JP2002214199A - 土壌汚染域の確定方法 - Google Patents

土壌汚染域の確定方法

Info

Publication number
JP2002214199A
JP2002214199A JP2001009424A JP2001009424A JP2002214199A JP 2002214199 A JP2002214199 A JP 2002214199A JP 2001009424 A JP2001009424 A JP 2001009424A JP 2001009424 A JP2001009424 A JP 2001009424A JP 2002214199 A JP2002214199 A JP 2002214199A
Authority
JP
Japan
Prior art keywords
soil
dichloroethylene
sample
contaminated area
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001009424A
Other languages
English (en)
Inventor
Tomomichi Nihei
知倫 二瓶
Katsuaki Watanabe
勝明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001009424A priority Critical patent/JP2002214199A/ja
Publication of JP2002214199A publication Critical patent/JP2002214199A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

(57)【要約】 【課題】 土壌中の重金属元素および揮発性有機化合物
による汚染域を調査現場において簡易迅速に確定するこ
とができる土壌汚染域確定方法の提案。 【解決手段】 調査現場で採取した土壌試料を当該現場
にて強制的に乾燥させた後、粉砕混合し、該試料をマイ
クロ波を発生する試料分解装置あるいは超音波を利用し
た試料分解装置により加速溶出し、得られた溶液をIC
P質量分析装置により分析し、Cr、Ni、Cu、Z
n、As、Se、Cd、Sn、Sb、Te、Hg、P
b、Biのうちの少なくとも一種を定量する。また、調
査現場で土壌ガス中の分析対象物質を捕集した吸着管を
当該現場にて熱脱着ーガスクロマトグラフ質量分析装置
にセットし、1,1−ジクロロエチレン、ジクロロメタ
ン、trans−1、2−ジクロロエチレン、cis−
1、2−ジクロロエチレン、1,1,1−トリクロロエ
タン、トリクロロエチレン、テトラクロロエチレン、ク
ロロホルム、四塩化炭素、ベンゼンのうちの少なくとも
一種を定量する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、Cr、Ni、C
u、Zn、As、Se、Cd、Sn、Sb、Te、H
g、Pb、Bi等の重金属元素や、1,1−ジクロロエ
チレン、ジクロロメタン、trans−1、2−ジクロ
ロエチレン、cis−1、2−ジクロロエチレン、1,
1,1−トリクロロエタン、トリクロロエチレン、テト
ラクロロエチレン、クロロホルム、四塩化炭素、ベンゼ
ン等の揮発性有機化合物による土壌汚染域を調査現場で
簡易かつ迅速に確定する方法に関する。
【0002】
【従来の技術】土壌のCr、Ni、Cu、Zn、As、
Se、Cd、Sn、Sb、Te、Hg、Pb、Bi等の
重金属元素による汚染域調査は、調査現場にて土壌試料
を採取後、試料を分析室に持ち帰り、風乾・篩い分け・
混合の操作を経て得られた分析試料を酸分解若しくは公
定法に基づいた溶出試験を行った後、溶媒抽出を始めと
する種々の前処理を行い、ICP発光分析法、ICP質
量分析法、原子吸光法、吸光光度法等により定量を行っ
ている。一方、土壌の1,1−ジクロロエチレン、ジク
ロロメタン、trans−1、2−ジクロロエチレン、
cis−1、2−ジクロロエチレン、1,1,1−トリ
クロロエタン、トリクロロエチレン、テトラクロロエチ
レン、クロロホルム、四塩化炭素、ベンゼン等の揮発性
有機化合物による汚染域調査は、土壌ガス中の当該対象
物質を吸着管に吸着させて分析室に持ち帰り、熱脱着−
ガスクロマトグラフ質量分析装置により定量を行ってい
る。
【0003】
【発明が解決しようとする課題】しかしながら、従来の
方法では、調査現場にて採取した土壌試料をいったん分
析室に持ち帰り、重金属元素による汚染域調査の場合は
ICP発光分析法、ICP質量分析法、原子吸光法、吸
光光度法等により定量を行い、また揮発性有機化合物に
よる汚染域調査の場合は熱脱着−ガスクロマトグラフ質
量分析装置により定量を行うため、試料採取から分析結
果判明まで数日を要し、土壌の汚染域の確定を迅速に行
うことができないのが実状であった。このため土壌復旧
作業時における汚染域の確定においては、作業現場で直
ちに分析結果が判明する迅速な土壌汚染域確定方法が要
求されていた。
【0004】本発明は、このような現状に鑑みなされた
もので、土壌中の重金属元素(Cr、Ni、Cu、Z
n、As、Se、Cd、Sn、Sb、Te、Hg、P
b、Bi)、および揮発性有機化合物(1,1−ジクロ
ロエチレン、ジクロロメタン、trans−1、2−ジ
クロロエチレン、cis−1、2−ジクロロエチレン、
1,1,1−トリクロロエタン、トリクロロエチレン、
テトラクロロエチレン、クロロホルム、四塩化炭素、ベ
ンゼン)による汚染域を調査現場において簡易迅速に確
定することができる土壌汚染域の確定方法を提案しよう
とするものである。
【0005】
【課題を解決するための手段】本発明の土壌汚染域の確
定方法は、土壌中に含まれる重金属有害物質を定量し、
その結果に基づき土壌汚染域を確定する方法において、
有害物質の定量に際し、調査現場で車載した試料分析装
置とICP質量分析装置を用いて土壌中に含まれるC
r、Ni、Cu、Zn、As、Se、Cd、Sn、S
b、Te、Hg、Pb、Biのうちの少なくとも一種を
定量することを特徴とし、また、前記試料分析装置とし
てマイクロ波もしくは超音波を用いた加速溶出手段を用
いることを特徴とするものである。また本発明は、土壌
中に含まれる揮発性有機化合物を定量し、その結果に基
づき土壌汚染域を確定する方法において、揮発性有機化
合物の定量に際し、調査現場で車載した熱脱着ーガスク
ロマトグラフ質量分析装置を用いて1,1−ジクロロエ
チレン、ジクロロメタン、trans−1、2−ジクロ
ロエチレン、cis−1、2−ジクロロエチレン、1,
1,1−トリクロロエタン、トリクロロエチレン、テト
ラクロロエチレン、クロロホルム、四塩化炭素、ベンゼ
ンのうちの少なくとも一種を定量することを特徴とする
ものである。
【0006】
【発明の実施の形態】本発明において、土壌中の重金属
元素および揮発性有機化合物を定量するための各種機器
は車等に搭載され、調査現場に搬送される。そして、車
載された状態のまま使用される。重金属元素による土壌
汚染域を調査現場で確定する方法において、採取した土
壌試料を強制的に乾燥させる手段としては、特に限定す
るものではないが、迅速性を考慮すると電子レンジ等の
マイクロ波を発生する装置が好適である。また土壌試料
を粉砕混合する手段としては、特に限定するものではな
いが、回転ミルが好ましい。その際、ミルからの汚染を
防ぐために、ミルの材質としてSC材やWC材を用いる
のが望ましい。試料分解装置を用いて粉砕混合された試
料を水抽出し、ICP質量分析装置にかける溶出液を得
るが、この際にマイクロ波を加熱源として用いる。ある
いは超音波を用いることにより水抽出をする。これによ
り一連の装置が車載可能となる。また、揮発性有機化合
物による土壌汚染域を調査現場で確定する方法におい
て、土壌ガスの捕集方法としては、土壌中に掘った穴
に、キャップ付きのガス捕集管を挿入し、しかる後にポ
ンプ等により土壌ガスを穴底から吸引して該分析対象物
質を吸着管に捕集する手法を用いることができる。
【0007】図1は本発明に係る土壌汚染域の確定方法
を概略的に示す工程図で、(a)は重金属元素による土
壌汚染域を調査現場で確定する方法を示す工程図、
(b)は揮発性有機化合物による土壌汚染域を調査現場
で確定する方法を示す工程図であり、1は土壌試料、2
は乾燥工程、3は粉砕混合工程、4は分解工程、5は分
析工程、11は土壌ガス、12は吸着工程、13は分析
工程である。
【0008】図1(a)における乾燥工程2は、採取し
た土壌試料1を強制的に乾燥させる工程であり、その乾
燥手段には前記したごとく迅速性を考慮して例えば電子
レンジ等のマイクロ波を発生する装置を用いる。粉砕混
合工程3は、前記乾燥工程2にて乾燥させた土壌試料を
所望の粒度に粉砕して混合する工程であり、その手段に
は例えばSC材の刃を持つ回転ミルを用いる。分解工程
4は、前記粉砕混合工程3で作られた試料から溶液を回
収する工程であり、その手段にはマイクロ波を発生する
試料分解装置を用いてもよく、超音波を利用した試料分
解装置を用いてもよい。
【0009】また図1(b)における吸着工程12は、
土壌ガス中の当該分析対象物質を吸着管に吸着させる工
程であり、その手段は調査対象箇所に例えばボーリング
バーにて適当深さまで削孔し、削孔後、キャップ付きガ
ス捕集管を挿入し、適当時間経過後、ポンプ等により土
壌ガス11を穴底から吸引して該分析対象物質を吸着管
に捕集する。分析工程12は、前記吸着管内に吸着させ
た分析対象物質を分析し、1,1−ジクロロエチレン、
ジクロロメタン、trans−1、2−ジクロロエチレ
ン、cis−1、2−ジクロロエチレン、1,1,1−
トリクロロエタン、トリクロロエチレン、テトラクロロ
エチレン、クロロホルム、四塩化炭素、ベンゼンを定量
する工程であり、その手段には熱脱着ーガスクロマトグ
ラフ質量分析装置を用いる。
【0010】すなわち、図1(a)に示す方法により重
金属元素による土壌汚染域を調査現場で確定する場合
は、まず、採取した土壌試料1を乾燥工程2にて例えば
電子レンジ等のマイクロ波を発生する装置により強制的
に乾燥させた後、粉砕混合工程3にて例えばSC材の刃
を持つ回転ミルにより粉砕混合して測定試料を作成す
る。次に、分解工程4にてマイクロ波を発生する試料分
解装置あるいは超音波を利用する試料分解装置により前
記測定試料を加速溶出し、得られた溶液を分析工程5の
ICP質量分析装置でそのまま分析することにより、試
料中のCr、Ni、Cu、Zn、As、Se、Cd、S
n、Sb、Te、Hg、Pb、Biを定量する。そして
この分析値に基づいて、重金属元素による土壌汚染域を
確定する。
【0011】また図1(b)に示す方法により揮発性有
機化合物による土壌汚染域を調査現場で確定する場合
は、吸着工程12にて調査対象箇所にボーリングバー等
にて適当深さまで削孔し、キャップ付きガス捕集管を用
いて土壌ガス11を穴底から吸引して該分析対象物質を
吸着管に捕集した後、分析工程12にて前記吸着管を熱
脱着ーガスクロマトグラフ質量分析装置にセットし、カ
ラム槽の温度を徐々に昇温させて、1,1−ジクロロエ
チレン、ジクロロメタン、trans−1、2−ジクロ
ロエチレン、cis−1、2−ジクロロエチレン、1,
1,1−トリクロロエタン、トリクロロエチレン、テト
ラクロロエチレン、クロロホルム、四塩化炭素、ベンゼ
ンを定量する。そしてこの分析値に基づいて、揮発性有
機化合物による土壌汚染域を確定する。
【0012】
【実施例】実施例1 本発明の図1(a)に示す方法により、土壌汚染域にお
ける重金属元素の分析結果の実施例を以下に示す。重金
属により汚染されていると思われる敷地より、それぞれ
約100gの土壌試料を10ヵ所サンプリングした。サ
ンプリングした土壌試料を電子レンジに入れ、5分程度
加熱して乾燥させた。次に乾燥した試料をSC材の刃を
持つ回転ミルに入れ、約5分間粉砕混合した。得られた
試料2gをテフロン(登録商標)の容器にはかりとり、
水20mlを加えて、マイクロ波加熱分解装置にセット
し、約5分間加熱抽出した。続いて、ICP質量分析測
定時の塩化物イオンの影響を除去するために、溶出液に
1W/V%硝酸銀水溶液0.2ml(硝酸銀として2m
g)を添加してよく振り混ぜた後、遠心分離して上澄み
液10mlを別の容器に移し、その上澄み液に0.1m
lの硝酸を加え、軽く混ぜた後、1μmのフィルターに
通し、得られた溶液に内部標準元素としてGa、Pd、
Reをそれぞれ0.1μgずつ加え検液とし、ICP質
量分析装置で分析し重金属元素を定量した。その分析値
を公定法で定量した値と比較して表1に示す。表1のデ
ータより明らかなごとく、土壌汚染現場にて、公定法と
ほぼ同一の値を迅速に得ることができた。
【0013】実施例2 本発明の図1(b)に示す方法により、土壌汚染域にお
ける揮発性有機化合物分析結果の実施例を以下に示す。
調査対象個所に、22mmφのボーリングバーで85c
mまで削孔し、削孔後、直ちに上端にキャップを施した
テフロン製ガス捕集管を挿入し、約30分後、土壌ガス
を孔底から吸引して吸着管に捕集した。しかる後、前記
吸着管を熱脱着−ガスクロマトグラフ質量分析装置にセ
ットし、カラム槽の温度を徐々に昇温させて、1,1−
ジクロロエチレン、ジクロロメタン、trans−1、
2−ジクロロエチレン、cis−1,2−ジクロロエチ
レン、1,1,1−トリクロロエタン、トリクロロエチ
レン、テトラクロロエチレン、クロロホルム、四塩化炭
素、ベンゼンを定量した結果を表2に示す。表2のデー
タより明らかなごとく、土壌汚染現場において、揮発性
有機化合物による汚染状況を簡易迅速に把握することが
できた。
【0014】実施例3 マイクロ波加熱分解装置に替えて超音波を利用した分解
装置を用いた以外は、実施例1と同様にして土壌汚染域
における重金属元素の分析を行なった。得られた結果
は、実施例1と同様であった。
【0015】
【表1】
【0016】
【表2】
【0017】
【発明の効果】以上説明したごとく、本発明によれば、
土壌中のCr、Ni、Cu、Zn、As、Se、Cd、
Sn、Sb、Te、Hg、Pb、Bi、および1,1−
ジクロロエチレン、ジクロロメタン、trans−1、
2−ジクロロエチレン、cis−1、2−ジクロロエチ
レン、1,1,1−トリクロロエタン、トリクロロエチ
レン、テトラクロロエチレン、クロロホルム、四塩化炭
素、ベンゼンを調査現場で簡易迅速に分析し精度よく定
量することができるので、重金属元素および揮発性有機
化合物による土壌汚染域を調査現場で短時間に確定する
ことが可能となり、土壌修復作業を大幅に短縮できるな
ど、地下汚染状況の把握や修復に大きく寄与する。
【図面の簡単な説明】
【図1】本発明に係る土壌汚染域の確定方法を概略的に
示す工程図で、(a)は重金属元素による土壌汚染域を
調査現場で確定する方法を示す工程図、(b)は揮発性
有機化合物による土壌汚染域を調査現場で確定する方法
を示す工程図である。
【符号の説明】
1 土壌試料 2 乾燥工程 3 粉砕混合工程 4 分解工程 5 分析工程 11 土壌ガス 12 分析工程
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/24 G01N 1/28 K X

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 土壌中に含まれる重金属有害物質を定量
    し、その結果に基づき土壌汚染域を確定する方法におい
    て、有害物質の定量に際し、調査現場で車載した試料分
    析装置とICP質量分析装置を用いて土壌中に含まれる
    Cr、Ni、Cu、Zn、As、Se、Cd、Sn、S
    b、Te、Hg、Pb、Biのうちの少なくとも一種を
    定量することを特徴とする土壌汚染域の確定方法。
  2. 【請求項2】 試料分析装置としてマイクロ波もしくは
    超音波を用いた加速溶出手段を用いることを特徴とする
    請求項1記載の土壌汚染域の確定方法。
  3. 【請求項3】 土壌中に含まれる揮発性有機化合物を定
    量し、その結果に基づき土壌汚染域を確定する方法にお
    いて、揮発性有機化合物の定量に際し、調査現場で車載
    した熱脱着ーガスクロマトグラフ質量分析装置を用いて
    1,1−ジクロロエチレン、ジクロロメタン、tran
    s−1、2−ジクロロエチレン、cis−1、2−ジク
    ロロエチレン、1,1,1−トリクロロエタン、トリク
    ロロエチレン、テトラクロロエチレン、クロロホルム、
    四塩化炭素、ベンゼンのうちの少なくとも一種を定量す
    ることを特徴とする土壌汚染域の確定方法。
JP2001009424A 2001-01-17 2001-01-17 土壌汚染域の確定方法 Pending JP2002214199A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009424A JP2002214199A (ja) 2001-01-17 2001-01-17 土壌汚染域の確定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009424A JP2002214199A (ja) 2001-01-17 2001-01-17 土壌汚染域の確定方法

Publications (1)

Publication Number Publication Date
JP2002214199A true JP2002214199A (ja) 2002-07-31

Family

ID=18876913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009424A Pending JP2002214199A (ja) 2001-01-17 2001-01-17 土壌汚染域の確定方法

Country Status (1)

Country Link
JP (1) JP2002214199A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226811A (ja) * 2010-04-15 2011-11-10 Nippon Steel Corp 溶出試験方法
JP2011247694A (ja) * 2010-05-25 2011-12-08 Jfe Steel Corp 無機成分の溶出方法、無機成分の分析方法、無機成分の溶出装置、および無機成分の分析装置
CN103439476A (zh) * 2013-08-30 2013-12-11 北京市环境保护科学研究院 模拟人体消化特征的重金属可给性翻转式测试装置和方法
RU2528910C2 (ru) * 2012-12-25 2014-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" Способ оценки удельной активности цезия-137 в растительных ресурсах леса
CN104458391A (zh) * 2014-12-19 2015-03-25 中国环境科学研究院 一种提取与纯化土壤和沉积物中稳固态有机质的方法
CN104569246A (zh) * 2014-12-08 2015-04-29 江苏泰洁检测技术有限公司 采用气相色谱法测定卤代烷烃类化合物的检测方法
CN104820010A (zh) * 2015-04-10 2015-08-05 中国环境科学研究院 儿童手部污染物快速定性定量分析检测方法
CN105842331A (zh) * 2016-04-12 2016-08-10 天津市农业质量标准与检测技术研究所 一种测定土壤中有效态微量元素的方法
CN107024528A (zh) * 2017-02-24 2017-08-08 中国市政工程中南设计研究总院有限公司 一种污染土壤中重金属含量的检测方法
RU2670898C1 (ru) * 2017-08-28 2018-10-25 Федеральное государственное бюджетное учреждение науки Федеральный научный центр "Владикавказский научный центр Российской академии наук" (ВНЦ РАН) Способ определения тяжелых металлов в почве
JP2019090786A (ja) * 2017-11-16 2019-06-13 住友金属鉱山株式会社 金属酸化物中における金属単体の定量方法
JP2019148470A (ja) * 2018-02-27 2019-09-05 前田建設工業株式会社 重金属汚染土壌の迅速分析方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226811A (ja) * 2010-04-15 2011-11-10 Nippon Steel Corp 溶出試験方法
JP2011247694A (ja) * 2010-05-25 2011-12-08 Jfe Steel Corp 無機成分の溶出方法、無機成分の分析方法、無機成分の溶出装置、および無機成分の分析装置
RU2528910C2 (ru) * 2012-12-25 2014-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" Способ оценки удельной активности цезия-137 в растительных ресурсах леса
CN103439476A (zh) * 2013-08-30 2013-12-11 北京市环境保护科学研究院 模拟人体消化特征的重金属可给性翻转式测试装置和方法
CN103439476B (zh) * 2013-08-30 2015-07-15 北京市环境保护科学研究院 模拟人体消化特征的重金属可给性翻转式测试装置和方法
CN104569246A (zh) * 2014-12-08 2015-04-29 江苏泰洁检测技术有限公司 采用气相色谱法测定卤代烷烃类化合物的检测方法
CN104458391B (zh) * 2014-12-19 2017-05-03 中国环境科学研究院 一种提取与纯化土壤和沉积物中稳固态有机质的方法
CN104458391A (zh) * 2014-12-19 2015-03-25 中国环境科学研究院 一种提取与纯化土壤和沉积物中稳固态有机质的方法
CN104820010A (zh) * 2015-04-10 2015-08-05 中国环境科学研究院 儿童手部污染物快速定性定量分析检测方法
CN105842331A (zh) * 2016-04-12 2016-08-10 天津市农业质量标准与检测技术研究所 一种测定土壤中有效态微量元素的方法
CN107024528A (zh) * 2017-02-24 2017-08-08 中国市政工程中南设计研究总院有限公司 一种污染土壤中重金属含量的检测方法
RU2670898C1 (ru) * 2017-08-28 2018-10-25 Федеральное государственное бюджетное учреждение науки Федеральный научный центр "Владикавказский научный центр Российской академии наук" (ВНЦ РАН) Способ определения тяжелых металлов в почве
JP2019090786A (ja) * 2017-11-16 2019-06-13 住友金属鉱山株式会社 金属酸化物中における金属単体の定量方法
JP6992714B2 (ja) 2017-11-16 2022-01-13 住友金属鉱山株式会社 金属酸化物中における金属単体の定量方法
JP2019148470A (ja) * 2018-02-27 2019-09-05 前田建設工業株式会社 重金属汚染土壌の迅速分析方法
JP6994408B2 (ja) 2018-02-27 2022-01-14 前田建設工業株式会社 重金属汚染土壌の迅速分析方法

Similar Documents

Publication Publication Date Title
Chen et al. Application of on-line microwave sample-preparation techniques
Baig et al. Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods
Zhang et al. Application of flow injection–green chemical vapor generation–atomic fluorescence spectrometry to ultrasensitive mercury speciation analysis of water and biological samples
Natangelo et al. Analysis of some pesticides in water samples using solid-phase microextraction–gas chromatography with different mass spectrometric techniques
Sawhney et al. Determination of 1, 2‐dibromoethane (EDB) in field soils: Implications for volatile organic compounds
Zhang et al. Selective pressurized liquid extraction of estrogenic compounds in soil and analysis by gas chromatography–mass spectrometry
Fan et al. Speciation analysis of vanadium in natural water samples by electrothermal vaporization inductively coupled plasma optical emission spectrometry after separation/preconcentration with thenoyltrifluoroacetone immobilized on microcrystalline naphthalene
Habila et al. Flame atomic absorption spectrometric determination of Cd, Pb, and Cu in food samples after pre-concentration using 4-(2-thiazolylazo) resorcinol-modified activated carbon
JP2002214199A (ja) 土壌汚染域の確定方法
Psathaki et al. Determination of organophosphorus and triazine pesticides in ground-and drinking water by solid-phase extraction and gas chromatography with nitrogen-phosphorus or mass spectrometric detection
Sardans et al. Electrothermal atomic absorption spectrometry to determine As, Cd, Cr, Cu, Hg, and Pb in soils and sediments: A review and perspectives
Krawczyk et al. Silver nanoparticles as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the atomic absorption spectrometric determination of mercury in water samples
CN110618218A (zh) 一种快速筛查茶叶中农药及代谢物残留的分析方法
Zhang et al. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling
Grange Semi‐quantitative analysis of contaminants in soils by direct analysis in real time (DART) mass spectrometry
Zhu et al. Microwave mediated distillation with solid-phase microextraction: determination of off-flavors, geosmin and methylisoborneol, in catfish tissue
Shi et al. Determination of As (III) and As (V) in soils using sequential extraction combined with flow injection hydride generation atomic fluorescence detection
Nevado et al. Determination of monomethylmercury in low-and high-polluted sediments by microwave extraction and gas chromatography with atomic fluorescence detection
Jankowski et al. Determination of precious metals in geological samples by continuous powder introduction microwave induced plasma atomic emission spectrometry after preconcentration on activated carbon
Ge et al. Atmospheric pressure glow discharge optical emission spectrometry coupled with laser ablation for direct solid quantitative determination of Zn, Pb, and Cd in soils
Karanasiou et al. Comparative study of pretreatment methods for the determination of metals in atmospheric aerosol by electrothermal atomic absorption spectrometry
Silva et al. Enhanced flow injection leaching of rocks by focused microwave heating with in-line monitoring of released elements by inductively coupled plasma mass spectrometry
Yang et al. Microwave-assisted extraction of butyltin compounds from PACS-2 Sediment for quantitation by high-performance liquid chromatography inductively coupled plasma mass spectrometry© Canadian crown copyright.
Bakircioglu et al. A novel preconcentration method for determination of iron and lead using Chromosorb-103 and flame atomic absorption spectrometry
JP4647405B2 (ja) 土壌中有害物質含有量分析方法