JP6021497B2 - Composite structural beam - Google Patents

Composite structural beam Download PDF

Info

Publication number
JP6021497B2
JP6021497B2 JP2012170855A JP2012170855A JP6021497B2 JP 6021497 B2 JP6021497 B2 JP 6021497B2 JP 2012170855 A JP2012170855 A JP 2012170855A JP 2012170855 A JP2012170855 A JP 2012170855A JP 6021497 B2 JP6021497 B2 JP 6021497B2
Authority
JP
Japan
Prior art keywords
steel
reinforced concrete
flange
bar
steel frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012170855A
Other languages
Japanese (ja)
Other versions
JP2014031613A (en
Inventor
山下 幹雄
幹雄 山下
聖史 小山
聖史 小山
金田 和浩
和浩 金田
慶一郎 井上
慶一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012170855A priority Critical patent/JP6021497B2/en
Publication of JP2014031613A publication Critical patent/JP2014031613A/en
Application granted granted Critical
Publication of JP6021497B2 publication Critical patent/JP6021497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、構造物の架構を形成する構造部材として、柱の間に架設されて柱に接合される複合構造梁に関する。詳しくは、少なくとも左右いずれかの端部が鉄筋コンクリート造で、その他の部分、または中央部が鉄骨造で構成され、1つの部材に異種の構造形式を備える梁に関する。   The present invention relates to a composite structural beam that is installed between columns and joined to the column as a structural member that forms the frame of the structure. Specifically, the present invention relates to a beam in which at least one of the left and right ends is made of reinforced concrete and the other part or the center is made of steel frame, and one member has different structural types.

建物に代表される種々の構築物の構造形式には、鉄筋コンクリート造、鉄骨造、鉄骨鉄筋コンクリート造、鋼管コンクリート造など、様々な種類が存在するが、構築物の規模や用途などの特性や要求される性能に応じて、1つの構築物には単一の構造形式が用いられるのが一般的であった。   There are various types of structures such as reinforced concrete structures, steel structures, steel reinforced concrete structures, and steel pipe concrete structures, but there are characteristics such as the size and use of the structures and the required performance. Accordingly, it was common for a single construction type to be used for one construct.

経済性や耐久性に優れた鉄筋コンクリート造は、近年、高性能減水剤の開発と相まって材料の高強度化が進み、低層建物から高層建物にまで幅広く適用されている。これに対して、鉄骨造は現場での組み立てが容易で迅速に施工できるという利点があり、大スパン架構や超高層ビルに適した構造として広く普及している。
しかしながら、鉄骨造は鋼材の価格が高いためにコストアップになる場合が多い上に、鉄筋コンクリート造に比べると剛性が低いため、地震時の変形が大きくなり易いという欠点がある。
In recent years, reinforced concrete structures with excellent economic efficiency and durability have been applied to a wide range of buildings, from low-rise buildings to high-rise buildings, in conjunction with the development of high-performance water-reducing agents. On the other hand, steel structures have the advantage of being easy to assemble on-site and can be constructed quickly, and are widely used as structures suitable for large span frames and high-rise buildings.
However, the cost of steel frames is often increased due to the high price of steel, and the rigidity is lower than that of reinforced concrete, so that there is a drawback that deformation during an earthquake tends to increase.

一方、鉄筋コンクリート造では、コンクリートが引張力に弱いため、スパンを拡げて大きな空間を確保することが困難であり、鉄筋コンクリート造で10m以上のスパンを確保するためには、梁の中に緊張材を配してプレストレスを導入し、梁の端部や中央部の曲げ耐力を高める必要があった。しかし、近年になって、鉄骨造と鉄筋コンクリート造の利点を併せ持つ複合構造の梁が開発されている。   On the other hand, in reinforced concrete construction, it is difficult to secure a large space by expanding the span because the concrete is weak against tensile force. In order to secure a span of 10 m or more in reinforced concrete construction, use a tension material in the beam. It was necessary to increase the bending strength of the end and center of the beam by introducing prestress. Recently, however, composite beams have been developed that combine the advantages of steel and reinforced concrete.

例えば、特許文献1には、鉄筋コンクリート造のスパンを拡げる目的で開発されたもので、柱に接合される両端部を鉄筋コンクリート造とし、その間にH形鋼を用いた鉄骨造で構成する複合構造梁が開示されている。このような梁では、異種の構造部材を接合する埋め込み部分において、各々の材料強度、剛性、ならびに形状や寸法が異なるため、応力集中が起こり易いという問題があった。   For example, Patent Document 1 was developed for the purpose of expanding the span of a reinforced concrete structure, and is a composite structural beam composed of a reinforced concrete structure at both ends joined to a column, and a steel structure using H-shaped steel between them. Is disclosed. In such a beam, there is a problem in that stress concentration is likely to occur because the material strength, rigidity, shape, and size of each of the embedded portions where different kinds of structural members are joined are different.

これを解決するため、特許文献1では、鉄骨と鉄筋コンクリート部分の相互の応力伝達を円滑に行う目的で、鉄骨フランジに鉄筋コンクリート部の材軸方向に配した軸筋の2本(定着筋)を上下のフランジにフレアー溶接し、鉄骨端部を鉄筋コンクリート部に確実に固定している。
梁の両端部を鉄筋コンクリートにすることで梁全体の剛性を高め、モーメントが大きい中央部は鉄骨で曲げ耐力を確保するとともに、軽量化を実現した合理的な構造として、オフィスや工場、倉庫など幅広い用途の建物に適用されている。
In order to solve this problem, in Patent Document 1, two axial bars (fixing bars) arranged in the direction of the material axis of the reinforced concrete part on the steel flange are moved up and down for the purpose of smoothly transferring the stress between the steel frame and the reinforced concrete part. Flared welded to the flange of the steel, the steel frame end is securely fixed to the reinforced concrete part.
Reinforced concrete at both ends of the beam increases the rigidity of the entire beam, and the central part where the moment is large is a steel frame to ensure bending strength, and a rational structure that realizes light weight, such as offices, factories, warehouses, etc. Applicable to buildings for use.

しかしながら、定着筋の溶接部の管理が難しく、検査も必要なために、溶接作業は事前に工場で行わざるをえない。また、鉄骨フランジに予め梁主筋や定着筋などの軸筋が溶接してあると運搬の際に考慮しなければならない梁長が長くなるため、大型のトラックが必要になったり、積載する梁の本数に制限が出るなど、現場への搬入にも問題があった。     However, since it is difficult to manage the welded portion of the fixing bar and inspection is necessary, the welding operation must be performed in the factory in advance. In addition, if the shaft flange such as the beam main bar and anchor bar is welded to the steel flange in advance, the beam length that must be taken into consideration during transportation becomes longer. There was also a problem in carrying in to the site, such as a limit on the number of bottles.

そこで、特許文献2では、鉄骨端部のフランジに長ナットやカップラーなどの継手部分を予め溶接しておき、現場へ搬入した後に鉄筋(主筋)を螺合して機械式に接合する複合構造梁が提案されている。   Therefore, in Patent Document 2, a joint structure beam in which a joint portion such as a long nut or a coupler is welded to a flange at the end of a steel frame in advance, and the rebar (main bar) is screwed and mechanically joined after being brought into the field. Has been proposed.

特公平07−65381号公報Japanese Patent Publication No. 07-65381 特開2007−291636号公報JP 2007-291636 A

しかし、特許文献2に記載の複合構造梁は、鉄骨フランジに溶接する長ナットやカップラーの外径が主筋の径よりも大きくなるため、その径の差分だけ上端、下端とも、断面で四隅に位置する主筋とのレベルに段差が生じ、鉄骨に固定された主筋(定着筋)がせん断補強筋に直接結束できない状態になる。
このため、主として鉄骨フランジの引張力をコンクリートに伝達する役割を担う定着筋の定着性能上、不利になる恐れがある。また、配筋の納まり上、直交する通りの梁主筋と柱梁接合部内で交差するため、梁を架設する際に邪魔になったり、梁主筋の位置(レベル)を変更する必要があった。
However, in the composite structural beam described in Patent Document 2, the outer diameter of the long nut or coupler to be welded to the steel flange is larger than the diameter of the main bar. A level difference occurs between the main reinforcing bars and the main reinforcing bars (fixing bars) fixed to the steel frame cannot be directly bound to the shear reinforcing bars.
For this reason, there exists a possibility that it may become disadvantageous on the fixing performance of the fixing muscle which plays the role which mainly transmits the tensile force of a steel-frame flange to concrete. In addition, due to the arrangement of the reinforcing bars, the beam crosses the orthogonal beam main bars within the column beam joint, so that it is necessary to get in the way when the beam is installed or to change the position (level) of the beam main bars.

また、スラブを厚くしたい場合や、梁の上端に緊張材を配してプレストレストコンクリート構造にする場合は、鉄筋コンクリート部の断面において、上フランジ上側の無筋の領域が大きくなることがある。この無筋領域を補強するために、梁や床の配筋とは別に増し打ち筋と称する鉄筋を、縦横両方向に配する必要があった。   In addition, when it is desired to make the slab thicker or when a tension material is provided on the upper end of the beam to form a prestressed concrete structure, the unreinforced region above the upper flange may become large in the cross section of the reinforced concrete portion. In order to reinforce this non-barbed area, it is necessary to arrange reinforcing bars called additional striking bars in both the vertical and horizontal directions separately from the bar and floor bar arrangements.

更に、定着筋の位置(レベル)が鉄骨の断面寸法で決まってしまうため、鉄筋コンクリート部の断面せいが制限されてしまう。鉄筋コンクリート断面のせいを大きくして剛性や曲げ耐力を高めたい場合には、主筋と定着筋を兼用せずに、図4に示す従来例のように主筋とは別に定着筋を設ける必要があった。   Further, since the position (level) of the fixing bar is determined by the cross-sectional dimension of the steel frame, the cross-sectional area of the reinforced concrete portion is limited. When it is desired to increase the rigidity of the reinforced concrete cross section and increase the rigidity and bending strength, it is necessary to provide a fixing bar separately from the main bar as in the conventional example shown in FIG. 4 without using both the main bar and the fixing bar. .

本発明は、上述の問題点を解決しようとするもので、柱に接合される鉄筋コンクリート部分に埋設する鉄骨に主筋を予め接合することなく、確実で簡便に構築可能な複合構造梁を提供することを目的とする。   The present invention is intended to solve the above-mentioned problems, and provides a composite structural beam that can be reliably and easily constructed without previously joining a main reinforcing bar to a steel frame embedded in a reinforced concrete part to be joined to a column. With the goal.

前記課題を解決するために、本発明は、少なくとも左右いずれかの一端が鉄筋コンクリート造で構成される鉄筋コンクリート部で、それ以外の部分が鉄骨部で構成され、前記鉄筋コンクリート部の断面せいが前記鉄骨部より大きい複合構造梁であって、前記鉄骨部の端部が前記鉄筋コンクリート部に埋設固定されるとともに、フランジの引張力をコンクリートに伝達する役割を担う定着筋を備えてなり、前記定着筋のレベルが、上下のフランジ面から梁主筋位置までの間で調整可能であるように、少なくとも一端が折り曲げ加工された複数の前記定着筋の余長部が、前記鉄筋コンクリート部に埋設される前記鉄骨部に係止されていることを特徴とする。
ここで言う軸筋とは、鉄筋コンクリート部において、梁の材軸方向に沿って配される鉄筋であり、主筋、定着筋の両方を含んでいる。また係止とは、軸筋が確実に鉄骨に固定された状態のみならず、折り曲げた曲線部分やその先の余長部が結束線などで鉄骨に止められている状態も意味する。
In order to solve the above-described problems, the present invention provides a reinforced concrete portion in which at least one of the left and right ends is made of reinforced concrete, and the other portion is made of a steel frame portion, and the cross section of the reinforced concrete portion is caused by the steel frame portion. A larger composite structural beam, comprising an anchor bar that is embedded in and fixed to the reinforced concrete part, and has a role of transmitting the tensile force of the flange to the concrete, the level of the anchor bar However, it is possible to adjust between the upper and lower flange surfaces to the beam main bar position, and the extra length portions of the plurality of fixing bars which are bent at least at one end are formed in the steel frame portion embedded in the reinforced concrete portion. It is locked.
The axial reinforcement referred to here is a reinforcing bar arranged along the material axis direction of the beam in the reinforced concrete portion, and includes both the main reinforcement and the fixing reinforcement. The term “locking” means not only a state in which the shaft bar is securely fixed to the steel frame, but also a state in which the bent curved portion and the surplus portion at the end thereof are fixed to the steel frame with a binding wire or the like.

従来の一般的な複合構造梁としては、特許文献1、2に示されるように、材端に位置する一対の鉄筋コンクリート部に、鉄骨の両端部が所定長さ埋設固定された対称な形をしているが、本発明はこれに限らず、一方の端部が鉄筋コンクリート造で、他方が鉄骨造で構成される複合構造梁も含んでいる。
このような非対称構造の梁は、例えば、建物に作用する地震力を負担するコア部分を鉄筋コンクリート造で構築し、その周囲の架構や外部に面した架構など、それ以外の部分を鉄骨造にする場合に好適である。それほど大きなスパンにしなければ、鉄骨側を剛接合にせず、ウエブだけで鉄骨柱に接合する半剛接合もあり得る。
As shown in Patent Documents 1 and 2, a conventional general composite structural beam has a symmetrical shape in which both ends of a steel frame are embedded and fixed to a pair of reinforced concrete portions located at the ends of the material. However, the present invention is not limited to this, and includes a composite structural beam in which one end is reinforced concrete and the other is steel.
For example, a beam with an asymmetrical structure is constructed with a reinforced concrete core part that bears the seismic force acting on the building, and other parts such as a frame surrounding it and a frame facing the outside are made of steel frames. It is suitable for the case. If the span is not so large, there may be a semi-rigid joint in which the steel side is not rigidly joined but is joined to the steel column only by the web.

かかる複合構造梁によれば、定着筋を鉄骨に溶接や機械式で接合する必要がなく、通常の配筋作業の中で折り曲げた鉄筋を鉄骨に係止するだけなので、現場での主筋または定着筋の高さや長さなどの調節も容易で、比較的簡易に施工することが可能である。
更に、軸筋を工場で取り付けないので、搬入時に梁全体の長さが長くならないため、運搬にかかるコストを抑えることができる。
According to such a composite structural beam, there is no need to weld or mechanically fix the anchor bar to the steel frame, and only the bent bar is locked to the steel frame during normal bar arrangement work. It is easy to adjust the height and length of the muscles and can be constructed relatively easily.
Further, since the shaft bars are not attached at the factory, the length of the entire beam does not become long at the time of carrying in, so that the cost for transportation can be suppressed.

前記鉄骨のフランジには開口が設けられ、または開口を設けた鋼板が前記フランジに固定され、前記開口に前記折り曲げ加工された軸筋(主筋、定着筋)の余長部が挿通されている。上端、下端の軸筋を開口に挿通した後、その余長部を鉄骨ウエブの面と略平行にし、余長部同士を重ねて結束してもよい。   An opening is provided in the flange of the steel frame, or a steel plate provided with an opening is fixed to the flange, and an extra length portion of the bent shaft reinforcement (main reinforcement, fixing reinforcement) is inserted into the opening. After inserting the upper and lower axis bars into the opening, the surplus length portion may be substantially parallel to the surface of the steel web, and the surplus length portions may be overlapped and bound.

鉄骨フランジに開口を設ける場合は、断面欠損による影響を避けるため、なるべく鉄骨の端部に近い位置か、もしくは埋設部の応力伝達域(通常、鉄骨せいの1.5〜2倍程度)をはずした位置に設ける方が良い。鉄骨フランジに開口を有する鋼板を固定する場合、その位置(面)は、主筋に伝達する力以上の強度が確保できれば、フランジの上下面、側面のいずれでもよく、固定する手段も問わない。   When opening an opening in a steel flange, in order to avoid the effects of cross-sectional defects, the position as close as possible to the end of the steel frame or the stress transmission area of the buried part (usually about 1.5 to 2 times the steel frame) should be removed. It is better to provide in the position. When a steel plate having an opening is fixed to the steel flange, the position (surface) may be either the upper or lower surface or the side surface of the flange as long as the strength higher than the force transmitted to the main bar can be ensured, and the fixing means is not limited.

前記折り曲げ加工された軸筋(主筋、定着筋)にねじ鉄筋を用い、前記鉄骨のフランジまたは前記鋼板にナットで固定してもよい。これによって軸筋の余長部が鉄骨フランジに固定されるので、鉄骨が負担する力をより円滑に鉄筋コンクリート部へ伝達することが可能になる。   A screw rebar may be used for the bent shaft bars (main bars and anchor bars) and fixed to the flange of the steel frame or the steel plate with a nut. As a result, the extra length portion of the shaft is fixed to the steel flange, so that the force borne by the steel can be more smoothly transmitted to the reinforced concrete portion.

なお、余長とは、正確には鉄筋を曲げ加工した際の折り曲げ終点から先の直線部分を意味する。しかしながら、軸筋(主筋、定着筋)の径が大きい場合やスラブが薄い場合には、折り曲げ起点と折り曲げ終点の間の曲線部分を鉄骨に係止することも想定されるので、ここでは、折り曲げ部分も含めて余長部と定義する。   The surplus length means the straight line portion beyond the end point of bending when the reinforcing bar is bent. However, when the diameter of the axis reinforcement (main reinforcement, anchoring reinforcement) is large or the slab is thin, it is assumed that the curved portion between the bending start point and the bending end point is locked to the steel frame. It is defined as the extra length part including the part.

前記鋼板は、埋設される前記鉄骨部のスパン中央側(端部と反対側)のフランジに溶接してもよい。定着筋が鉄骨端部で止まるのではなく、スパン側まで伸びていることによって鉄筋コンクリート部がより強固になる。これにより、埋設部の固定度を更に高めることができるだけでなく、梁の上端に緊張材を配してプレストレスを導入する場合に、定着部の支圧補強の効果も期待される。   You may weld the said steel plate to the flange of the span center side (opposite end part) of the said steel frame part embed | buried. The anchor reinforcement does not stop at the end of the steel frame, but the reinforced concrete part becomes stronger by extending to the span side. Thereby, not only can the degree of fixation of the embedded portion be further increased, but also the effect of reinforcing the bearing pressure of the fixing portion is expected when a prestress is introduced by arranging a tension material on the upper end of the beam.

本発明によれば、鉄骨部と鉄筋コンクリート部間の応力伝達を確実に行うとともに、施工が容易で運搬上の制約も小さくできる。また、鉄骨のせいに拘わらず、鉄筋コンクリート断面のせいを決められるので、応力中心間距離j(主筋間隔)を大きくして、梁主筋量を減らしたり、径を縮小することや、逆に同じ主筋量でも梁端部の曲げ耐力を上げることが可能となる。   According to the present invention, stress transmission between the steel frame portion and the reinforced concrete portion can be reliably performed, construction can be easily performed, and transportation restrictions can be reduced. In addition, because the cross section of reinforced concrete can be determined regardless of the steel frame, it is possible to increase the stress center distance j (main bar interval) to reduce the amount of beam main bars, reduce the diameter, or conversely the same main bars. Even in the amount, it is possible to increase the bending strength of the beam end.

本発明の実施の形態1に係る複合構造梁を示す立断面図である。It is an elevation sectional view showing the composite structure beam concerning Embodiment 1 of the present invention. 図1に示す複合構造梁のA〜A´断面図である。It is AA 'sectional drawing of the composite structure beam shown in FIG. 本発明の実施の形態2に係る複合構造梁を示す立断面図である。It is an elevation sectional view showing the composite structure beam concerning Embodiment 2 of the present invention. 従来の複合構造梁を示す図である。It is a figure which shows the conventional composite structure beam.

本発明の実施の形態1に係る複合構造梁7は、所定スパン離れて立設する鉄筋コンクリート造の柱6に接合され、複数の柱6とともに建物の架構を構成する複合構造梁である。具体的には、両端が鉄筋コンクリート造からなる鉄筋コンクリート部2で、中央部が鉄骨造からなる鉄骨部1で構成されており、常時作用する鉛直荷重と、地震時の水平荷重に対して設計される。   The composite structural beam 7 according to the first embodiment of the present invention is a composite structural beam that is joined to a reinforced concrete column 6 standing up by a predetermined span and constitutes a building frame together with the plurality of columns 6. Specifically, both ends are composed of a reinforced concrete portion 2 made of reinforced concrete, and the central portion is made of a steel frame portion 1 made of steel frame, and designed for vertical loads that always act and horizontal loads during earthquakes. .

H形断面形状の鉄骨部1は鉄筋コンクリート部2の中へ所定長さ埋設されているが、埋設部3(接合部)の位置は、一般に長期荷重時の曲げ応力が小さくなるスパンの1/4〜1/5程度、柱から離れた箇所が合理的である。
鉄骨部1を埋設する長さは、鉄筋コンクリート部2へ伝達する応力や、鉄骨部1に固定する定着筋やスタッドなどの定着手段、埋設部3のせん断補強方法などを考慮して決めればよいが、発明者らの実験結果によると、鉄骨せいの1.5倍〜2倍程度で十分な性能を発揮できる場合が多い。
The steel part 1 having an H-shaped cross-section is embedded in the reinforced concrete part 2 for a predetermined length, but the position of the embedded part 3 (joint part) is generally 1/4 of the span in which bending stress during long-term loading is reduced. A place away from the pillar is about 1/5.
The length of embedding the steel frame portion 1 may be determined in consideration of the stress transmitted to the reinforced concrete portion 2, fixing means such as fixing bars and studs fixed to the steel frame portion 1, and the shear reinforcement method of the embedded portion 3. According to the results of experiments by the inventors, sufficient performance can often be exhibited at about 1.5 to 2 times the steel frame.

図1には複合構造梁7の端部について示すが、床スラブの上に立設する鉄筋コンクリート柱6に、両端の鉄筋コンクリート部2が剛接合され、柱とともに耐震架構を構成している。スラブは鉄骨上フランジ11の上部に形成されるが、スラブの配筋や鉄骨に打設するスタッドとともに図面では省略している。   Although FIG. 1 shows the end of the composite structural beam 7, the reinforced concrete portions 2 at both ends are rigidly joined to the reinforced concrete columns 6 standing on the floor slab, and together with the columns, an earthquake resistant frame is configured. The slab is formed in the upper part of the upper flange 11 of the steel frame, but is omitted in the drawing together with the reinforcement of the slab and the stud placed on the steel frame.

本実施形態では、図2の断面図に示すように、軸筋としての梁主筋5は上下とも1列配置で8本あり、4本の上端筋、下端筋のうち、各々2本が定着筋4を兼ねて配されている。これらの軸筋は通常の梁主筋と同様に、一端を柱梁接合部の中に定着させているが、梁端部を地震時に早期に曲げ降伏させたければ、定着筋4を柱梁接合部内に定着せず、鉄筋コンクリート部2に留める場合もあり得る。
軸筋である定着筋4の他端は、鉄筋コンクリート部2に埋め込まれた鉄骨部1の端部において、上下のフランジ11,12に設けた開口に定着筋の余長部41を挿通して係止されている。
In the present embodiment, as shown in the cross-sectional view of FIG. 2, the beam main reinforcing bars 5 as axial bars are arranged in eight rows in the top and bottom, and two of the four upper bars and the lower bars are fixed anchors. 4 is also arranged. These axis bars are fixed at one end in the beam-column joint as in the normal beam main bar. However, if you want to bend and yield the beam end at an early stage in the event of an earthquake, the anchor bar 4 is placed inside the beam-column joint. In some cases, the reinforced concrete portion 2 is not fixed.
The other end of the fixing bar 4 which is an axial bar is engaged with the extra length part 41 of the fixing bar through the openings provided in the upper and lower flanges 11 and 12 at the end of the steel part 1 embedded in the reinforced concrete part 2. It has been stopped.

開口の寸法は定着筋4の最大径より若干大きい程度であるが、その位置は断面欠損による影響を考慮して、想定する応力伝達域31(例えば、鉄骨せいの1.7倍)よりも端部側に設けている。配筋時に上端筋、下端筋の余長部41を重ねて結束線で結束するだけでよいので、定着筋4の位置(レベル)は容易に調整可能で、突然の設計変更にも対応しやすい。
スラブが厚い場合でも定着筋4を梁主筋5と兼ねることができ、別途設ける必要はない。梁主筋5を断面の上端に近い位置に配すれば、従来のように増し打ち筋(図示せず)を別途配する必要もない。
The size of the opening is slightly larger than the maximum diameter of the fixing muscle 4, but its position is farther than the assumed stress transmission region 31 (for example, 1.7 times the steel frame) in consideration of the effect of the cross-sectional defect. It is provided on the part side. At the time of bar arrangement, it is only necessary to overlap the extra length 41 of the upper and lower bars and bind them with a binding line. Therefore, the position (level) of the fixing muscle 4 can be easily adjusted, and it is easy to cope with a sudden design change. .
Even when the slab is thick, the fixing bar 4 can also serve as the beam main bar 5 and does not need to be provided separately. If the beam main reinforcing bars 5 are arranged at a position close to the upper end of the cross section, it is not necessary to separately provide additional reinforcing bars (not shown) as in the prior art.

また、定着筋4にねじ鉄筋を用いれば、フランジの上下面をナットで挟んでロックすることで、挿通した定着筋4の余長部41を鉄骨部1により確実に固定できる。この場合、図1に示すように上下の定着筋4の余長部41の重ね代をあえて設ける必要はなく、ナットを螺合するのに必要な長さだけ、余長部41がフランジ11,12の下面、または上面から出ていればよい。   Further, if screw reinforcing bars are used for the fixing bars 4, the extra length portion 41 of the inserted fixing bars 4 can be reliably fixed to the steel frame 1 by sandwiching and locking the upper and lower surfaces of the flanges with nuts. In this case, as shown in FIG. 1, it is not necessary to provide a margin for overlapping the surplus length portions 41 of the upper and lower fixing muscles 4, and the surplus length portion 41 has the flange 11, the length necessary for screwing the nut. It suffices to protrude from the lower surface or the upper surface of 12.

鉄筋コンクリート部2の曲げ耐力は、上端と下端主筋間の距離j(応力中心間距離)の大きさに依存するため、定着筋4をフランジに溶接して固定するよりも、曲げ耐力を確保し易い。これにより、梁端部の曲げ耐力を大きくできるだけでなく、逆に主筋5の径を下げたり、主筋量を減らしてコストダウンすることも可能になる。   Since the bending strength of the reinforced concrete portion 2 depends on the size of the distance j (distance between stress centers) between the upper and lower main bars, it is easier to secure the bending strength than fixing the fixing bar 4 to the flange. . As a result, not only can the bending strength of the beam end be increased, but the diameter of the main bar 5 can be reduced, or the amount of main bar can be reduced to reduce the cost.

次に、本発明の実施の形態2として、フランジに開口を開けずに、定着筋4を係止する方法について説明する。例えば図3に示すように、開口を有する鋼板42や定着筋4の折り曲げ部を引掛ける鋼材42´をフランジ11,12に溶接固定することも考えられる。
この場合は、応力伝達域31の中に設けてもよく、埋め込んだ鉄骨の端部に限定されない。むしろスパン側(柱と反対側)に近い位置に設ける方が、鉄骨部1と鉄筋コンクリート部2の境界で鉄骨を効果的に拘束し、応力伝達上、有利に働くとも考えられる。
また、鋼板42や鋼材42´の溶接は、鉄骨から定着筋に伝達される力を負担できる限り、フランジの側面または上面のどちらで行ってもよい。
Next, as a second embodiment of the present invention, a method for locking the fixing muscle 4 without opening an opening in the flange will be described. For example, as shown in FIG. 3, it is also conceivable to weld and fix a steel material 42 ′ that hooks a bent portion of the fixing steel 4 and a steel plate 42 having an opening to the flanges 11 and 12.
In this case, you may provide in the stress transmission area 31, and it is not limited to the edge part of the embedded steel frame. Rather, it is conceivable that the installation near the span side (opposite side of the column) effectively restrains the steel frame at the boundary between the steel frame part 1 and the reinforced concrete part 2 and works in terms of stress transmission.
Further, the welding of the steel plate 42 and the steel material 42 ′ may be performed on either the side surface or the upper surface of the flange as long as it can bear the force transmitted from the steel frame to the fixing muscle.

より大きなスパンを確保するためには、梁の両端部により大きな曲げ耐力が必要になるため、鉄筋コンクリート部2の上端側の材軸方向に緊張材を配し、プレストレスを導入する場合も想定される。
通常のディテールであれば、緊張材はフランジの近傍に配されるので、定着筋4がスパン側に近い位置にあれば、プレストレス定着部の支圧補強としても機能する。また、プレストレスが定着筋4の折り曲げ部を介して鉄骨にも伝達されるので、鉄骨部1の固定度や埋設部3の強度も高くなると考えられる。
In order to secure a larger span, a large bending strength is required at both ends of the beam, so it is assumed that prestress is introduced by placing a tension material in the direction of the material axis on the upper end side of the reinforced concrete part 2. The
If the detail is normal, the tendon is arranged in the vicinity of the flange. Therefore, if the fixing muscle 4 is in a position close to the span side, it also functions as reinforcement of the prestress fixing portion. Further, since the prestress is transmitted to the steel frame through the bent portion of the fixing muscle 4, it is considered that the degree of fixation of the steel frame portion 1 and the strength of the embedded portion 3 are also increased.

図1から図3に示すように、梁主筋5の周囲には所定の間隔でせん断補強筋21が配されており、定着筋4もせん断補強筋21に結束されている。埋設部3の両端位置には、応力伝達を補助して鉄骨の固定度を上げるためにせん断補強筋21を密に、または集中的に配する場合もあるが、ここでは図示していない。   As shown in FIGS. 1 to 3, shear reinforcement bars 21 are arranged around the beam main bars 5 at a predetermined interval, and the fixing bars 4 are also bound to the shear reinforcement bars 21. Although there are cases where the shear reinforcement bars 21 are densely or intensively arranged at both end positions of the embedded portion 3 in order to assist stress transmission and increase the degree of fixation of the steel frame, they are not shown here.

なお本実施形態1および2では、梁主筋5のスパン側は、定着筋4と同様に折り曲げ加工しているが、定着方法はこれに限定されるものではなく、先端にプレートやこぶを付けて真直ぐな状態で定着したり、埋設部3の外側まで主筋を伸ばして、埋設部3の端のコンクリート面で固定してもよい。   In the first and second embodiments, the span side of the beam main bar 5 is bent in the same manner as the fixing bar 4, but the fixing method is not limited to this, and a plate or a hump is attached to the tip. It may be fixed in a straight state, or may be fixed on the concrete surface at the end of the embedded portion 3 by extending the main bar to the outside of the embedded portion 3.

同様に、梁主筋5の鉄筋コンクリート柱6への定着についても、その手段を問わない。柱梁接合部内は、柱主筋の内側に、直交する2方向からの梁主筋とせん断補強筋が交差するため、配筋が錯綜することが多い。しかし、1方向をスパンが大きい複合構造梁7とし、直交する方向を通常スパンの鉄筋コンクリート梁で構成すれば、梁せい(主筋のレベル)が異なるために納まりがよくなり、配筋作業が容易になる。   Similarly, the means for fixing the beam main reinforcement 5 to the reinforced concrete column 6 is not limited. In the beam-column joint, the beam reinforcement and the shear reinforcement from two orthogonal directions intersect inside the column reinforcement, and the bar arrangement is often complicated. However, if one direction is a composite structural beam 7 with a large span and the normal direction is composed of a reinforced concrete beam with a normal span, the beam will be different (the level of the main reinforcement) and the fit will be better, making it easier to place the bar. Become.

以上、本発明の複合構造梁について、両端部が鉄筋コンクリート造で、中央部が鉄骨造で構成される場合の実施形態について説明した。しかし、この実施形態に限らず、一方の端部が鉄筋コンクリート造で、他方が鉄骨造で構成される非対称な形の複合構造梁であってもよい。また、本発明を構成する各要素については、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。   As described above, the embodiment of the composite structural beam according to the present invention has been described in the case where both ends are made of reinforced concrete and the center is made of steel. However, the present invention is not limited to this embodiment, and it may be an asymmetric composite beam having one end portion made of reinforced concrete and the other end made of steel. Each element constituting the present invention can be appropriately changed without departing from the spirit of the invention.

例えば、前記実施形態では、軸筋を構成する主筋を8本として、その内の4本を定着筋としてその余長部を鉄骨フランジに挿通して係止したたが、鉄骨部と鉄筋コンクリート部の間で十分な力の伝達がなされ、必要な構造性能を発揮できる限り、その本数を減らすことも可能である。定着筋の径とその他の主筋の径を同一にする必要もなく、伝達する力の大きさに応じて、径や強度(降伏点)を決めればよい。   For example, in the above-described embodiment, eight main bars constituting the axial bars are used, and four of the main bars are fixed bars, and the extra length portions are inserted into the steel flange and locked. As long as sufficient force can be transmitted between them and the necessary structural performance can be exhibited, the number can be reduced. There is no need to make the diameter of the fixing muscle equal to the diameter of the other main muscle, and the diameter and strength (yield point) may be determined according to the magnitude of the transmitted force.

また、上下の定着筋は必ずしも別々の鉄筋である必要はなく、1本の鉄筋をU字型に折り曲げ加工して、鉄骨に係止してもよい。この場合は、鉄骨フランジやプレートに設けた開口に挿通するのが難しいので、鋼板や鋼棒を溶接してフランジの横に突出する係止部を設け、そこに定着筋の折り曲げ部を掛けて結束し、固定してもよい。   Further, the upper and lower fixing bars are not necessarily separate reinforcing bars, and one reinforcing bar may be bent into a U shape and locked to the steel frame. In this case, it is difficult to pass through the opening provided in the steel flange or plate, so a steel plate or steel bar is welded to provide a locking part that protrudes to the side of the flange, and the fixing bar bending part is hung there. They may be bound and fixed.

鉄骨についても、圧延された形鋼か、溶接組立したものかを問わず、断面形状もH形に限らない。また、鉄骨の応力が大きい場合や、埋め込み長さを短くしたい場合など、必要に応じて鉄骨にスタッドを打設してもよい。スタッドはだぼ作用によるせん断伝達筋として用いるのが一般的であるが、例えば、鉄骨フランジの端面に所定の長さの頭付きスタッドを、梁主筋と平行方向に打設すれば、定着筋としてフランジの引張力、またはその一部をコンクリートに伝達することも可能である。   Also about a steel frame, regardless of whether it is a rolled shape steel or a welded assembly, the cross-sectional shape is not limited to the H shape. In addition, when the stress of the steel frame is large or when it is desired to shorten the embedding length, a stud may be placed on the steel frame as necessary. The stud is generally used as a shear transmission bar due to the dowel action. For example, if a stud with a head with a predetermined length is placed on the end face of the steel flange in a direction parallel to the beam main bar, It is also possible to transmit the tensile force of the flange, or part of it, to the concrete.

スパンが長い場合は、鉄骨に継手を設けて両端部と中央部に分割してもよい。鉄骨を分割する場合は、鉄骨の一部を鉄筋コンクリート部に埋設した状態でプレキャスト化することも可能である。例えば、スラブ部分を打ち残してハーフプレキャスト部材にすれば、現場で架設してスラブの配筋後に、柱梁接合部やその他の部位と一緒に残りの部分にコンクリートを打設することで、エミュレーションと言われる従来のプレキャスト工法と同様に、一体的な架構が形成される。   When the span is long, a joint may be provided on the steel frame and divided into both end portions and a central portion. When dividing a steel frame, it is also possible to precast the steel frame in a state where a part of the steel frame is embedded in the reinforced concrete part. For example, if the slab part is left behind and used as a half-precast member, it is emulated by laying the concrete in the remaining part together with the beam-column joint and other parts after slab reinforcement and slab reinforcement. An integrated frame is formed in the same manner as the conventional precast method.

あるいは在来工法のように、鉄骨を現場に搬入してから鉄筋コンクリート部を構築してもよい。鉄骨部を所定の位置に架設した後、主筋や定着筋などの軸筋とせん断補強筋を配してから型枠を設置し、柱やスラブなどの他の部位と一緒にコンクリートを現場打設することで、全体の架構を一体化してもよい。   Or you may build a reinforced concrete part after carrying in a steel frame like the conventional construction method. After laying the steel frame in place, install the formwork after placing the axial reinforcement such as the main reinforcement and anchoring reinforcement and the shear reinforcement, and cast the concrete together with other parts such as columns and slabs. By doing so, the entire frame may be integrated.

また、定着筋の配設は鉄筋コンクリート部の配筋と併せて行うのが施工上合理的であるが、コンクリートを打設する前であれば、特にその時期は問わない。採用する施工法や、運搬または揚重などの条件に合せて、適宜都合のいい時期を決めればよい。   In addition, it is reasonable in terms of construction to arrange the fixing bars together with the reinforcing bar arrangement of the reinforced concrete part. However, the timing is not particularly limited as long as it is before placing concrete. A convenient time can be determined according to the construction method to be used and conditions such as transportation or lifting.

1 鉄骨部
11 上フランジ
12 下フランジ
2 鉄筋コンクリート部
21 せん断補強筋
3 埋設部
31 応力伝達域
4 定着筋(軸筋)
41 余長部
42 鋼板
5 梁主筋
j 主筋間距離
6 鉄筋コンクリート柱
7 複合構造梁
DESCRIPTION OF SYMBOLS 1 Steel part 11 Upper flange 12 Lower flange 2 Reinforced concrete part 21 Shear reinforcement 3 Embedding part 31 Stress transmission area 4 Anchorage (axial)
41 Extra length 42 Steel plate 5 Beam main reinforcement j Distance between main reinforcements 6 Reinforced concrete columns 7 Composite structural beams

Claims (3)

少なくとも左右いずれかの一端が鉄筋コンクリート造で構成される鉄筋コンクリート部で、それ以外の部分が鉄骨部で構成され、前記鉄筋コンクリート部の断面せいが前記鉄骨部より大きい複合構造梁であって、
前記鉄骨部の端部が前記鉄筋コンクリート部に埋設固定されるとともに、フランジの引張力をコンクリートに伝達する役割を担う定着筋を備えてなり、
前記定着筋のレベルが、上下のフランジ面から梁主筋位置までの間で調整可能であるように、
少なくとも一端が折り曲げ加工された複数の前記定着筋の余長部が、前記鉄筋コンクリート部に埋設される前記鉄骨部に係止されていることを特徴とする複合構造梁。
At least one of the left and right ends is a reinforced concrete part made of reinforced concrete, the other part is made of a steel part, and the cross section of the reinforced concrete part is a composite structural beam larger than the steel part ,
With an end portion of the steel part is embedded and fixed to the reinforced concrete section, the tensile force of the flange becomes a fixing muscle responsible for transmitting to the concrete,
In order that the level of the anchoring bars can be adjusted between the upper and lower flange surfaces and the beam main bar position,
A composite structural beam characterized in that at least one end of each of the plurality of fixing bars bent at one end is locked to the steel part embedded in the reinforced concrete part.
前記鉄骨部のフランジには開口が設けられ、または開口を設けた鋼板が前記フランジに固定され、前記折り曲げ加工された定着筋の余長部が前記開口に挿通されることを特徴とする、請求項1に記載の複合構造梁。 An opening is provided in the flange of the steel frame portion, or a steel plate provided with an opening is fixed to the flange, and an extra length portion of the bent fixing bar is inserted into the opening. Item 2. The composite structural beam according to Item 1. 前記折り曲げ加工された定着筋はねじ鉄筋であり、前記鉄骨部のフランジまたは前記フランジに固定された鋼板にナットで固定されることを特徴とする、請求項1または2に記載の複合構造梁。
The composite structural beam according to claim 1 or 2, wherein the bent fixing bar is a screw reinforcing bar, and is fixed to a flange of the steel frame portion or a steel plate fixed to the flange with a nut.
JP2012170855A 2012-08-01 2012-08-01 Composite structural beam Expired - Fee Related JP6021497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012170855A JP6021497B2 (en) 2012-08-01 2012-08-01 Composite structural beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012170855A JP6021497B2 (en) 2012-08-01 2012-08-01 Composite structural beam

Publications (2)

Publication Number Publication Date
JP2014031613A JP2014031613A (en) 2014-02-20
JP6021497B2 true JP6021497B2 (en) 2016-11-09

Family

ID=50281654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012170855A Expired - Fee Related JP6021497B2 (en) 2012-08-01 2012-08-01 Composite structural beam

Country Status (1)

Country Link
JP (1) JP6021497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112942630B (en) * 2021-04-12 2022-08-09 中建二局第二建筑工程有限公司 Construction method of embedded single-piece type steel plate-concrete combined shear wall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998975A (en) * 1982-11-29 1984-06-07 株式会社 長谷川工務店 Steel wire arrangement of reinforced concrete wall
JPS63241233A (en) * 1987-03-30 1988-10-06 三菱建設株式会社 Joint method of pillar and beam
JPH02144433A (en) * 1988-11-28 1990-06-04 Mitsubishi Kensetsu Kk Constructing connection for column-girder
JPH0849350A (en) * 1994-08-05 1996-02-20 Taisei Corp Structure for reinforcing steel beam

Also Published As

Publication number Publication date
JP2014031613A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
KR102004419B1 (en) Structure for reinforcing column using V-shaped ties
KR100971736B1 (en) Shear reinforcement with dual anchorage function each up and down
JP2000144905A (en) Mixed structural beam
JP5789173B2 (en) S-beam RC shear wall structure
CN108999288B (en) Prefabricated assembled beam column node
JP5368656B1 (en) Composite structural beam
JP6122740B2 (en) Seismic reinforcement structure
JP6815183B2 (en) Complex building
JP6021497B2 (en) Composite structural beam
JP2014139370A (en) Beam-column joint structure and construction method for the same
JP6535704B2 (en) Column-beam frame
JP4095534B2 (en) Joint structure of column and beam in ramen structure and its construction method
JP6508866B2 (en) Column-beam frame
JP6026794B2 (en) Column base structure of steel column
JP2011202420A (en) Structure and method for joining shaft member and rc member
JP5325709B2 (en) Method of constructing steel exposed column base structure
JP5122211B2 (en) Composite frame structure
KR102017822B1 (en) Earthquake-registant column and beam constructing method using concrete filled tube and pre-assembled rebar cage
JP4660810B2 (en) Boundary beam damper
JP7427507B2 (en) Bonding structure and bonding method
JP2004092248A (en) Joint metal of anchor bar, joint structure using the same and joining method used for the same
JP6873302B2 (en) Complex building
JP7137978B2 (en) Plate-shaped member for pillar
JP4658826B2 (en) SC wall block, SC wall block manufacturing method, and SC structure construction method
JP4884200B2 (en) Seismic reinforcement structure for existing columns and construction method of the seismic reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees