液二次電池において、前記有機系溶媒とし
てプロピレンカーボネートとエチレンサルファイトを含
むこと及び正極集電体及び正極側外缶の電解液との接液
部分の材質に弁金属またはその合金を用いることを特徴
とする。
BEST MODE FOR CARRYING OUT THE INVENTION A nonaqueous electrolyte secondary battery according to the present invention comprises a negative electrode and a positive electrode containing graphite as at least one of its constituents as a negative electrode material capable of inserting and extracting lithium; A positive electrode current collector, a nonaqueous electrolyte solution including a solute and an organic solvent, and a nonaqueous electrolyte secondary battery including a separator and an outer can, including propylene carbonate and ethylene sulfite as the organic solvent. In addition, a valve metal or an alloy thereof is used as a material of a portion of the positive electrode current collector and a part of the positive electrode side can contacting the electrolyte.

【0009】非水電解液:非水電解液は、溶質と、プロ
ピレンカーボネートとエチレンサルファイトを含有す
る。非水系電解液の混合溶媒中のプロピレンカーボネー
トの含有量は40〜99.95vol%、好ましくは5
0〜99.9vol%、であり、エチレンサルファイト
のそれは0.05〜60vol%、好ましくは0.1〜
50vol%の範囲で用いられる。
Non-aqueous electrolyte: The non-aqueous electrolyte contains a solute, propylene carbonate and ethylene sulphite. The content of propylene carbonate in the mixed solvent of the non-aqueous electrolyte is 40 to 99.95 vol%, preferably 5 to 99.95 vol%.
0 to 99.9 vol%, and that of ethylene sulfite is 0.05 to 60 vol%, preferably 0.1 to
It is used in a range of 50 vol%.

【0010】上記混合溶媒には前記プロピレンカーボネ
ートおよびエチレンサルファイト以外の第三の溶媒成分
として、エチレンカーボネート、ブチレンカーボネート
等の環状カーボネート類、ジメチルカーボネート、ジエ
チルカーボネート、エチルメチルカーボネート等の鎖状
カーボネート類、γ−ブチロラクトン、γ−バレロラク
トン等の環状エステル類、酢酸メチル、プロピオン酸メ
チル等の鎖状エステル類、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、テトラヒドロピラン等の環状
エーテル類、ジメトキシエタン、ジメトキシメタン等の
鎖状エーテル類、スルフォラン、ジエチルスルホン等の
含硫黄有機溶媒等を混合して使用可能である。これらの
溶媒は二種類以上混合して用いても良い。
In the above mixed solvent, as a third solvent component other than the above-mentioned propylene carbonate and ethylene sulfite, cyclic carbonates such as ethylene carbonate and butylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. , Γ-butyrolactone, cyclic esters such as γ-valerolactone, chain esters such as methyl acetate and methyl propionate, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, dimethoxyethane, dimethoxymethane and the like. It is possible to use a mixture of a chain ether, a sulfur-containing organic solvent such as sulfolane, diethyl sulfone and the like. These solvents may be used as a mixture of two or more kinds.

【0011】溶質としては、LiClO4 、LiP
6 、LiBF4 から選ばれる無機リチウム塩またはL
iCF3 SO3 、LiN(CF3 SO2 2 、LiN
(CF3CF2 SO2 2 、LiN(CF3 SO2
(C4 9 SO2 )、LiC(CF 3 SO2 3 等の含
フッ素有機リチウム塩を用いることができる。これらの
溶質は二種類以上混合して用いても良い。電解液中の溶
質のリチウム塩のモル濃度は、0.5〜2.0モル/リ
ットルであることが望ましい。0.5モル/リットル以
下もしくは2.0モル/リットル以上では、電解液の電
気伝導率が低く、電池の性能が低下するため好ましくな
い。
As a solute, LiClO is used.Four, LiP
F6, LiBFFourAn inorganic lithium salt or L selected from
iCFThreeSOThree, LiN (CFThreeSOTwo)Two , LiN
(CFThreeCFTwoSOTwo)Two, LiN (CFThreeSOTwo)
(CFourF9SOTwo), LiC (CF ThreeSOTwo)ThreeIncluding
Fluoroorganic lithium salts can be used. these
Two or more solutes may be used as a mixture. Dissolution in electrolyte
The molar concentration of the lithium salt is 0.5-2.0 mol / l
It is desirable to be a title. 0.5 mol / l or less
Below or at 2.0 mol / L or more, the
Air conductivity is low and battery performance deteriorates.
No.

【0012】負極:電池を構成する負極材料としては、
好適には種々の原料から得た易黒鉛性ピッチの高温熱処
理によって製造された人造黒鉛及び精製天然黒鉛或いは
これらの黒鉛にピッチを含む種々の表面処理を施した材
料が主として使用される。これらの黒鉛材料は学振法に
よるX線回折で求めた格子面(002面)のd値(層間
距離)が0.335〜0.34nm、より好ましくは
0.335〜0.337nmであるものが好ましい。こ
れら黒鉛材料は、灰分が1重量%以下、より好ましくは
0.5重量%以下、最も好ましくは0.1重量%以下で
かつ学振法によるX線回折で求めた結晶子サイズ(L
c)が30nm以上であることが好ましい。更に結晶子
サイズ(Lc)は、50nm以上の方がより好ましく、
100nm以上であるものが最も好ましい。また、黒鉛
材料のメジアン径は、レーザー回折・散乱法によるメジ
アン径で、1μm以上100μm以下、好ましくは3μ
m以上50μm以下、より好ましくは5μm以上40μ
m以下、更に好ましくは7μm以上30μm以下であ
る。
Negative electrode: As a negative electrode material constituting a battery,
Preferably, artificial graphite and purified natural graphite produced by high-temperature heat treatment of graphitic pitch obtained from various raw materials, or materials obtained by subjecting these graphites to various surface treatments including pitch are mainly used. These graphite materials have a lattice plane (002 plane) d value (interlayer distance) of 0.335 to 0.34 nm, more preferably 0.335 to 0.337 nm, obtained by X-ray diffraction by the Gakushin method. Is preferred. These graphite materials have an ash content of 1% by weight or less, more preferably 0.5% by weight or less, most preferably 0.1% by weight or less, and a crystallite size (L) determined by X-ray diffraction according to the Gakushin method.
c) is preferably 30 nm or more. Further, the crystallite size (Lc) is more preferably 50 nm or more,
Those having a thickness of 100 nm or more are most preferable. The median diameter of the graphite material is 1 μm or more and 100 μm or less, preferably 3 μm, as a median diameter by a laser diffraction / scattering method.
m to 50 μm, more preferably 5 μm to 40 μm
m, more preferably 7 μm or more and 30 μm or less.

【0013】黒鉛材料のBET法比表面積は、0.5m
2 /g以上25.0m2 /g以下であり、好ましくは
0.7m2 /g以上10.0m2 /g以下、より好まし
くは1.0m2 /g以上7.0m2 /g以下、更に好ま
しくは1.5m2 /g以上5.0m2 /g以下である。
また、アルゴンイオンレーザー光を用いたラマンスペク
トル分析において1580〜1620cm-1の範囲にピ
ークPA (ピーク強度I A )および1350〜1370
cm-1の範囲にピークPB (ピーク強度IB )の強度比
R=IB /IA が0以上0.5以下、1580〜162
0cm-1の範囲のピークの半値幅が26cm-1以下、1
580〜1620cm-1の範囲のピークの半値幅は25
cm-1以下がより好ましい。これらの黒鉛材料にリチウ
ムを吸蔵・放出可能な負極材を混合して用いることもで
きる。黒鉛以外のリチウムを吸蔵・放出可能な負極材と
しては、難黒鉛性炭素又は低温焼成炭素等の非黒鉛系炭
素材料、酸化錫、酸化珪素等の金属酸化物材料、更には
リチウム金属並びに種々のリチウム合金が例示される。
負極の形状は、必要に応じて結着剤および導電剤ととも
に混合した後、集電体に塗布したシート電極およびプレ
ス成形を施したペレット電極が使用可能である。
The BET specific surface area of the graphite material is 0.5 m
Two/ G or more 25.0mTwo/ G or less, preferably
0.7mTwo/ G or more 10.0mTwo/ G or less, more preferred
1.0mTwo/ G or more 7.0mTwo/ G or less, more preferred
Or 1.5mTwo/ G or more 5.0mTwo/ G or less.
Raman spectroscopy using argon ion laser light
1580-1620 cm in torr analysis-1In the range
Ark PA(Peak intensity I A) And 1350-1370
cm-1Peak P in the rangeB(Peak intensity IB) Intensity ratio
R = IB/ IAIs 0 or more and 0.5 or less, 1580 to 162
0cm-1The half width of the peak in the range is 26 cm-1Below, 1
580-1620cm-1The half width of the peak in the range is 25
cm-1The following is more preferred. Lithium is added to these graphite materials.
It is also possible to mix negative electrode materials that can absorb and release
Wear. A negative electrode material that can store and release lithium other than graphite
Non-graphitic carbon such as non-graphitizable carbon or low-temperature calcined carbon
Elemental materials, metal oxide materials such as tin oxide and silicon oxide,
Examples include lithium metal as well as various lithium alloys.
The shape of the negative electrode, together with the binder and conductive agent
After mixing, the sheet electrode and
Pellet electrodes that have been formed can be used.

【0014】負極集電体:負極集電体の材質は、銅、ニ
ッケル、ステンレス等の金属が使用され、これらの中で
も薄膜に加工しやすいという点とコストの点から銅箔が
好ましい。セパレータ: 電池を構成するセパレータとしては、ポリ
エチレン、ポリプロピレン等のポリオレフィンを原料と
する多孔性シートまたは不織布が使用される。
Negative electrode current collector: As the material of the negative electrode current collector, metals such as copper, nickel, and stainless steel are used, and among these, copper foil is preferable in terms of easy processing into a thin film and cost. Separator: As a separator constituting a battery, a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene is used.

【0015】正極:電池を構成する正極材料としては、
リチウムコバルト酸化物、リチウムニッケル酸化物等の
リチウム遷移金属複合酸化物材料などのリチウムを吸蔵
・放出可能な材料が使用可能である。正極の形状は、必
要に応じて結着剤および導電剤とともに混合した後、集
電体に塗布したシート電極およびプレス成形を施したペ
レット電極が使用可能である。
Positive electrode: As a positive electrode material constituting a battery,
Materials that can occlude and release lithium, such as lithium transition metal composite oxide materials such as lithium cobalt oxide and lithium nickel oxide, can be used. As the shape of the positive electrode, a sheet electrode applied to a current collector after mixing with a binder and a conductive agent as necessary, and a pellet electrode subjected to press molding can be used.

【0016】正極集電体:正極集電体の材質は、アルミ
ニウム、チタン、タンタル等の弁金属またはその合金が
用いられる。これらの弁金属の中で、特にアルミニウム
またはその合金が軽量であるためエネルギー密度の点で
望ましい。弁金属以外の他の金属材料、例えばステンレ
スを用いた場合には、エチレンサルファイトの酸化分解
反応が進行し、サイクル特性が低下するため好ましくな
い。
Positive electrode current collector: As the material of the positive electrode current collector, a valve metal such as aluminum, titanium, and tantalum or an alloy thereof is used. Among these valve metals, aluminum or its alloy is particularly preferable in terms of energy density because of its light weight. It is not preferable to use a metal material other than the valve metal, for example, stainless steel, because the oxidative decomposition reaction of ethylene sulfite proceeds and the cycle characteristics deteriorate.

【0017】外缶:電池の外缶材質は、ステンレスが好
適に用いられるが、正極と電気的に接続され、かつ、電
解液に接する部分はアルミニウム等の弁金属である必要
があり、弁金属で保護する方法としては、メッキや箔で
保護する手法が挙げられる。また、外缶材質としてアル
ミニウムやアルミニウム合金を用いてもよい。なおここ
で言う外缶とは電池内部に収納されているリード線や電
池内部の内圧が上昇したときに作動する安全弁等も含ま
れる。
Outer can: The outer can of the battery is preferably made of stainless steel, but the portion electrically connected to the positive electrode and in contact with the electrolyte must be made of valve metal such as aluminum. As a method of protecting with a method, there is a method of protecting with plating or foil. Further, aluminum or an aluminum alloy may be used as the outer can material. The outer can referred to here includes a lead wire housed inside the battery, a safety valve that operates when the internal pressure inside the battery rises, and the like.

【0018】電池:電池の形状は、シート電極およびセ
パレータをスパイラル状にしたシリンダータイプ、ペレ
ット電極およびセパレータを組み合わせたインサイドア
ウト構造のシリンダータイプ、ペレット電極およびセパ
レータを積層したコインタイプ等が使用可能である。図
1にコインタイプの非水系電解液電池の断面図を示す。
図中、1は正極、2は負極、3は正極缶、4は封口板、
5はセパレータ、6はアルミニウム箔、7はガスケッ
ト、8は正極集電体、9は負極集電体である。非水系電
解液は、一般にセパレータに含浸される。
Battery: The shape of the battery can be a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are laminated. is there. FIG. 1 shows a sectional view of a coin-type non-aqueous electrolyte battery.
In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a positive electrode can, 4 is a sealing plate,
5 is a separator, 6 is an aluminum foil, 7 is a gasket, 8 is a positive electrode current collector, and 9 is a negative electrode current collector. The non-aqueous electrolyte is generally impregnated in the separator.

【0019】[0019]

【実施例】以下、実施例により、本発明を更に具体的に
説明するが、本発明はこれらに限定されるものではな
い。 (実施例1および2)正極活物質としてLiCoO
2 (85重量部)にカーボンブラック(6重量部)、ポ
リフッ化ビニリデン(9重量部)を加え混合し、N−メ
チル−2−ピロリドンで分散し、スラリー状としたもの
を正極集電体である厚さ20μmのアルミニウム箔上に
均一に塗布し、乾燥後、所定の形状に打ち抜いて正極と
した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. (Examples 1 and 2) LiCoO as positive electrode active material
2 (85 parts by weight), carbon black (6 parts by weight) and polyvinylidene fluoride (9 parts by weight) were added and mixed, and dispersed with N-methyl-2-pyrrolidone to form a slurry. A 20 μm-thick aluminum foil was uniformly coated, dried, and punched into a predetermined shape to obtain a positive electrode.

【0020】負極活物質として、X線回折における格子
面(002面)のd値が0.336nm、晶子サイズ
(Lc)が、100nm以上(264nm)、灰分が
0.04重量%、レーザー回折・散乱法によるメジアン
径が17μm、BET法比表面積が8.9m2 /g、ア
ルゴンイオンレーザー光を用いたラマンスペクトル分析
において1580〜1620cm-1の範囲のピークPA
(ピーク強度IA )および1350〜1370cm-1
範囲のピークPB (ピーク強度IB )の強度比R=IB
/IA が0.15、1580〜1620cm-1の範囲の
ピークの半値幅が22.2cm-1である人造黒鉛粉末K
S−44(ティムカル社製、商品名)(94重量部)に
ポリフッ化ビニリデン(6重量部)を混合し、N−メチ
ル−2−ピロリドンで分散させスラリー状としたものを
負極集電体である厚さ18μmの銅箔上に均一に塗布
し、乾燥後、所定の形状に打ち抜いて負極とした。
As the negative electrode active material, the d value of the lattice plane (002 plane) in X-ray diffraction is 0.336 nm, the crystallite size (Lc) is 100 nm or more (264 nm), the ash content is 0.04 wt%, A peak P A in the range of 1580 to 1620 cm −1 in Raman spectrum analysis using an argon ion laser beam with a median diameter of 17 μm, a BET specific surface area of 8.9 m 2 / g by a scattering method, and
Intensity ratio (peak intensity I A) and 1350 -1 ranging peak P B (peak intensity I B) R = I B
/ I A is artificial graphite powder K half-width of a peak in the range of 0.15,1580~1620Cm -1 is 22.2Cm -1
S-44 (manufactured by Timcal Co., trade name) (94 parts by weight) was mixed with polyvinylidene fluoride (6 parts by weight), and dispersed in N-methyl-2-pyrrolidone to form a slurry, which was used as a negative electrode current collector. A coating was uniformly applied on a copper foil having a thickness of 18 μm, dried, and punched into a predetermined shape to obtain a negative electrode.

【0021】電解液については、乾燥アルゴン雰囲気下
で、十分に乾燥を行った六フッ化リン酸リチウム(Li
PF6 )を溶質として用い、エチレンサルファイト(E
S)とプロピレンカーボネート(PC)とを表−1に示
す組成で混合した溶液にLiPF6 を1モル/リットル
の割合で溶解して調製した。これらの正極、負極、電解
液を用いて、図1に示すようなコイン型非水系電解液電
池を、乾燥アルゴン雰囲気下で作成した。
As for the electrolytic solution, lithium hexafluorophosphate (Li) was sufficiently dried in a dry argon atmosphere.
PF 6 ) as a solute and ethylene sulfite (E
It was prepared by dissolving LiPF 6 at a ratio of 1 mol / liter in a solution in which S) and propylene carbonate (PC) were mixed with the composition shown in Table 1. Using these positive electrode, negative electrode and electrolyte, a coin-type non-aqueous electrolyte battery as shown in FIG. 1 was prepared in a dry argon atmosphere.

【0022】以下、図1に基づき説明すると、正極1と
負極2とを、それぞれステンレス製の正極缶3と封口板
4に収容し、各電解液を含浸させたポリプロピレンの微
孔性フィルムからなるセパレータ5を介して積層する
が、このとき正極側の接液部分の材質を弁金属とするた
めに、前もって正極缶3の内側をアルミニウム箔6で覆
って使用した。続いて、正極缶3と封口板4とをガスケ
ット7を介してかしめ密封して、コイン型電池を作成し
た。
Referring to FIG. 1, the positive electrode 1 and the negative electrode 2 are respectively housed in a stainless steel positive electrode can 3 and a sealing plate 4 and are made of a polypropylene microporous film impregnated with each electrolytic solution. The layers are laminated with the separator 5 interposed therebetween. At this time, the inside of the positive electrode can 3 was used by covering the inside of the positive electrode can 3 with an aluminum foil 6 in advance in order to use the material of the liquid contact portion on the positive electrode side as a valve metal. Subsequently, the positive electrode can 3 and the sealing plate 4 were caulked and sealed via the gasket 7 to complete a coin-type battery.

【0023】(比較例1)正極缶の内側をアルミ箔で覆
わなかったこと以外は実施例1と同様にしてコイン型電
池を作成した。 (比較例2)プロピレンカーボネートにLiPF6 を1
モル/リットルの割合で溶解した電解液を用い、それ以
外は実施例1と同様にしてコイン型電池を作成した。
Comparative Example 1 A coin-type battery was prepared in the same manner as in Example 1 except that the inside of the positive electrode can was not covered with aluminum foil. (Comparative Example 2) 1 LiPF 6 in propylene carbonate
A coin-type battery was prepared in the same manner as in Example 1 except that an electrolytic solution dissolved at a mole / liter ratio was used.

【0024】(実施例3)エチレンサルファイトとプロ
ピレンカーボネートとジエチルカーボネート(DEC)
の混合物(10:45:45vol%)にLiPF6
1モル/リットルの割合で溶解した電解液を用いた以外
は実施例1と同様にしてコイン型電池を作成した。これ
らの実施例1、2、3および比較例1、2の電池を25
℃において、0.5mAの定電流で充電終止電圧4.2
V、放電終止電圧2.5Vで充放電試験を行った。それ
ぞれの電池における1サイクル目の負極重量あたりの充
電容量と放電容量を表−1に示す。
Example 3 Ethylene sulfite, propylene carbonate and diethyl carbonate (DEC)
(10:45:45 vol%) was used in the same manner as in Example 1 except that an electrolyte obtained by dissolving LiPF 6 at a ratio of 1 mol / liter was used to prepare a coin-type battery. The batteries of Examples 1, 2, and 3 and Comparative Examples 1 and 2 were
At a constant current of 0.5 mA at 4.2 ° C.
A charge / discharge test was performed at V and a discharge end voltage of 2.5 V. Table 1 shows the charge capacity and discharge capacity per negative electrode weight in the first cycle in each battery.

【0025】[0025]

【表1】 注)ES:エチレンサルファイト PC:プロピレンカーボネート[Table 1] Note) ES: ethylene sulfite PC: propylene carbonate

【0026】また、実施例1および比較例1の充放電サ
イクルにともなう放電容量の変化を図2に示す。実施例
1および比較例1の結果から明らかなように、電解液中
にエチレンサルファイトを含有する場合、正極側の接液
部分の材質がステンレス等の場合には、エチレンサルフ
ァイトの酸化分解反応が進行することによって十分な放
電容量を得ることはできないが、正極側の接液部分の材
質をアルミニウムにすることによって、エチレンサルフ
ァイトの酸化分解が抑制されたことに起因して、放電容
量、サイクル特性が著しく改善されている。さらに実施
例1,2および比較例2よりプロピレンカーボネート単
独の電解液の場合にはプロピレンカーボネートが負極の
炭素材料表面で分解し、放電容量を得ることはできない
が、プロピレンカーボネートにエチレンサルファイトを
添加することにより放電容量、サイクル特性が著しく改
善される。
FIG. 2 shows the change in the discharge capacity according to the charge / discharge cycle of Example 1 and Comparative Example 1. As is clear from the results of Example 1 and Comparative Example 1, when the electrolyte contains ethylene sulfite, and when the material of the liquid contact portion on the positive electrode side is stainless steel, the oxidative decomposition reaction of ethylene sulfite is performed. However, it is not possible to obtain a sufficient discharge capacity by progressing, but by using aluminum as the material of the liquid contact portion on the positive electrode side, the oxidative decomposition of ethylene sulfite was suppressed, The cycle characteristics are significantly improved. Further, from Examples 1 and 2 and Comparative Example 2, in the case of the electrolyte solution of propylene carbonate alone, propylene carbonate is decomposed on the surface of the carbon material of the negative electrode and a discharge capacity cannot be obtained, but ethylene sulfite is added to propylene carbonate. By doing so, the discharge capacity and cycle characteristics are significantly improved.

【0027】[0027]

【発明の効果】非水系電解液二次電池の電解液の有機系
溶媒としてプロピレンカーボネートとエチレンサルファ
イトを選択し、正極集電体及び正極側外缶の電解液との
接液部分の材質に弁金属またはその合金を選択すること
によって、黒鉛系負極を用いた場合でも、プロピレンカ
ーボネートを含む電解液での電解液の分解の問題を抑
え、高い容量が得られると共に、サイクル特性、低温特
性が優れた電池を作成することができ、非水系電解液二
次電池の小型化、高性能化に寄与することができる。
According to the present invention, propylene carbonate and ethylene sulfite are selected as the organic solvent for the electrolyte of the non-aqueous electrolyte secondary battery, and the material of the liquid contact portion between the cathode current collector and the electrolyte of the cathode side outer can is selected. By selecting a valve metal or its alloy, even when a graphite-based negative electrode is used, the problem of decomposition of the electrolyte in the electrolyte containing propylene carbonate is suppressed, and a high capacity is obtained, and the cycle characteristics and low-temperature characteristics are improved. An excellent battery can be manufactured, which can contribute to miniaturization and high performance of a non-aqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コイン型電池の構造を示した断面図である。FIG. 1 is a sectional view showing a structure of a coin-type battery.

【図2】本発明の実施例1および比較例1の非水系電解
液電池の充放電サイクルと電池容量との関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between charge / discharge cycles and battery capacity of non-aqueous electrolyte batteries of Example 1 and Comparative Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 正極缶 4 封口板 5 セパレータ 6 アルミニウム箔 7 ガスケット 8 正極集電体 9 負極集電体 Reference Signs List 1 positive electrode 2 negative electrode 3 positive electrode can 4 sealing plate 5 separator 6 aluminum foil 7 gasket 8 positive electrode current collector 9 negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/58 H01M 4/58 (72)発明者 古田土 稔 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 マーク デシャンプ 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 Fターム(参考) 5H003 AA02 AA03 AA04 BA03 BB01 BB02 BB04 BC06 BD00 5H011 AA03 CC06 DD15 FF03 GG02 5H014 AA02 AA04 AA06 BB06 EE01 EE05 EE08 EE10 HH00 5H029 AJ03 AJ04 AJ05 AK03 AL02 AL06 AL07 AL12 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ14 BJ16 CJ08 DJ02 DJ04 DJ07 EJ01 HJ07 HJ10 HJ13──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/58 H01M 4/58 (72) Inventor: Minoru Furuta 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Prefecture No. Mitsubishi Tsukuba Research Laboratories (72) Inventor Mark Deshamp 3-1, Chuo, Ami-cho, Inashiki-gun, Ibaraki Pref. 5H011 AA03 CC06 DD15 FF03 GG02 5H014 AA02 AA04 AA06 BB06 EE01 EE05 EE08 EE10 HH00 5H029 AJ03 AJ04 AJ05 AK03 AL02 AL06 AL07 AL12 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ14 HJ14 DJ01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出することが可能な
負極材として少なくともその一構成成分として黒鉛を含
む負極及び正極と、負極集電体と正極集電体と、溶質及
び有機系溶媒とからなる非水系電解液と、セパレータ及
び外缶とを備えた非水系電解液二次電池において、前記
有機系溶媒はプロピレンカーボネートとエチレンサルフ
ァイトを含むものであり、正極集電体及び正極側外缶の
非水系電解液との接液部分の材質が弁金属またはその合
金であることを特徴とする非水系電解液二次電池。
1. A negative electrode and a positive electrode containing graphite as at least one component thereof as a negative electrode material capable of inserting and extracting lithium, a negative electrode current collector and a positive electrode current collector, and a solute and an organic solvent. In a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution, a separator and an outer can, the organic solvent contains propylene carbonate and ethylene sulfite, and the positive electrode current collector and the positive electrode side outer can Wherein the material of the liquid contact portion with the non-aqueous electrolyte is a valve metal or an alloy thereof.
【請求項2】 弁金属およびその合金が、アルミニウム
およびアルミニウム合金であることを特徴とする請求項
1に記載の非水系電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the valve metal and its alloy are aluminum and an aluminum alloy.
【請求項3】 負極材として、黒鉛単独或いは黒鉛とリ
チウムを吸蔵・放出することが可能な非黒鉛系炭素、リ
チウムまたはリチウム合金、更には金属酸化物を混合し
た電極を用いることを特徴とする請求項1に記載の非水
系電解液二次電池。
3. The method according to claim 1, wherein the negative electrode material is an electrode obtained by mixing graphite alone or a non-graphite carbon capable of inserting and extracting graphite and lithium, lithium or a lithium alloy, and a metal oxide. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項4】 リチウムを吸蔵・放出可能な黒鉛系負極
が、X線回折における格子面(002面)のd値が0.
335〜0.34nmの炭素材料からなることを特徴と
する請求項1に記載の非水系電解液二次電池。
4. A graphite-based negative electrode capable of inserting and extracting lithium has a lattice plane (002 plane) having a d-value of 0.1 in X-ray diffraction.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is made of a carbon material having a thickness of 335 to 0.34 nm.
【請求項5】 リチウムを吸蔵・放出可能な黒鉛系負極
が、X線回折における格子面(002面)のd値が0.
335〜0.337nmの炭素材料からなることを特徴
とする請求項1に記載の非水系電解液二次電池。
5. A graphite-based negative electrode capable of inserting and extracting lithium has a lattice plane (002 plane) having a d-value of 0.1 in X-ray diffraction.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is made of a carbon material having a thickness of 335 to 0.337 nm.
【請求項6】 リチウムを吸蔵・放出可能な正極が、リ
チウム遷移金属複合酸化物材料からなることを特徴とす
る請求項1に記載の非水系電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode capable of inserting and extracting lithium is made of a lithium transition metal composite oxide material.
【請求項7】 溶質が、LiClO4 、LiPF6 、L
iBF4 から選ばれる無機リチウム塩またはLiCF3
SO3 、LiN(CF3 SO2 2 、LiN(CF3
CF2 SO2 2 、LiN(CF3 SO2 )(C4 9
SO2 )、LiC(CF3 SO2 3 から選ばれる有機
リチウム塩であることを特徴とする請求項1に記載の非
水系電解液二次電池。
7. The method according to claim 1, wherein the solute is LiClO 4 , LiPF 6 , L
Inorganic lithium salt selected from iBF 4 or LiCF 3
SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3
CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9
2. The non-aqueous electrolyte secondary battery according to claim 1, which is an organic lithium salt selected from SO 2 ) and LiC (CF 3 SO 2 ) 3. 3 .
【請求項8】 有機系溶媒中のエチレンサルファイトの
含有量が、0.05vol%〜60vol%であり、プ
ロピレンカーボネートの含有量が99.95〜40vo
l%であることを特徴とする請求項1に記載の非水系電
解液二次電池。
8. The content of ethylene sulfite in the organic solvent is 0.05 vol% to 60 vol%, and the content of propylene carbonate is 99.95 to 40 vol.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the amount is 1%.
【請求項9】 非水系電解液中の溶質濃度が、0.5〜
2.0モル/リットルであることを特徴とする請求項1
に記載の非水系電解液二次電池。
9. The solute concentration in the non-aqueous electrolytic solution is from 0.5 to
2. The composition according to claim 1, wherein the amount is 2.0 mol / liter.
The non-aqueous electrolyte secondary battery according to 1.
JP27862697A 1997-09-19 1997-10-13 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4085450B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP27862697A JP4085450B2 (en) 1997-10-13 1997-10-13 Non-aqueous electrolyte secondary battery
PCT/JP1998/004181 WO1999016144A1 (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell
AU90951/98A AU9095198A (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell
DE69840833T DE69840833D1 (en) 1997-09-19 1998-09-17 NON-AQUEOUS ELECTROLYTIC CELL
US09/508,108 US6670078B1 (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell with a solvent including a S-O bond
CNB988112167A CN1134083C (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell
EP98943020A EP1030399B1 (en) 1997-09-19 1998-09-17 Non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27862697A JP4085450B2 (en) 1997-10-13 1997-10-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002216841A true JP2002216841A (en) 2002-08-02
JP4085450B2 JP4085450B2 (en) 2008-05-14

Family

ID=17599908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27862697A Expired - Fee Related JP4085450B2 (en) 1997-09-19 1997-10-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4085450B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281073A (en) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery therewith
JP2005353582A (en) * 2004-05-11 2005-12-22 Sony Corp Electrolytic solution and battery
JP2008522376A (en) * 2004-12-02 2008-06-26 オクシス・エナジー・リミテッド Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
JP2012089531A (en) * 2012-01-30 2012-05-10 Sony Corp Nonaqueous electrolyte secondary battery and carbon material for nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281073A (en) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery therewith
JP4561037B2 (en) * 2003-03-12 2010-10-13 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2005353582A (en) * 2004-05-11 2005-12-22 Sony Corp Electrolytic solution and battery
JP2008522376A (en) * 2004-12-02 2008-06-26 オクシス・エナジー・リミテッド Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
JP2012089531A (en) * 2012-01-30 2012-05-10 Sony Corp Nonaqueous electrolyte secondary battery and carbon material for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4085450B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
US5510209A (en) Solid polymer electrolyte-based oxygen batteries
KR100684729B1 (en) Rechargeable lithium battery
WO1999016144A1 (en) Non-aqueous electrolyte cell
JP4138208B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
EP2249420B1 (en) Lithium battery
KR20070104288A (en) Lithium ion secondary battery
JP2006202529A (en) Nonaqueous electrolyte secondary battery and its charging method
JP3560119B2 (en) Non-aqueous electrolyte secondary battery
JP2006228651A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2000268859A (en) Nonaqueous electrolyte secondary battery
JP2003007336A (en) Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution for use in the same
JP4197079B2 (en) Non-aqueous electrolyte secondary battery
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP4211159B2 (en) Non-aqueous electrolyte secondary battery
JP3978960B2 (en) Non-aqueous electrolyte secondary battery
JPH1173990A (en) Nonaqueous electrolyte solution secondary battery
JP4568920B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte used therefor
JP4085450B2 (en) Non-aqueous electrolyte secondary battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JPH08306387A (en) Lithium ion battery
JP2002198090A (en) Non-aqueous electrolyte secondary cell
KR20040069474A (en) Hybrid capacitor
WO2015037522A1 (en) Nonaqueous secondary battery
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
JP2000188126A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

LAPS Cancellation because of no payment of annual fees