JP2002212944A - Underground wall construction - Google Patents

Underground wall construction

Info

Publication number
JP2002212944A
JP2002212944A JP2001008509A JP2001008509A JP2002212944A JP 2002212944 A JP2002212944 A JP 2002212944A JP 2001008509 A JP2001008509 A JP 2001008509A JP 2001008509 A JP2001008509 A JP 2001008509A JP 2002212944 A JP2002212944 A JP 2002212944A
Authority
JP
Japan
Prior art keywords
wall
steel pile
underground
horizontal
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001008509A
Other languages
Japanese (ja)
Other versions
JP3578210B2 (en
Inventor
Hisashi Nemoto
恒 根本
Hitoshi Uchimura
均 内村
Masami Noumori
雅己 能森
Akira Kasahara
章 笠原
Yuetsu Kikuchi
祐悦 菊地
Yasukazu Onishi
靖和 大西
Kenji Tano
健治 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Fujita Corp
Nishimatsu Construction Co Ltd
Sato Kogyo Co Ltd
Sumitomo Construction Co Ltd
Hazama Ando Corp
Original Assignee
Mitsui Construction Co Ltd
Hazama Gumi Ltd
Fujita Corp
Nishimatsu Construction Co Ltd
Sato Kogyo Co Ltd
Sumitomo Construction Co Ltd
Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd, Hazama Gumi Ltd, Fujita Corp, Nishimatsu Construction Co Ltd, Sato Kogyo Co Ltd, Sumitomo Construction Co Ltd, Ando Corp filed Critical Mitsui Construction Co Ltd
Priority to JP2001008509A priority Critical patent/JP3578210B2/en
Publication of JP2002212944A publication Critical patent/JP2002212944A/en
Application granted granted Critical
Publication of JP3578210B2 publication Critical patent/JP3578210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize temporary earth-retaining wall pile members, and easily and definitely reinforce the main body of a reinforced concrete wall body. SOLUTION: A steel pile member 2 installed as a temporary earth-retaining wall pile members and a reinforced concrete wall body 4 built adjacent to the steel pile member 2 provides an underground wall construction 1 connected in a lateral direction by a joined member 8 provided only in the intermediate region 6 at a predetermined height of story.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、H形鋼や鋼矢板
等の鋼製杭部材を仮設の山留め壁杭材として使用すると
ともに、本設の地下外壁の補強に利用する、地下壁構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underground wall structure in which a steel pile member such as an H-section steel or a steel sheet pile is used as a temporary pile retaining wall pile material and used for reinforcing a permanent underground outer wall. Things.

【0002】[0002]

【従来の技術】掘削した地中に、本設の耐久構造物であ
る鉄筋コンクリート造の外壁体を構築するのに先立ち、
周りの地盤が崩れないように押さえる目的で、山留め壁
が構築される。山留め壁の工法には、親杭横矢板壁工
法、鋼矢板壁工法あるいはソイルセメント柱列壁工法等
がある。
2. Description of the Related Art Prior to constructing a reinforced concrete outer wall body, which is a permanent durable structure, in an excavated ground,
A retaining wall is constructed to keep the surrounding ground from collapsing. The pile retaining wall construction method includes a parent pile horizontal sheet pile wall construction method, a steel sheet pile wall construction method, and a soil cement column wall construction method.

【0003】これら山留め壁は、地下工事期間中の仮設
構造物として用いられ、使用後はそのまま地中に放置さ
れるのが一般的である。仮設の山留め壁と、その後に施
工される本設の鉄筋コンクリート造の外壁体とは、別個
独立の壁体として地中に配される。外壁体は、山留め壁
が存在しないものとして、外壁体のみで全土圧および全
水圧を支持することができるように設計されなければな
らない。
[0003] These retaining walls are used as temporary structures during the underground construction period, and are generally left as they are in the ground after use. The temporary mountain retaining wall and the main reinforced concrete outer wall to be constructed thereafter are arranged underground as separate and independent walls. The outer wall must be designed such that the outer wall alone can support the total earth pressure and the total water pressure, assuming that there is no retaining wall.

【0004】一方、山留め壁杭材(芯材)と鉄筋コンク
リート造の外壁体を合成壁として一体化し、山留め壁杭
材を本設の外壁体として利用する方法が有る。図11
は、合成壁とする場合の地下壁構造体を示す図である。
図11において、地下の掘削によって露出させた山留め
壁杭材30の表面に、縦方向(階高方向)の全域にわたっ
て頭付きスタッド等の接合部材31を溶接した後に、鉄
筋コンクリート造の外壁体32を山留め壁杭材30の露
出表面に密着させるように施工する。接合部材31を外
壁体32の内部に埋設させ、山留め壁杭材30を鉄筋コ
ンクリート造の外壁体32と一体化させた合成壁として
地下壁構造33を構成する。この場合には、山留め壁杭
材30により地下壁構造33の強度、剛性が向上される
という力学的な合成効果が発揮される。
[0004] On the other hand, there is a method in which a mountain retaining wall pile (core material) and a reinforced concrete outer wall are integrated as a composite wall, and the mountain retaining wall pile is used as a permanent outer wall. FIG.
FIG. 3 is a diagram showing an underground wall structure when a composite wall is used.
In FIG. 11, after welding a joining member 31 such as a headed stud over the entire area in the vertical direction (floor height direction) to a surface of a retaining wall pile member 30 exposed by excavation underground, an outer wall body 32 made of reinforced concrete is welded. It is constructed so as to be in close contact with the exposed surface of the retaining wall pile member 30. The underground wall structure 33 is configured as a composite wall in which the joining member 31 is embedded inside the outer wall body 32 and the retaining wall pile member 30 is integrated with the reinforced concrete outer wall body 32. In this case, a mechanical composite effect of improving the strength and rigidity of the underground wall structure 33 by the retaining wall pile member 30 is exhibited.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、地下壁
構造33は、各階の床スラブ34,34の高さにおいて
水平方向に支持され、かつ、地下壁構造33に作用する
土圧、水圧などの水平外力により曲げモーメント、横方
向せん断力(水平力)が発生する面状の曲げ材として機
能する。山留め壁杭材30と鉄筋コンクリート造の外壁
体32とを合成壁としての力学的な合成効果を発揮させ
るためには、両者の接触面に発生する縦方向せん断力
(縦方向にずれを生じさせる力)に対して十分な数のス
タッド等の接合部材31を、シアーコネクター(せん断
ずれ止め部材)として階高の全長にわたって、設ける必
要がある。
However, the underground wall structure 33 is supported horizontally at the height of the floor slabs 34, 34 of each floor, and has a horizontal level such as earth pressure and water pressure acting on the underground wall structure 33. It functions as a planar bending material that generates bending moment and lateral shearing force (horizontal force) by external force. In order for the pile retaining material 30 and the reinforced concrete outer wall 32 to exhibit a mechanically synthesizing effect as a synthetic wall, a longitudinal shearing force (a force that causes a displacement in the longitudinal direction) generated at the contact surface between them. ), It is necessary to provide a sufficient number of joining members 31 such as studs as a shear connector (shear stopper member) over the entire floor height.

【0006】合成壁には、完全合成壁と不完全合成壁の
2種類が有る。山留め壁杭材30と外壁体32が完全に
一体化した断面として機能する完全合成壁では、夥しい
数の接合部材31が必要となり、その接合部材31を山
留め壁杭材30に溶接する溶接作業にも、莫大な作業工
数が必要となるという不都合がある。また、接合部材3
1が完全合成壁として必要な数を満足しない不完全合成
壁となる場合には、縦方向せん断力によって接合部材3
1が降伏変形し、断面の一体化性が低下する可能性があ
る。
[0006] There are two types of composite walls, complete composite walls and incomplete composite walls. In the complete composite wall functioning as a cross section in which the retaining wall pile member 30 and the outer wall body 32 are completely integrated, an enormous number of joining members 31 are required, and a welding operation for welding the joining members 31 to the retaining wall pile member 30 is required. However, there is an inconvenience that an enormous number of work steps are required. Also, the joining member 3
If 1 is an incomplete composite wall that does not satisfy the required number as a complete composite wall, the joining member 3 is formed by a longitudinal shear force.
1 may yield-deform and the cross-section integrity may decrease.

【0007】さらに、合成壁を構築する場合には、山留
め壁杭材30および鉄筋コンクリート造の外壁体32に
作用する水平力による荷重の分担割合が、山留め壁の種
類と仕様、接合の程度、地盤条件および時間経過等によ
って異なるために容易に設定できず、設計が困難である
という問題もある。
Further, when constructing a composite wall, the share of the load due to the horizontal force acting on the pile retaining wall pile member 30 and the reinforced concrete outer wall 32 depends on the type and specification of the retaining wall, the degree of joining, the ground, and the like. There is also a problem that it cannot be easily set because it differs depending on conditions, elapsed time, and the like, and design is difficult.

【0008】この発明は、上述した事情に鑑みてなされ
たものであって、縦方向に部分的に配置された連結部材
によって鋼製杭部材と地下外壁とを横方向に連結して、
鋼製杭部材を仮設の山留め壁杭材として使用するととも
に、本設の地下外壁の補強材として利用する、地下壁構
造を提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and has a steel pile member and an underground outer wall laterally connected by a connecting member partially arranged in a vertical direction.
It is an object of the present invention to provide an underground wall structure in which a steel pile member is used as a temporary pile retaining wall pile material and used as a reinforcing material for a permanent underground outer wall.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、以下の手段を提案している。 〔請求項1に係る発明〕 仮設の山留め壁を構成する鋼
製杭部材と該鋼製杭部材に隣接して施工される本設の鉄
筋コンクリート造の壁体とを、所定の階高の中間域に設
けた連結部材により、横方向に連結してなる地下壁構造
である。
In order to achieve the above object, the present invention proposes the following means. [Invention according to claim 1] A steel pile member constituting a temporary retaining wall and a main reinforced concrete wall constructed adjacent to the steel pile member are placed in an intermediate area of a predetermined floor height. Is an underground wall structure which is connected in the lateral direction by a connecting member provided in the above.

【0010】〔請求項2に係る発明〕 前記鉄筋コンク
リート造の壁体は、上下に間隔をあけて設置された床ス
ラブ、梁などの横架材によって水平変形を拘束され、上
下階の横架材の間に形成された内法階高の範囲内で水平
変形の可撓域を形成した請求項1記載の地下壁構造であ
る。
[Invention according to claim 2] The reinforced concrete wall body is restrained from being horizontally deformed by horizontal members such as floor slabs, beams and the like, which are vertically spaced, and the horizontal members on the upper and lower floors are provided. The underground wall structure according to claim 1, wherein a flexible region that is horizontally deformed is formed within a range of the inner floor height formed therebetween.

【0011】〔請求項3に係る発明〕 前記連結部材に
よって横方向に連結することにより、鋼製杭部材と前記
鉄筋コンクリート造の壁体とを、土圧、水圧などの水平
外力に対して連結部材の位置における水平変形が略同一
になるように協働化させた請求項1または請求項2記載
の地下壁構造である。
[Invention according to claim 3] The steel pile member and the reinforced concrete wall are connected to each other by horizontal connection by the connection member against horizontal external force such as earth pressure and water pressure. The underground wall structure according to claim 1 or 2, wherein the horizontal deformation at the position (1) is made to be substantially the same.

【0012】〔請求項4に係る発明〕 前記所定の階高
の中間域は、横架材の上面から内法階高の略25%〜7
5%の範囲である請求項1から請求項3のいずれかに記
載の地下壁構造である。
[Invention according to claim 4] The intermediate area of the predetermined floor height is approximately 25% to 7% of the inner floor height from the upper surface of the horizontal member.
The underground wall structure according to any one of claims 1 to 3, which is in a range of 5%.

【0013】〔請求項5に係る発明〕 前記連結部材
が、一端を鋼製杭部材に固定され、他端を鉄筋コンクリ
ート造の壁体に定着した頭付きスタッドである請求項1
から請求項4のいずれかに記載の地下壁構造である。
According to a fifth aspect of the present invention, the connecting member is a headed stud having one end fixed to a steel pile member and the other end fixed to a reinforced concrete wall.
The underground wall structure according to any one of claims 1 to 4.

【0014】〔請求項6に係る発明〕 前記連結部材
が、鋼製杭部材に固定した鉄筋、鋼製部材などの引張構
造部材からなるとともに、所定の定着長さが鉄筋コンク
リート造の壁体に埋め込まれている請求項1から請求項
4のいずれかに記載の地下壁構造である。
[Invention according to claim 6] The connecting member is composed of a tensile structural member such as a reinforcing bar or a steel member fixed to a steel pile member, and has a predetermined anchoring length embedded in a reinforced concrete wall. The underground wall structure according to any one of claims 1 to 4, wherein the underground wall structure is provided.

【0015】〔請求項7に係る発明〕 前記鋼製杭部材
に雌ねじ部が設けられ、連結部材に雌ねじ部に締結され
る雄ねじ部が設けられている請求6に記載の地下壁構造
である。
The invention according to claim 7 is the underground wall structure according to claim 6, wherein a female screw portion is provided on the steel pile member, and a male screw portion fastened to the female screw portion is provided on the connecting member.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る地下壁構造の
一実施形態について、図1〜図8を参照して説明する。
本実施形態の地下壁構造1は、図1および図2に示され
るように、仮設の山留め壁杭材として地中に設置された
鋼製杭部材2と、鋼製杭部材2に隣接する本設の地下構
造体(後打ち躯体)3の一部として施工される鉄筋コン
クリート造の外壁体4とを、所定の階高の中間域6にお
いて、連結部材8により横方向に連結したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an underground wall structure according to the present invention will be described below with reference to FIGS.
As shown in FIGS. 1 and 2, the underground wall structure 1 according to the present embodiment includes a steel pile member 2 installed in the ground as a temporary pile retaining member, and a steel pile member 2 adjacent to the steel pile member 2. And an outer wall 4 made of reinforced concrete constructed as a part of an underground structure (post-pumped body) 3 in an intermediate area 6 of a predetermined floor height by a connecting member 8 in a lateral direction.

【0017】実施形態1では、H形鋼を山留め壁杭材
(芯材)として使用したソイルセメント柱列壁工法によ
る山留め壁である場合について説明する。山留め壁は,
ソイルセメント柱列壁9と、ソイルセメント柱列壁9内
に埋設されている鋼製杭部材2とを備える。鋼製杭部材
2として、例えば、H形鋼を使用している。仮設工事と
しての山留め壁は従来技術と同じである。鋼製杭部材
は、仮設の山留め壁杭材として使用されるとともに、地
下外壁の本設の補強構造部材として利用される。
In the first embodiment, a case will be described in which an H-shaped steel is used as a pile retaining wall core material (core material) and the retaining wall is formed by a soil cement column wall method. The retaining wall is
It includes a soil cement column wall 9 and a steel pile member 2 embedded in the soil cement column wall 9. For example, an H-section steel is used as the steel pile member 2. The retaining wall as temporary construction is the same as the conventional technology. The steel pile member is used as a temporary pile retaining wall pile member and is also used as a main reinforcing structural member of the underground outer wall.

【0018】地下構造体(後打ち躯体)3は、本設の建
物の地下部分を形成する構造体である。本設とは、仮設
に対する用語であって、建物完成後の所定の耐用年数の
間、使用される耐久構造物であることをいう。図1に示
す地下構造体3は、地下2階の場合を示す。地下構造体
3は、基礎13、基礎梁12および基礎スラブ11、各
階の外壁体4、各階の床位置ごとに形成される床スラブ
14,15、および梁16などの横架材、柱19などで
構成される。図1は、地下構造体3を杭10で支持する
杭基礎の場合を示すが、直接基礎でも良い。図1および
図2に示すように、外周基礎梁17(地下2階)、外周
梁18(1階、地下1階)が、基礎梁12、梁16など
と水平方向に直交した床面に配置され、外壁体4の枠梁
として一体化している。
The underground structure (post-cast body) 3 is a structure that forms the underground portion of the main building. The term “main construction” is a term for temporary construction, and refers to a durable structure that is used for a predetermined service life after the completion of the building. The underground structure 3 shown in FIG. 1 shows the case of the second basement floor. The underground structure 3 includes a foundation 13, a foundation beam 12 and a foundation slab 11, an outer wall body 4 on each floor, floor slabs 14 and 15 formed for each floor position on each floor, and horizontal members such as beams 16, columns 19, and the like. It consists of. FIG. 1 shows a case of a pile foundation that supports the underground structure 3 with a pile 10, but may be a direct foundation. As shown in FIG. 1 and FIG. 2, an outer peripheral beam 17 (second basement) and an outer beam 18 (first floor, first basement) are arranged on a floor surface orthogonal to the foundation beams 12, the beams 16, and the like. It is integrated as a frame beam of the outer wall body 4.

【0019】外壁体4は、所定の壁厚を有する鉄筋コン
クリート造の壁体である。尚、図1〜図5では、壁体の
内部に縦横方向に配置される鉄筋(壁補強筋)は図示し
ていない。外壁体4は、上下に間隔(所定の階高)をあ
けて設置された床スラブ14(地下2階),床スラブ1
5(1階、地下1階)、梁16(1階、地下1階)など
の横架材によって水平変形を拘束されている。横架材
は、土圧、水圧などの水平外力が作用した外壁体4の水
平変形を拘束する部材である。例えば、所定の階高で横
方向に架設された、床スラブ、梁などである。しかし、
横架材は外壁体4の水平変形を拘束する機能を有すれば
良く、例えば、ブレース、火打ち材、バットレスなどで
も良い。
The outer wall 4 is a reinforced concrete wall having a predetermined wall thickness. 1 to 5, the reinforcing bars (wall reinforcing bars) arranged in the vertical and horizontal directions inside the wall are not shown. The outer wall body 4 includes a floor slab 14 (second basement floor) and a floor slab 1
5 (1st floor, 1st basement), beams 16 (1st floor, 1st basement), etc., restrict horizontal deformation. The horizontal member is a member that restrains horizontal deformation of the outer wall body 4 to which a horizontal external force such as earth pressure or water pressure acts. For example, it is a floor slab, a beam, or the like that is erected laterally at a predetermined floor height. But,
The horizontal member may have a function of restraining the horizontal deformation of the outer wall 4, and may be, for example, a brace, a fired material, a buttress, or the like.

【0020】外周梁18(1階、地下1階)は、充分な
剛性を有する断面に形成されている場合には、床スラブ
15と一体化した横架材として機能し、外周梁18の上
端から下端の範囲で外壁体4の水平変形を拘束すること
ができる。外壁体4は、上下階の横架材の間に形成され
た内法階高(図2のh01)の範囲内で水平変形の可撓域
を形成している。外周梁18(1階、地下1階)が、そ
の断面が小さくて充分な剛性を有しない場合、または、
外周梁18が設けられていない場合は、内法階高は、各
階の階高(H1)から床スラブの厚さを控除したものと
して扱われる。
When the outer peripheral beam 18 (first floor, first basement floor) is formed to have a section having sufficient rigidity, it functions as a horizontal member integrated with the floor slab 15 and the upper end of the outer peripheral beam 18. The horizontal deformation of the outer wall body 4 can be restricted in the range from the lower end to the lower end. The outer wall body 4 forms a horizontally deformable flexible region within the range of the inner floor height (h01 in FIG. 2) formed between the horizontal members on the upper and lower floors. When the outer beam 18 (first floor, first basement) has a small cross section and does not have sufficient rigidity, or
When the outer beam 18 is not provided, the inner floor height is treated as the floor height (H1) of each floor minus the thickness of the floor slab.

【0021】連結部材8は、鋼製杭部材2と、鉄筋コン
クリート造の外壁体4とを、所定の階高の中間域6で横
方向に連結した引張り構造部材である。引張構造部材
は、その材軸方向に引張力を受ける部材である。構造部
材を構成する断面に生じている力は、曲げモーメント、
せん断力、軸方向力(引張力、圧縮力)に分類される
が、引張力が支配的な部材を引張構造部材という。引張
構造部材は、主として、直線材であり、材端部の接合
(支持)条件は、両端がピン接合、両端が固定接合、一
端が固定接合で他端がピン接合の場合がある。両端がピ
ン接合の場合は圧縮力、曲げモーメントおよびせん断力
に対する強度、剛性は必要とされない。
The connecting member 8 is a tensile structural member that connects the steel pile member 2 and the reinforced concrete outer wall 4 in the middle area 6 at a predetermined floor height in the lateral direction. A tensile structural member is a member that receives a tensile force in the direction of its material axis. The force generated in the cross section that constitutes the structural member is the bending moment,
Although classified into shear force and axial force (tensile force, compressive force), a member in which tensile force is dominant is referred to as a tensile structural member. The tensile structural member is mainly a linear material, and the joining (supporting) condition of the material ends may be a pin joining at both ends, a fixed joining at both ends, a fixed joining at one end, and a pin joining at the other end. When both ends are pin-joined, strength and rigidity are not required for compressive force, bending moment and shear force.

【0022】連結部材8によって、鋼製杭部材2と外壁
体4は、土圧、水圧などの水平外力に対して連結部材8
の位置における水平変形が略同一になるように協働化さ
れている。鋼製杭部材2と、外壁体4とは、連結部材8
の位置における略同一水平変形という条件があるが、水
平外力に対してそれぞれ別個独立の構造部材として機能
する複合構造である。複合構造としての断面耐力は、鋼
製杭部材2、外壁体4が別個に有する断面耐力の和とし
て算定される。連結部材8は、鋼製杭部材2と、外壁体
4との接触面に発生する縦方向せん断力(縦方向のずれ
を生じさせる力)に有効なシアーコネクター(せん断ず
れ止め部材)としての機能は要求されない。しかし、連
結部材8は、せん断力に対する強度、剛性を有する構造
とすれば、鋼製杭部材2と外壁体4との間に生じる縦方
向せん断力に抵抗する部材として構成しても良い。
The connecting member 8 allows the steel pile member 2 and the outer wall 4 to be connected to each other by horizontal external force such as earth pressure and water pressure.
Are cooperated so that the horizontal deformations at the positions are substantially the same. The steel pile member 2 and the outer wall 4 are connected to the connecting member 8.
Although there is a condition of substantially the same horizontal deformation at the position, the composite structure functions as a separate and independent structural member for horizontal external force. The sectional strength of the composite structure is calculated as the sum of the sectional strengths of the steel pile member 2 and the outer wall 4 separately. The connecting member 8 functions as a shear connector (shear preventing member) effective for a longitudinal shearing force (a force that causes a vertical displacement) generated on a contact surface between the steel pile member 2 and the outer wall 4. Is not required. However, if the connecting member 8 has a structure having strength and rigidity against shearing force, it may be configured as a member that resists a longitudinal shearing force generated between the steel pile member 2 and the outer wall body 4.

【0023】連結部材8として、引抜き抵抗力及び引張
強度に優れた、頭付きスタッド、ボルト(鉄筋)、鋼製
部材などを使用することができる。連結部材8は、一端
を鋼製杭部材2に固定され、他端を外壁体4のコンクリ
ート断面内に所定の定着長さ(図4,図5のTL)を埋
め込んでいる。連結部材8と鋼製杭部材2は、溶接、機
械式接合などによって接合されるが、連結部材8と鋼製
杭部材2との接合部は、ピン接合、固定接合、半固定接
合の何れでも良い。連結部材8の所定の定着長は、設計
上必要とされる引抜き抵抗力によって設定される。連結
部材8の引抜き抵抗力を増大するために、連結部材8の
コンクリート中の他端に突起物を設けるのが好ましい。
例えば、スタッドの頭部、鉄筋のフック、鉄筋の定着板
などである。土圧、水圧などの水平外力によって、鋼製
杭部材2と外壁体4を接合する連結部材8には引張力が
発生するが、連結部材8と外壁体4のコンクリートとの
間では、両者間の付着強度などによって引張力が伝達す
る。
As the connecting member 8, a stud with a head, a bolt (rebar), a steel member, or the like having excellent pull-out resistance and tensile strength can be used. The connecting member 8 has one end fixed to the steel pile member 2 and the other end embedded with a predetermined fixing length (TL in FIGS. 4 and 5) in the concrete section of the outer wall 4. The connecting member 8 and the steel pile member 2 are joined by welding, mechanical joining, or the like, and the joint between the connecting member 8 and the steel pile member 2 may be any of pin joint, fixed joint, and semi-fixed joint. good. The predetermined fixing length of the connecting member 8 is set by a pull-out resistance force required in design. In order to increase the pull-out resistance of the connecting member 8, it is preferable to provide a projection at the other end of the connecting member 8 in the concrete.
For example, a head of a stud, a hook of a reinforcing bar, a fixing plate of a reinforcing bar, and the like. A tensile force is generated in the connecting member 8 that joins the steel pile member 2 and the outer wall body 4 due to horizontal external force such as earth pressure and water pressure, but between the connecting member 8 and the concrete of the outer wall body 4, The tensile force is transmitted by the adhesive strength of the steel.

【0024】連結部材8は、図4に示す例では、所定の
定着長さ(図4のTL)を有する頭付きスタッド8を使
用している。頭付きスタッド8の1本当たりの引抜き抵
抗力、引張強度に制約が有るので、連結部材8に生じて
いる引張力に十分に耐え得る引抜き抵抗力及び引張強度
を有するように、断面径、本数を選定する。図4では、
4本の頭付きスタッド8を、鋼製杭部材2であるH形鋼
のフランジ2aに所定の間隔で集中的に固定している。
即ち、4本の頭付きスタッド8によって、1つの連結部
材8が構成されている。
As the connecting member 8, in the example shown in FIG. 4, a headed stud 8 having a predetermined fixing length (TL in FIG. 4) is used. Since the pull-out resistance and the tensile strength per head of the stud 8 are limited, the cross-sectional diameter and the number of the studs 8 are adjusted so as to have the pull-out resistance and the tensile strength enough to withstand the tensile force generated in the connecting member 8. Is selected. In FIG.
Four headed studs 8 are intensively fixed at predetermined intervals to an H-shaped steel flange 2a, which is a steel pile member 2.
That is, one connecting member 8 is constituted by the four headed studs 8.

【0025】図5に示す連結部材8は、頭付きボルト
(鉄筋)8を使用している。ボルト8の一端には、雄ね
じ部8aが形成されている。鋼製杭部材2であるH形鋼
のフランジ2aに、貫通孔20を設けるとともに、貫通
孔20に対応したフランジ2aの裏側に袋ナット21を
取り付けて置く。ボルト8の雄ねじ部8aを袋ナット2
1の雌ねじ部21aに嵌めこんで、ボルト8をH形鋼に
固定する。ボルト8は、連結部材8に生じている引張力
に応じて、断面径、本数を選定するが、ボルト8の定着
長さ(図5のTL)を自由に選定できるので、大きなコ
ンクリート壁厚の外壁体4にも充分な定着長さを確保す
ることができる。頭付きボルト8の代わりに、ボルト8
の端部に鋼製プレートによる定着板(アンカープレー
ト)を取り付けて、ボルト8の引抜き抵抗力を増大して
もよい。鋼製杭部材2のソイルセメント柱列壁9内への
挿入に際して、袋ナット21内にソイルセメント柱列壁
9が浸入しないように、貫通孔20をテープ等の閉塞部
材(図示略)で閉鎖しておけばよい。
The connecting member 8 shown in FIG. 5 uses a bolt (rebar) 8 with a head. At one end of the bolt 8, a male screw portion 8a is formed. A through hole 20 is provided in the flange 2a of the H-shaped steel, which is the steel pile member 2, and a cap nut 21 is attached and placed on the back side of the flange 2a corresponding to the through hole 20. Connect the male thread 8a of the bolt 8 to the cap nut 2
The bolt 8 is fixed to the H-shaped steel by fitting it into the female screw portion 21a of the first screw. The bolt 8 has a sectional diameter and the number selected in accordance with the tensile force generated in the connecting member 8. However, since the fixing length of the bolt 8 (TL in FIG. 5) can be freely selected, a large concrete wall thickness is required. A sufficient fixing length can be secured also on the outer wall 4. Instead of headed bolt 8, bolt 8
A fixing plate (anchor plate) made of a steel plate may be attached to the end of the bolt 8 to increase the pull-out resistance of the bolt 8. When inserting the steel pile member 2 into the soil cement column wall 9, the through hole 20 is closed with a closing member (not shown) such as tape so that the soil cement column wall 9 does not enter the cap nut 21. You should keep it.

【0026】階高の中間域6とは、連結部材8を設ける
ことができる縦方向(高さ方向)の範囲をいい、各階の
階高(H1,H2)の中央近傍の領域を意味している。
図2に示されるように、地下1階部分を例に挙げて説明
する。外周梁18(1階、地下1階)が、充分な剛性を
有する断面に形成されている場合には、階高H1から、
外周梁18(1階)の断面高さGDを差し引いた内法階
高(h01)の中央高さから上下に均等にh01/4ず
つ割り振った領域をいう。言い換えると、床スラブ15
の上面位置を基準として、その上方の内法階高h01の
略25%〜75%の範囲をいうものとする。
The intermediate area 6 of the floor height refers to a range in the vertical direction (height direction) in which the connecting member 8 can be provided, and means a region near the center of the floor height (H1, H2) of each floor. I have.
As shown in FIG. 2, a description will be given by taking a basement first floor portion as an example. When the outer peripheral beam 18 (first floor, first basement floor) is formed in a section having sufficient rigidity, from the floor height H1,
This is a region in which h01 / 4 is equally distributed up and down from the center height of the inner floor height (h01) obtained by subtracting the sectional height GD of the outer peripheral beam 18 (first floor). In other words, floor slab 15
Is defined as a range of approximately 25% to 75% of the inner floor height h01 above the upper surface position.

【0027】図1、図2では、連結部材8は、地下1
階、地下2階の内法階高(h01)の中央部に、それぞ
れ1箇所づつ設けている。1箇所の連結部材8は、例え
ば、4本の頭付きスタッド8で構成されている。
In FIG. 1 and FIG. 2, the connecting member 8 is
One at each of the central part of the inner floor height (h01) of the first floor and the second basement floor. One connecting member 8 is composed of, for example, four headed studs 8.

【0028】地下構造体3では、土圧、水圧などの水平
外力が、地下1、2階の外壁体4、および、地下2階以
下の外周基礎梁17を受圧面として分布荷重の水平力と
して作用する。
In the underground structure 3, horizontal external forces such as earth pressure and water pressure are applied as horizontal forces of distributed load by using the outer wall 4 on the first and second basement floors and the outer foundation beam 17 on the second and lower basement floors as pressure receiving surfaces. Works.

【0029】図6は、地下1階の1スパン分の地下構造
体3を抽出し、視覚的に明確に示したものである。外壁
体4は上下端の床スラブ15、左右端の柱19によって
四辺固定支持された、1つの面状の曲げ材として機能す
る。外壁体4は、スパン内法(SP1)、内法階高(h0
1)の長さを有する矩形正面形状を成す。複数の鋼製杭
部材2が、外壁体4に沿って水平方向に所定のピッチで
設けられている。なお、図6では、作図上の明確のため
に、鋼製杭部材2は、そのピッチP1を図3に示したも
のよりも大きくしている。鋼製杭部材2は、縦方向に配
置された1本の直線状の曲げ材として機能する。曲げ材
とは、曲げモーメントを負担する部材をいう。構造部材
を構成する断面に生じている力は、曲げモーメント、せ
ん断力、軸方向力(軸力)に分類されるが、曲げモーメ
ントが支配的な部材を曲げ材という。
FIG. 6 shows an underground structure 3 for one span on the first basement floor, which is visually clearly shown. The outer wall 4 functions as one planar bending material fixedly supported on four sides by the floor slab 15 at the upper and lower ends and the columns 19 at the left and right ends. The outer wall body 4 has an inner span method (SP1) and an inner floor height (h0
1) A rectangular front shape having a length is formed. A plurality of steel pile members 2 are provided at a predetermined pitch in the horizontal direction along the outer wall body 4. In FIG. 6, the pitch P1 of the steel pile member 2 is larger than that shown in FIG. 3 for clarity in drawing. The steel pile member 2 functions as one linear bending member arranged in the vertical direction. A bending material is a member that bears a bending moment. The forces generated in the cross section of the structural member are classified into bending moment, shear force, and axial force (axial force). A member in which the bending moment is dominant is called a bending material.

【0030】土圧、水圧などの水平外力は、外壁体4の
表面、鋼製杭部材2の表面を受圧面として作用する。外
壁体4は、上下の床スラブ15で水平方向に支持され、
上下の床スラブ15間の可撓域(図6のh01)で室内
側に凸になるように水平変形を生じる。鋼製杭部材2と
外壁体4は、連結部材8の位置における水平変形が略同
一になるように協働化する構成となっている。従って、
線状の曲げ材部材である鋼製杭部材2が、1つの面状の
曲げ材である外壁体4の補強部材として機能する。
A horizontal external force such as earth pressure or water pressure acts on the surface of the outer wall 4 and the surface of the steel pile member 2 as a pressure receiving surface. The outer wall 4 is horizontally supported by upper and lower floor slabs 15,
Horizontal deformation occurs so as to be convex toward the indoor side in the flexible region (h01 in FIG. 6) between the upper and lower floor slabs 15. The steel pile member 2 and the outer wall 4 are configured to cooperate so that the horizontal deformation at the position of the connecting member 8 becomes substantially the same. Therefore,
The steel pile member 2 which is a linear bending member functions as a reinforcing member of the outer wall 4 which is one planar bending member.

【0031】鋼製杭部材2の負担する水平力に相当する
引張力が連結部材8を介して、外壁体4から鋼製杭部材
2に伝達する。即ち、線状の鋼製杭部材2は、上下の床
スラブ15で固定支持され、その中央部に水平力を集中
荷重として受けている1つの線状の曲げ材として機能す
る。鋼製杭部材2と上下の床スラブ15との接合部に
は、鋼製杭部材2の支点反力として圧縮力Cが生じる。
The tensile force corresponding to the horizontal force borne by the steel pile member 2 is transmitted from the outer wall 4 to the steel pile member 2 via the connecting member 8. That is, the linear steel pile member 2 is fixed and supported by the upper and lower floor slabs 15 and functions as one linear bending material receiving a horizontal force as a concentrated load at the center thereof. A compressive force C is generated at the joint between the steel pile member 2 and the upper and lower floor slabs 15 as a fulcrum reaction force of the steel pile member 2.

【0032】図7によって、地下壁構造1を、応力解析
に使用される構造力学的モデルに置換する方法を説明す
る。応力解析とは、構造力学的モデル(応力解析モデ
ル)に静的水平力を、節点荷重、中間荷重として作用さ
せて、変形、部材の応力を求める静的解析方法である。
鋼製杭部材2を、横断面の中心を通る、部材の長さ方向
(縦方向)の1本の直線材に置換する。外壁体4を、鋼
製杭部材2の横方向のピッチ(図3のP1)に相当する
幅を有する、縦方向の1本の直線材に置換する。図2、
図3で示す、4個の頭付きスタッド8を、1つの連結部
材8としてまとめて、両端がピンの1本の直線材に置換
する。
A method of replacing the underground wall structure 1 with a structural mechanical model used for stress analysis will be described with reference to FIG. The stress analysis is a static analysis method in which a static horizontal force acts on a structural mechanical model (stress analysis model) as a nodal load and an intermediate load to obtain deformation and stress of a member.
The steel pile member 2 is replaced with one straight member that passes through the center of the cross section in the length direction (longitudinal direction) of the member. The outer wall body 4 is replaced by one vertical straight member having a width corresponding to the horizontal pitch of the steel pile member 2 (P1 in FIG. 3). FIG.
The four headed studs 8 shown in FIG. 3 are combined as one connecting member 8 and both ends are replaced with a single linear member of pins.

【0033】鋼製杭部材2と、外壁体4は、上下の床ス
ラブ位置のピン支点(図7のP,Q)によって支持され
た直線材モデルに置換され、内法階高の略中央部で、1
本の直線材である連結部材8によって横方向に連結され
ている。連結部材8によって、鋼製杭部材2と外壁体4
に略同一の水平方向の変形が生ずる。連結部材8は水平
方向に配置された両端がピンの直線材であるので、せん
断力(縦方向の力)を負担せず、鋼製杭部材2と外壁体
4との間の接触面の縦方向ずれにも自由に追従する。
The steel pile member 2 and the outer wall body 4 are replaced by a straight material model supported by pin fulcrums (P, Q in FIG. 7) at the upper and lower floor slab positions, and are substantially in the center of the inner height. And 1
It is connected laterally by a connecting member 8 which is a straight member. By the connecting member 8, the steel pile member 2 and the outer wall 4
, The same horizontal deformation occurs. Since the connecting member 8 has straight pins at both ends arranged in the horizontal direction, the connecting member 8 does not bear a shearing force (longitudinal force) and has a vertical contact surface between the steel pile member 2 and the outer wall 4. Freely follow any direction deviation.

【0034】本実施形態の地下壁構造1は、鋼製杭部材
2と外壁体4とが、連結部材8の位置における略同一水
平変形という条件があるが、水平外力に対してそれぞれ
別個独立の構造部材として機能する複合構造として構成
されている。鋼製杭部材2を外壁体4と一体化した合成
壁として構成されていない。連結部材8によって横方向
に連結された鋼製杭部材2と外壁体4とは、連結部材8
による位置において、相互に協働化した構成になってい
る。ここで、協働化とは、別個の構造物を一体化するこ
となく連結して、一定の外力に対して同一の挙動をさせ
ることを意味するものとする。
The underground wall structure 1 of the present embodiment has a condition that the steel pile member 2 and the outer wall body 4 have substantially the same horizontal deformation at the position of the connecting member 8, but are independent from each other with respect to the horizontal external force. It is configured as a composite structure that functions as a structural member. It is not configured as a composite wall in which the steel pile member 2 is integrated with the outer wall body 4. The steel pile member 2 and the outer wall 4 that are laterally connected by the connecting member 8 are connected to each other by the connecting member 8.
At the position according to. Here, the term “cooperative” means that different structures are connected to each other without being integrated so that the same behavior is caused by a certain external force.

【0035】従来の地下壁構造は、多数の頭付きスタッ
ドを縦方向(階高方向)の全長にわたって連続的に配置
し、仮設の鋼製杭部材と本設の鉄筋コンクリート造の外
壁体との接触面に発生する縦方向せん断力に有効なシア
ーコネクター(せん断ずれ止め部材)として機能させて
いる。鋼製杭部材と外壁体とは、完全に一体化させて1
つの壁体として構成される。従って、本実施形態の地下
壁構造1は、合成壁を構成する従来の地下壁構造とは明
確に相違している。
In the conventional underground wall structure, a large number of headed studs are continuously arranged over the entire length in the vertical direction (floor height direction), so that a temporary steel pile member and a permanent reinforced concrete outer wall are in contact with each other. It functions as a shear connector (shear slip prevention member) effective for longitudinal shear force generated on the surface. The steel pile member and the outer wall are completely integrated
It is composed as one wall. Therefore, the underground wall structure 1 of the present embodiment is clearly different from the conventional underground wall structure forming the composite wall.

【0036】次に、図8に示すように、地下3階建ての
地下壁構造1に、土圧、水圧などの水平外力が作用する
場合の応力解析方法について説明する。図8は、図1に
示した本実施形態に係る地下壁構造1の構造力学的モデ
ル(応力算定モデル)を示す概念図である。ここでは、
鋼製杭部材2および外壁体4を、各階の床スラブ14,
15(1階〜地下2階のP,Q,Rで示すピン支点)、
基礎スラブ11の位置においてピン支持された(Sで示
すピン支点)、それぞれ1本の直線材に置換する。鋼製
杭部材2の受圧面積が十分に小さく、設置ピッチP1が
十分に大きいものとして、水平外力Fは外壁体4のみを
受圧面として作用するものと仮定している。水平外力F
は、地表からの深さに比例する分布荷重としている。
Next, as shown in FIG. 8, a description will be given of a stress analysis method in the case where a horizontal external force such as earth pressure or water pressure acts on the underground wall structure 1 having three stories underground. FIG. 8 is a conceptual diagram showing a structural mechanical model (stress calculation model) of the underground wall structure 1 according to the present embodiment shown in FIG. here,
The steel pile member 2 and the outer wall 4 are connected to the floor slabs 14,
15 (pin fulcrum indicated by P, Q, R on the first floor to the second basement floor),
Pins are supported at the position of the base slab 11 (pin fulcrum indicated by S), and each is replaced with one straight material. Assuming that the pressure receiving area of the steel pile member 2 is sufficiently small and the installation pitch P1 is sufficiently large, the horizontal external force F acts only on the outer wall 4 as a pressure receiving surface. Horizontal external force F
Is a distributed load proportional to the depth from the ground surface.

【0037】連結部材8は、鋼製杭部材2と外壁体4と
の間で横方向の引張力T1,T2を伝達する引張構造部
材であるので、一定の剛性k1,k2を有する水平バネ
要素に置換される。連結部材8である水平バネ要素は、
内法階高(図8の、P―Q間、Q−R間)の略中央部に
それぞれ1箇所づつ配置され、鋼製杭部材2と外壁体4
を横方向に連結している。連結部材8には、外壁体4に
生じた水平変形を減少するように引張力が生じ、鋼製杭
部材2の連結箇所に外壁体4と略同一の変形が生じる。
Since the connecting member 8 is a tensile structural member for transmitting the lateral tensile forces T1, T2 between the steel pile member 2 and the outer wall 4, a horizontal spring element having a certain rigidity k1, k2 is provided. Is replaced by The horizontal spring element that is the connecting member 8 includes:
A steel pile member 2 and an outer wall member 4 are respectively arranged at approximately one central portion of the inner floor height (between PQ and QR) in FIG.
Are connected in the horizontal direction. A tensile force is generated in the connecting member 8 so as to reduce the horizontal deformation generated in the outer wall body 4, and substantially the same deformation as the outer wall body 4 occurs in the connecting portion of the steel pile member 2.

【0038】このように構造力学的モデルを仮定する
と、鋼製杭部材2および外壁体4に発生する曲げモーメ
ントおよび横方向せん断力(水平方向)の縦方向分布
は、図9に実線で示されるとおりとなる。図中(a)は
鋼製杭部材2の曲げモーメント、(b)は外壁体4の曲
げモーメント、(c)は鋼製杭部材2のせん断力、
(d)は外壁体4のせん断力をそれぞれ示している。
Assuming such a structural mechanical model, the vertical distribution of the bending moment and the lateral shear force (horizontal direction) generated in the steel pile member 2 and the outer wall 4 is shown by a solid line in FIG. It is as follows. In the figure, (a) is the bending moment of the steel pile member 2, (b) is the bending moment of the outer wall 4, (c) is the shear force of the steel pile member 2,
(D) has shown the shearing force of the outer wall body 4, respectively.

【0039】外壁体4は、ピン支点P,Q,R,Sで水
平変形が拘束されているが、可撓域(内法階高)には、
水平外力Fによって水平変形、面外方向の曲げモーメン
トが発生する。ここで、外壁体4に生じる面外方向の曲
げモーメントのうち、可撓域の中間部で水平外力Fと反
対側に凸になる曲げモーメントを「正の曲げモーメン
ト」といい、可撓域の両端部で水平外力Fと同一側に凸
になる曲げモーメントを「負の曲げモーメント」とい
う。
The horizontal deformation of the outer wall 4 is restricted by the pin fulcrums P, Q, R, and S. However, in the flexible region (inner height),
The horizontal external force F causes horizontal deformation and an out-of-plane bending moment. Here, of the bending moments in the out-of-plane direction generated in the outer wall body 4, the bending moment that becomes convex on the opposite side to the horizontal external force F in the middle part of the flexible region is called “positive bending moment”, A bending moment that becomes convex on the same side as the horizontal external force F at both ends is referred to as a “negative bending moment”.

【0040】図9の(b)に示す、破線で示された連結
部材6を設けない場合の外壁体4に発生する曲げモーメ
ントは、各階高の略中央部において正の最大値を示して
いる。図9の(d)に示す、破線で示された連結部材6
を設けない場合の外壁体4に発生する横方向せん断力
は、外壁体4の各階高の略中央部においてゼロとなって
いる。階高の中央部近傍で、その上下のせん断力(横方
向の力)の方向が切り換わる。
As shown in FIG. 9B, the bending moment generated on the outer wall 4 when the connecting member 6 indicated by the broken line is not provided has a positive maximum value at substantially the center of each floor height. . The connecting member 6 shown by a broken line in FIG.
The lateral shearing force generated in the outer wall 4 when no is provided is zero at substantially the center of each floor height of the outer wall 4. Near the center of the floor height, the direction of the upper and lower shear forces (lateral forces) is switched.

【0041】鋼製杭部材2と外壁体4とを多数の接合部
材によって一体化させるのではなく、階高の中央部に設
けた連結部材8によって協働化させることにより、連結
部材8のせん断力による破断の問題を生ずることなく、
連結部材8の本数を大幅に低減することができるという
効果がある。
The steel pile member 2 and the outer wall 4 are not integrated by a large number of joining members, but are made to cooperate by a connecting member 8 provided at the center of the floor height, so that the shearing force of the connecting member 8 is increased. Without causing breakage problems
There is an effect that the number of connecting members 8 can be significantly reduced.

【0042】また、図9の(b)によれば、各階高の中
間域6に設けた連結部材8の位置で、水平外力Fとは反
対方向の外力T1,T2が外壁体4に見掛け上作用し、
その結果、連結部材8を設けない場合と比較して、外壁
体4に発生する正、負の曲げモーメントを低減すること
ができる。
According to FIG. 9 (b), external forces T1 and T2 in the opposite direction to the horizontal external force F appear on the outer wall 4 at the position of the connecting member 8 provided in the intermediate area 6 at each floor height. Act,
As a result, the positive and negative bending moments generated on the outer wall 4 can be reduced as compared with the case where the connecting member 8 is not provided.

【0043】図9の(d)によれば、外壁体4に発生す
る横方向せん断力(水平力)は、連結部材8を取り付け
ることによって、縦方向の分布形態が変化している。階
高の略中央位置の横方向せん断力(水平力)は、連結部
材8を取り付けない場合にはゼロであったが、連結部材
8を設けると連結部材8に生じる引張力に相当する値が
発生している。ピン支点P,Q,R,S(床スラブ1
4,15)近傍において発生していた最大せん断力は、
十分に低減されている。
According to FIG. 9D, the distribution of the transverse shear force (horizontal force) generated in the outer wall body 4 in the longitudinal direction is changed by attaching the connecting member 8. The lateral shearing force (horizontal force) at the approximate center of the floor height was zero when the connecting member 8 was not attached, but when the connecting member 8 was provided, a value corresponding to the tensile force generated in the connecting member 8 was obtained. It has occurred. Pin fulcrum P, Q, R, S (floor slab 1
The maximum shear force generated near (4,15) is
It has been sufficiently reduced.

【0044】本実施形態に係る地下壁構造1によれば、
階高の中間域6に設けた連結部材8によって、外壁体4
に発生する、曲げモーメントおよびせん断力を外壁体4
の縦方向に平均化させ、外壁体4の断面設計応力が減少
し、壁厚、壁筋などが少なくなる。
According to the underground wall structure 1 according to this embodiment,
By the connecting member 8 provided in the middle area 6 of the floor height, the outer wall 4
The bending moment and shear force generated in the outer wall 4
Are averaged in the vertical direction, so that the sectional design stress of the outer wall body 4 is reduced, and the wall thickness, wall streak, etc. are reduced.

【0045】連結部材6の縦方向位置は、外壁体4の正
の曲げモーメントを緩和する効果の面では、内法階高の
中央部近傍が最も好ましい。しかし、外壁体4に発生す
る横方向せん断力は、内法階高の略中央部で最小値
(零)を示すが、その近傍の一定範囲(階高の中間域
6)においても比較的に小さな値を示す。連結部材8
は、両端がピンの1本の直線材であるので、鋼製杭部材
2と外壁体4の接触面の縦方向ずれに容易に追従し、連
結部材8にせん断力(縦方向の力)が生じない。したが
って、連結部材8を、階高の中間域6の範囲内の任意の
位置に配置しても、外壁体4の正、負の曲げモーメント
を緩和する効果を発揮する。連結部材8を、中間域6の
任意の位置に、任意箇所数を設けても良い。
The position of the connecting member 6 in the longitudinal direction is most preferably in the vicinity of the center of the inner floor height in terms of the effect of relaxing the positive bending moment of the outer wall 4. However, the lateral shearing force generated in the outer wall 4 shows a minimum value (zero) at a substantially central portion of the inner floor height, but is relatively small even in a certain range in the vicinity thereof (middle region 6 of the floor height). Indicates a small value. Connecting member 8
Since both ends are a single linear member of a pin, it easily follows the longitudinal displacement of the contact surface between the steel pile member 2 and the outer wall 4, and a shear force (longitudinal force) is applied to the connecting member 8. Does not occur. Therefore, even if the connecting member 8 is arranged at an arbitrary position within the range of the middle area 6 of the floor height, the effect of relaxing the positive and negative bending moments of the outer wall body 4 is exhibited. An arbitrary number of connecting members 8 may be provided at arbitrary positions in the intermediate region 6.

【0046】図7、図8に示した応力解析モデルにおい
て、連結部材8の両端をピン接合として説明している
が、両端を固定接合、又は、一端を固定接合で他端をピ
ン接合にしても良い。両端を固定接合、又は、一端を固
定接合で他端をピン接合とすると、連結部材8にはせん
断力(縦方向の力)が生じる可能性が有るが、連結部材
8を内法階高の中央部近傍に設けた場合に生じる連結部
材8のせん断力は、連結部材8を内法階高の両端部近傍
に設けた場合のせん断力より小さくなる。従って、連結
部材8にせん断力が生じる場合には、連結部材8を引張
強度に加えてせん断力に対する所要の強度を有する構成
とすれば良い。
In the stress analysis models shown in FIGS. 7 and 8, both ends of the connecting member 8 are described as being pin-joined. However, both ends are fixedly joined, or one end is fixedly joined and the other end is pin-joined. Is also good. If both ends are fixedly joined, or one end is fixedly joined and the other end is pin-joined, a shearing force (longitudinal force) may be generated in the connecting member 8. The shearing force of the connecting member 8 generated when the connecting member 8 is provided near the center is smaller than the shearing force when the connecting member 8 is provided near both ends of the inner floor height. Therefore, when a shearing force is generated in the connecting member 8, the connecting member 8 may be configured to have a required strength against the shearing force in addition to the tensile strength.

【0047】階高の中間域6は、床スラブ15の上面位
置から上方の内法階高h01の略25%〜75%の範囲
として説明したが、これは、連結部材6を設けない場合
に上下の床スラブ15で固定支持された(図1の地下2
階に相当する)の外壁体4に発生する曲げモーメント
が、可撓域(内法階高)の中間部で水平外力Fと反対側
に凸になる曲げモーメント(「正の曲げモーメント」)
である範囲と近似する。
The intermediate floor height 6 has been described as being in the range of approximately 25% to 75% of the inner floor height h01 above the upper surface of the floor slab 15, but this is the case where the connecting member 6 is not provided. It was fixed and supported by the upper and lower floor slabs 15 (underground 2 in FIG. 1).
The bending moment generated on the outer wall body 4 (corresponding to the floor) is a bending moment (“positive bending moment”) that becomes convex on the opposite side to the horizontal external force F in the middle of the flexible region (inner floor height).
Approximate range.

【0048】このような地下壁構造1は、次のようにし
て構築される。まず第1に、山留め壁を構築する。山留
め壁は、多軸オーガーでセメントミルクと地山を攪拌し
ながら削孔し、鋼製杭部材2を挿入して硬化させる、従
来のソイルセメント柱列壁工法によって構築することが
できる。鋼製杭部材2は、図1に示されるように、地下
構造体3の深さを超える十分な深さまで挿入される。ま
た、鋼製杭部材2は、図3に示されるように、水平方向
に所定のピッチ(P1)をおいて設けられる。
The underground wall structure 1 is constructed as follows. First, a retaining wall is constructed. The retaining wall can be constructed by a conventional soil-cemented column wall construction method in which a cemented milk and ground are drilled while stirring with a multiaxial auger, and a steel pile member 2 is inserted and hardened. As shown in FIG. 1, the steel pile member 2 is inserted to a depth sufficient to exceed the depth of the underground structure 3. As shown in FIG. 3, the steel pile members 2 are provided at a predetermined pitch (P1) in the horizontal direction.

【0049】次に、山留め壁の内側の地盤を掘削して鋼
製杭部材(H形鋼)2の一表面を露出させる。そして、
露出させた鋼製杭部材2の表面の所定位置(各階高の中
間域6に相当する位置)に、頭付きスタッド8である連
結部材8を取り付ける。
Next, the ground inside the retaining wall is excavated to expose one surface of the steel pile member (H-shaped steel) 2. And
At a predetermined position on the exposed surface of the steel pile member 2 (a position corresponding to the intermediate area 6 of each floor height), the connecting member 8 as a stud 8 with a head is attached.

【0050】まず、杭10を構築する。次に、地下構造
体3を構築する。基礎13、基礎スラブ11、基礎梁1
2、床スラブ14,15、外壁体4および梁16からな
る地下構造体3を順次構築していく。
First, the pile 10 is constructed. Next, the underground structure 3 is constructed. Foundation 13, foundation slab 11, foundation beam 1
2. The underground structure 3 composed of the floor slabs 14 and 15, the outer wall 4 and the beam 16 is sequentially constructed.

【0051】鉄筋コンクリート造の外壁体4は、掘削に
より露出した山留め壁に隣接するように、一定の壁厚
(Wd)で構築される。外壁体4を鋼製杭部材2に隣接
するように構築することにより、鋼製杭部材2の表面に
突出状態に取り付けた連結部材8は、外壁体4の内部に
所定の定着長さ(TL)を埋設される。
The reinforced concrete outer wall 4 is constructed with a constant wall thickness (Wd) so as to be adjacent to the retaining wall exposed by excavation. By constructing the outer wall body 4 so as to be adjacent to the steel pile member 2, the connecting member 8 attached to the surface of the steel pile member 2 so as to protrude therefrom has a predetermined fixing length (TL) inside the outer wall body 4. Buried)

【0052】図10は、実施形態2を示す。実施形態1
と異なるのは、地下壁構造1の地下1階の床スラブ、梁
が設けられていない、吹抜け構造を構成していることで
ある。連結部材8を設置できる階高の中間域6を算定す
る際に、吹抜けの上下に配される床スラブ14(地下2
階),床スラブ15(1階)間の高さ(H1+H2)
を、便宜上、階高と考え、この階高から1階の外周梁1
8の断面高さ(GD)を差し引いたものを、内法階高
(h12)として扱う。この場合には、階高の中間域
は、地下2階の床スラブ14上面から上方の内法階高
(h12)の25%〜75%の範囲を言うものとする。
FIG. 10 shows a second embodiment. Embodiment 1
The difference is that the floor slab and the beam on the first basement floor of the basement wall structure 1 are not provided with an atrium structure. When calculating the intermediate area 6 of the floor height where the connecting member 8 can be installed, the floor slabs 14 (basement 2
Floor), height between floor slab 15 (first floor) (H1 + H2)
Is, for convenience, considered the floor height, and from this floor height
The value obtained by subtracting the section height (GD) of No. 8 is treated as the inner floor height (h12). In this case, the intermediate area of the floor height refers to a range of 25% to 75% of the inner floor height (h12) above the upper surface of the floor slab 14 on the second basement floor.

【0053】以上、本発明の実施形態を説明したが、本
発明は上記の実施形態に限定されるものではなく、本発
明の要旨の範囲で種々の変形、付加等が可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications and additions can be made within the scope of the present invention.

【0054】山留め壁工法としては、ソイルセメント柱
列壁工法の他、親杭横矢板壁工法、鋼矢板壁工法等を採
用することができ、それぞれの場合に鋼製杭部材2は、
親杭となるH形鋼や鋼矢板である。
As the retaining wall construction method, in addition to the soil cement column wall construction method, a parent pile horizontal sheet pile wall construction method, a steel sheet pile wall construction method and the like can be adopted. In each case, the steel pile member 2
It is an H-shaped steel or steel sheet pile that becomes a parent pile.

【0055】本設の鉄筋コンクリート造の壁体は、地下
構造体(後打ち躯体)の外壁体として説明したが、これ
に限定されず、土圧、水圧などの水平外力を受ける壁体
に幅広く適用することができる。例えば、擁壁、地中構
造物(カルバート)の壁体に適用することができる。
The main reinforced concrete wall has been described as an outer wall of an underground structure (post-cast body), but is not limited to this, and is widely applied to a wall subjected to horizontal external force such as earth pressure or water pressure. can do. For example, the present invention can be applied to retaining walls and walls of underground structures (culverts).

【0056】[0056]

【発明の効果】〔請求項1に係る発明〕 (1) 本発
明によれば、縦方向に部分的に配置された連結部材によ
って鋼製杭部材と地下外壁とを横方向に連結して、鋼製
杭部材を仮設の山留め壁杭材として使用するとともに、
本設の地下外壁の補強材として利用する、地下壁構造を
提供することができる。 (2)本発明は、鋼製杭部材と本設の鉄筋コンクリート
造の壁体とが、連結部材の位置における略同一水平変形
という条件下で、水平外力に対してそれぞれ別個独立の
構造部材として機能する複合構造として構成されてい
る。鋼製杭部材を外壁体と一体化した合成壁として構成
されていない。従って、引張構造部材である連結部材
は、構造が極めて簡易になり、その設置数が少なくな
り、設置可能範囲も広くなる。 (3)山留め壁は仮設工事中に切梁によって水平変形を
拘束されるが、切梁の盛り替えによって生じる水平変形
の縦方向分布は変動する。連結部材はその定着長さを調
整することによって、工事中の鋼製杭部材と本設の壁体
間の水平距離の変動に容易に対応することができる。 (4)本発明は、本設の壁体に生じる横方向せん断力が
小さい、階高の中間域に連結部材を配する。したがっ
て、従来、仮設の鋼製杭部材と本設の鉄筋コンクリート
造の壁体とを接合する接合部材の数を減らして合成壁と
する際に生じていた、接合部材の破断の問題を生ずるこ
となく、その数を大幅に低減することができる。 (5)本発明は、本設の外壁体に生ずる曲げモーメン
ト、横方向せん断力などの断面設計応力を低減し、壁
厚、壁筋などを少なくする。
According to the present invention, (1) According to the present invention, the steel pile member and the underground outer wall are laterally connected by the connecting member partially arranged in the vertical direction, While using steel pile members as temporary pile retaining wall pile materials,
An underground wall structure used as a reinforcing material for a main underground outer wall can be provided. (2) According to the present invention, the steel pile member and the reinforced concrete wall function as independent structural members against horizontal external force under the condition of substantially the same horizontal deformation at the position of the connecting member. It is configured as a composite structure. It is not configured as a composite wall with a steel pile member integrated with the outer wall. Therefore, the structure of the connecting member, which is a tensile structural member, is extremely simple, the number of installation members is reduced, and the installable range is widened. (3) The horizontal deformation of the retaining wall is restrained by the girder during the temporary construction work, but the vertical distribution of the horizontal deformation caused by the replacement of the girder fluctuates. By adjusting the anchoring length of the connecting member, it is possible to easily cope with a change in the horizontal distance between the steel pile member and the main wall during construction. (4) According to the present invention, the connecting member is disposed in an intermediate area of the floor height where the lateral shear force generated on the wall of the main building is small. Therefore, conventionally, when the number of joining members for joining the temporary steel pile member and the main reinforced concrete wall body to reduce the number of joining members to form a composite wall, without causing a problem of breakage of the joining members , The number can be greatly reduced. (5) The present invention reduces cross-sectional design stresses such as bending moments and lateral shear forces generated in the outer wall of the main body, and reduces wall thickness, wall streaks, and the like.

【0057】〔請求項2に係る発明〕 横架材の間に形
成された内法階高の範囲内に水平変形の可撓域を形成し
たので、内法階高の中間域に配した連結部材によって、
該連結部材の位置における可撓域の水平変形が拘束され
る。中間域は、可撓域の水平変形が最も大きくなる領域
に当たるため、この位置での可撓域の水平変形を拘束す
ることによって、鉄筋コンクリート造の壁体に発生する
応力状態を改善することができる。
[Invention according to claim 2] Since the flexible region of horizontal deformation is formed in the range of the inner floor height formed between the horizontal members, the connection is arranged in the middle region of the inner floor height. Depending on the member,
Horizontal deformation of the flexible region at the position of the connecting member is restricted. Since the intermediate region corresponds to the region where the horizontal deformation of the flexible region is the largest, by restraining the horizontal deformation of the flexible region at this position, the stress state generated in the reinforced concrete wall can be improved. .

【0058】〔請求項3に係る発明〕 階高の中間域に
配した連結部材によって、鋼製杭部材と鉄筋コンクリー
ト造の壁体とが協働化させられることにより、鉄筋コン
クリート造の壁体の剛性に加えて、鋼製杭部材の剛性
を、土圧、水圧などの水平外力に対抗するために利用す
ることができる。その結果、本設の鉄筋コンクリート造
の壁体に発生する曲げモーメント等を軽減することがで
きる。
[Invention according to claim 3] The steel pile member and the reinforced concrete wall are made to cooperate with each other by the connecting member disposed in the middle area of the floor height, thereby reducing the rigidity of the reinforced concrete wall. In addition, the rigidity of the steel pile member can be used to counter horizontal external forces such as earth pressure and water pressure. As a result, a bending moment or the like generated in the reinforced concrete wall of the main building can be reduced.

【0059】〔請求項4に係る発明〕 連結部材をこの
範囲内に設置すれば、本設の壁体の正負の曲げモーメン
ト、横方向せん断力を効果的に低減することができる。
連結部材を、中間域の任意の位置に、任意箇所数を設け
ることができる融通性を有する。
[Invention of Claim 4] If the connecting member is installed within this range, the positive and negative bending moments and lateral shearing force of the main wall can be effectively reduced.
The connecting member has flexibility so that an arbitrary number of connecting members can be provided at arbitrary positions in the intermediate region.

【0060】〔請求項5に係る発明〕 連結部材を頭付
きスタッドとすれば、本発明を簡易に構成することがで
きる。すなわち、頭付きスタッドの一端を鋼製杭部材に
固定し、他端である頭部を含む所定の定着長さにわたっ
て鉄筋コンクリート造の壁体に埋め込み、鋼製杭部材と
鉄筋コンクリート造の壁体とを確実に連結し、協働化さ
せることができる。
[Invention of Claim 5] If the connecting member is a stud with a head, the present invention can be easily configured. That is, one end of a headed stud is fixed to a steel pile member, and embedded in a reinforced concrete wall over a predetermined anchoring length including the head at the other end, and the steel pile member and the reinforced concrete wall are combined. They can be reliably connected and cooperated.

【0061】〔請求項6に係る発明〕 連結部材を、鉄
筋、鋼製部材などの任意の引張構造部材としても、頭付
きスタッドと同等の効果を奏することができる。また多
様な方法でこの発明の地下壁構造を構築することができ
る。
[Invention according to claim 6] Even if the connecting member is any tensile structural member such as a reinforcing bar or a steel member, the same effect as the headed stud can be obtained. Also, the underground wall structure of the present invention can be constructed in various ways.

【0062】〔請求項7に係る発明〕 連結部材の取り
付けを溶接によることなく、ねじの締結によることとす
れば、現場での溶接作業が不要となり、簡易かつ確実に
取り付けることができる。鋼製杭部材に雌ねじ部を設け
ておき、鋼製杭部材の設置後に連結部材を締結する構造
とすれば、鋼製杭部材の設置の際に、鋼製杭部材の表面
に突出部が形成されないので、設置作業を円滑に行うこ
とができる。
[Invention according to claim 7] If the attachment of the connecting member is not by welding but by fastening the screws, welding work on site is unnecessary, and attachment can be performed simply and reliably. If a female thread is provided on the steel pile member and the connecting member is fastened after the steel pile member is installed, a projection is formed on the surface of the steel pile member when the steel pile member is installed. Since it is not performed, the installation work can be performed smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1に係る地下壁構造を概略
的に示す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing an underground wall structure according to a first embodiment of the present invention.

【図2】 図1の地下壁構造の内の任意の1階分を概略
的に示す縦断面図である。
FIG. 2 is a longitudinal sectional view schematically showing an arbitrary one floor of the underground wall structure of FIG.

【図3】 図1の地下壁構造を概略的に示す横断面図で
ある。
FIG. 3 is a cross-sectional view schematically showing the underground wall structure of FIG.

【図4】 図1の地下壁構造の連結部材(頭付きスタッ
ド)を説明する縦断面図である。
4 is a longitudinal sectional view illustrating a connecting member (a stud with a head) of the underground wall structure in FIG.

【図5】 図1の地下壁構造の他の連結部材(頭付き
ボルト)を説明する縦断面図である。
FIG. 5 is a longitudinal sectional view illustrating another connecting member (headed bolt) of the underground wall structure of FIG.

【図6】 図2の地下壁構造を模式的に示す斜視図であ
る。
FIG. 6 is a perspective view schematically showing the underground wall structure of FIG. 2;

【図7】 図2の地下壁構造の応力算定モデルを模式的
に示す図である。
FIG. 7 is a view schematically showing a stress calculation model of the underground wall structure of FIG. 2;

【図8】 図1の地下壁構造の応力算定モデルを示す図
である。
8 is a diagram showing a stress calculation model of the underground wall structure of FIG.

【図9】 図8の応力算定モデルを用いて得られた曲げ
モーメントおよびせん断力の分布を示す図である。
9 is a diagram showing distributions of bending moment and shear force obtained by using the stress calculation model of FIG.

【図10】 本発明の実施形態2に係る地下壁構造を概
略的に示す縦断面図である。
FIG. 10 is a longitudinal sectional view schematically showing an underground wall structure according to a second embodiment of the present invention.

【図11】 従来の合成壁とする地下壁構造を概略的に
示す縦断面図である。
FIG. 11 is a longitudinal sectional view schematically showing an underground wall structure as a conventional composite wall.

【符号の説明】[Explanation of symbols]

H1,H2 階高 h01 内法階高 1 地下壁構造 2 鋼製杭部材 3 地下構造体 4 壁体 6 中間域 8 頭付きスタッド(連結部材) 8a 雄ネジ部 9 ソイルセメント柱列壁 11 基礎スラブ 12 基礎梁(横架材) 13 基礎 14,15 床スラブ(横架材) 16 梁(横架材) 17 外周基礎梁 18 外周梁 19 柱 20 貫通孔 21 袋ナット 21a 雌ねじ部 H1, H2 Floor height h01 Inner floor height 1 Basement wall structure 2 Steel pile member 3 Underground structure 4 Wall body 6 Intermediate area 8 Headed stud (connecting member) 8a Male screw part 9 Soil cement column row wall 11 Foundation slab Reference Signs List 12 foundation beam (horizontal member) 13 foundation 14, 15 floor slab (horizontal member) 16 beam (horizontal member) 17 outer peripheral foundation beam 18 outer peripheral beam 19 column 20 through hole 21 cap nut 21a female screw portion

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000195971 西松建設株式会社 東京都港区虎ノ門1丁目20番10号 (71)出願人 000140982 株式会社間組 東京都港区北青山2丁目5番8号 (71)出願人 000112668 株式会社フジタ 東京都渋谷区千駄ヶ谷四丁目25番2号 (71)出願人 000174943 三井建設株式会社 東京都中央区日本橋蛎殻町一丁目36番5号 (72)発明者 根本 恒 東京都港区芝浦三丁目12番8号 安藤建設 株式会社内 (72)発明者 内村 均 神奈川県厚木市三田47番3号 佐藤工業株 式会社中央技術研究所内 (72)発明者 能森 雅己 東京都新宿区荒木町13番地の4 住友建設 株式会社内 (72)発明者 笠原 章 東京都港区虎ノ門一丁目20番10号 西松建 設株式会社内 (72)発明者 菊地 祐悦 東京都港区北青山二丁目5番8号 株式会 社間組建築事業総本部生産技術部内 (72)発明者 大西 靖和 神奈川県厚木市小野2025−1番地 株式会 社フジタ技術センター内 (72)発明者 田野 健治 千葉県流山市駒木518番地1号 三井建設 株式会社技術研究所内 Fターム(参考) 2D049 EA02 EA09 GB05 GC11 GD03 GE03  ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 000195971 Nishimatsu Construction Co., Ltd. 1-20-10 Toranomon, Minato-ku, Tokyo (71) Applicant 000140982 Ma-gumi Co., Ltd. 2-5-2-8 Kitaaoyama, Minato-ku, Tokyo (71 Applicant 000112668 Fujita Co., Ltd. 4- 25-2 Sendagaya, Shibuya-ku, Tokyo (71) Applicant 000174943 Mitsui Construction Co., Ltd. 1-36-5 Nihonbashi Kakigashi-cho, Nihonbashi, Chuo-ku, Tokyo (12) Inventor Hitoshi Uchimura 47-3 Mita, Atsugi-shi, Kanagawa Prefecture Sato Industrial Co., Ltd.Central Technology Research Institute (72) Inventor Masami Nomori Tokyo 13-4 Araki-cho, Shinjuku-ku Sumitomo Construction Co., Ltd. (72) Inventor Akira Kasahara 1-20-10 Toranomon, Minato-ku, Tokyo Nishimatsu Construction Co., Ltd. (72) Inventor Yuetsu Chi 2-5-8 Kitaaoyama, Minato-ku, Tokyo Production Engineering Dept., Inter-Group Construction Business Headquarters Inventor Kenji Tano 518-1, Komagaki, Nagareyama-shi, Chiba F-term (Reference) 2D049 EA02 EA09 GB05 GC11 GD03 GE03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 仮設の山留め壁を構成する鋼製杭部材
と、鋼製杭部材に隣接して施工される本設の鉄筋コンク
リート造の壁体とを、所定の階高の中間域に設けた連結
部材により、横方向に連結してなる地下壁構造。
1. A steel pile member constituting a temporary retaining wall, and a main reinforced concrete wall constructed adjacent to the steel pile member are provided in an intermediate area of a predetermined floor height. Underground wall structure that is connected laterally by connecting members.
【請求項2】 前記鉄筋コンクリート造の壁体は、上下
に間隔をあけて設置された床スラブ、梁などの横架材に
よって水平変形を拘束され、上下階の横架材の間に形成
された内法階高の範囲内で水平変形の可撓域を形成した
請求項1記載の地下壁構造。
2. The reinforced concrete wall body is restrained from being horizontally deformed by horizontal members such as floor slabs, beams and the like which are installed at intervals above and below, and is formed between the horizontal members on the upper and lower floors. 2. The underground wall structure according to claim 1, wherein a flexible region that is horizontally deformed is formed within the range of the inner floor height.
【請求項3】 前記連結部材によって横方向に連結する
ことにより、鋼製杭部材と鉄筋コンクリート造の壁体と
を、土圧、水圧などの水平外力に対して連結部材の位置
における水平変形が略同一になるように協働化させた請
求項1または請求項2記載の地下壁構造。
3. The steel pile member and the reinforced concrete wall are substantially horizontally deformed at the position of the connection member against horizontal external force such as earth pressure and water pressure by connecting the steel pile member and the reinforced concrete wall body by the horizontal connection by the connection member. The underground wall structure according to claim 1 or 2, wherein the underground wall structure is cooperated to be identical.
【請求項4】 前記所定の階高の中間域は、横架材の上
面から内法階高の略25%〜75%の範囲である請求項
1から請求項3のいずれかに記載の地下壁構造。
4. The underground according to claim 1, wherein the intermediate area of the predetermined floor height is approximately 25% to 75% of the inner floor height from the upper surface of the horizontal member. Wall structure.
【請求項5】 前記連結部材が、一端を鋼製杭部材に固
定され、他端を鉄筋コンクリート造の壁体に定着した頭
付きスタッドである請求項1から請求項4のいずれかに
記載の地下壁構造。
5. The underground according to claim 1, wherein the connecting member is a stud with one end fixed to a steel pile member and the other end fixed to a reinforced concrete wall. Wall structure.
【請求項6】 前記連結部材が、鋼製杭部材に固定した
鉄筋、鋼製部材などの引張構造部材からなるとともに、
所定の定着長さが鉄筋コンクリート造の壁体に埋め込ま
れている請求項1から請求項4のいずれかに記載の地下
壁構造。
6. The connecting member comprises a reinforcing member fixed to a steel pile member, a tensile structural member such as a steel member, and the like.
The underground wall structure according to any one of claims 1 to 4, wherein a predetermined anchoring length is embedded in a reinforced concrete wall.
【請求項7】 前記鋼製杭部材に雌ねじ部が設けられ、
連結部材に雌ねじ部に締結される雄ねじ部が設けられて
いる請求項6記載の地下壁構造。
7. A female threaded portion is provided on the steel pile member,
The underground wall structure according to claim 6, wherein a male screw portion fastened to the female screw portion is provided on the connecting member.
JP2001008509A 2001-01-17 2001-01-17 Underground wall structure Expired - Lifetime JP3578210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001008509A JP3578210B2 (en) 2001-01-17 2001-01-17 Underground wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008509A JP3578210B2 (en) 2001-01-17 2001-01-17 Underground wall structure

Publications (2)

Publication Number Publication Date
JP2002212944A true JP2002212944A (en) 2002-07-31
JP3578210B2 JP3578210B2 (en) 2004-10-20

Family

ID=18876122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008509A Expired - Lifetime JP3578210B2 (en) 2001-01-17 2001-01-17 Underground wall structure

Country Status (1)

Country Link
JP (1) JP3578210B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002675A (en) * 2003-06-12 2005-01-06 Shimizu Corp Method of evaluating timbering performance of composite earth retaining wall
JP2005344387A (en) * 2004-06-03 2005-12-15 Shimizu Corp Stud and composite wall using the same
JP2012012932A (en) * 2011-08-04 2012-01-19 Jfe Steel Corp Composite wall structure
JP2017122333A (en) * 2016-01-06 2017-07-13 株式会社竹中工務店 Structure
CN107806102A (en) * 2017-11-20 2018-03-16 中建局集团建设发展有限公司 A kind of horizontal inner support part shearing resistance construction of ultra-deep foundation pit and its construction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002675A (en) * 2003-06-12 2005-01-06 Shimizu Corp Method of evaluating timbering performance of composite earth retaining wall
JP2005344387A (en) * 2004-06-03 2005-12-15 Shimizu Corp Stud and composite wall using the same
JP4552114B2 (en) * 2004-06-03 2010-09-29 清水建設株式会社 Synthetic wall
JP2012012932A (en) * 2011-08-04 2012-01-19 Jfe Steel Corp Composite wall structure
JP2017122333A (en) * 2016-01-06 2017-07-13 株式会社竹中工務店 Structure
CN107806102A (en) * 2017-11-20 2018-03-16 中建局集团建设发展有限公司 A kind of horizontal inner support part shearing resistance construction of ultra-deep foundation pit and its construction method

Also Published As

Publication number Publication date
JP3578210B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
KR101632701B1 (en) Circular prefabricated structure for column, Top down method and Construction method of frame using the same
US20180209134A1 (en) Construction arrangement and detachable connection assembly for this construction arrangement
KR100991497B1 (en) Integrated structure of reinforced concrete column and steel beam
US20050229509A1 (en) Structural braced frame wall panel system
JP2006144535A (en) Joint structure of column and beam
JP2002212944A (en) Underground wall construction
US20080016793A1 (en) Web hole reinforcing for metal wall stubs
US20210017783A1 (en) Buttress Assembly for Seismic Reinforcing of Building Having Non-Bearing Walls
KR102398605B1 (en) Construction method of seismic retrofit system using pc panel
JP2007113302A (en) Composite beam structure
KR102317705B1 (en) Seismic retrofit structure and construction method thereof
JP3804322B2 (en) Seismic reinforcement structure using seismic reinforcement steel plate, installation method of seismic reinforcement steel plate, seismic reinforcement method using seismic reinforcement steel plate
JP4790865B2 (en) Underground wall structure
JP7274332B2 (en) junction structure
KR20210100384A (en) Steel-concrete composite shearwall core structural system
JP5079640B2 (en) Seismic frame structure and its construction method
JPH1143994A (en) Rc-formed flat beam
KR102550675B1 (en) Concrete reinforcement and reinforcement method of concrete member using the same
CN220908900U (en) Prestressed concrete member based on PSB finish rolling deformed steel bar
KR102286505B1 (en) Seismic retrofit structure using existing slab and construction method thereof
JP2001200602A (en) Dry earthquake resisting wall coping with composite structure
JP6021497B2 (en) Composite structural beam
KR101457796B1 (en) Hybrid Structures Using Steel Framework and Precast Concrete Slab
JP2006152562A (en) Wall structure having opening therein for steel house
JPH1162265A (en) Aseismatic reinforcing method of existing building

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040706

R150 Certificate of patent or registration of utility model

Ref document number: 3578210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term