JP4552114B2 - Synthetic wall - Google Patents

Synthetic wall Download PDF

Info

Publication number
JP4552114B2
JP4552114B2 JP2004165713A JP2004165713A JP4552114B2 JP 4552114 B2 JP4552114 B2 JP 4552114B2 JP 2004165713 A JP2004165713 A JP 2004165713A JP 2004165713 A JP2004165713 A JP 2004165713A JP 4552114 B2 JP4552114 B2 JP 4552114B2
Authority
JP
Japan
Prior art keywords
wall
stud
reinforced concrete
synthetic
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004165713A
Other languages
Japanese (ja)
Other versions
JP2005344387A (en
Inventor
謙二 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2004165713A priority Critical patent/JP4552114B2/en
Publication of JP2005344387A publication Critical patent/JP2005344387A/en
Application granted granted Critical
Publication of JP4552114B2 publication Critical patent/JP4552114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は、スタッドを用いて山留壁と鉄筋コンクリート壁とを一体化した合成壁に関する。 The present invention relates to a composite wall in which a mountain retaining wall and a reinforced concrete wall are integrated using a stud .

近年、ソイルミキシングウォールやH鋼横矢板工法等で使用される山留め芯材(以下、芯材と呼ぶ。)と構造物の鉄筋コンクリート地下外壁(以下、鉄筋コンクリート壁と呼ぶ。)をスタッドにより一体化して合成壁とすることが行われている(例えば、特許文献1参照。)。
このような合成壁によれば、従来仮設として扱われてきた芯材を本設構造の一部として活用することにより、地下外壁の厚さを縮小できるため、地下階の有効空間を拡大できるだけでなく、環境問題対策やコストダウンにも極めて有効である。
特許文献2では、合成地下壁の止水性を向上させるために、スタッドに環状の水膨脹止水材が環装され、且つ、ソイルミキシングウォールと鉄筋コンクリート壁との境界面に防水シートまたは塗膜系防水材が介装された合成地下壁に関する発明が開示されている。
特開2002−371545号公報 (第2−3頁、第1図) 特開2003−301456号公報 (第2−3頁、第1図)
In recent years, a stud core material (hereinafter referred to as a core material) used in soil mixing walls, H-steel sheet pile methods, and the like, and a reinforced concrete underground outer wall (hereinafter referred to as a reinforced concrete wall) of a structure are integrated by a stud. A synthetic wall is used (see, for example, Patent Document 1).
According to such a composite wall, since the thickness of the underground outer wall can be reduced by utilizing the core material that has been treated as a temporary structure as a part of the main structure, the effective space of the underground floor can only be expanded. It is also extremely effective for measures against environmental problems and cost reduction.
In Patent Document 2, in order to improve the water-stopping property of the synthetic underground wall, an annular water-expanded water-stopping material is attached to the stud, and a waterproof sheet or a coating film system is provided on the boundary surface between the soil mixing wall and the reinforced concrete wall. An invention relating to a synthetic underground wall in which a waterproof material is interposed is disclosed.
JP 2002-371545 A (page 2-3, FIG. 1) JP 2003-301456 A (page 2-3, FIG. 1)

しかしながら、特許文献2に記載の発明のように、スタッド基端部に防水材が存在すると、防水材が無い場合に比べてスタッド基端部にずれが生じやすくなるため、スタッド基端部が局所的に非常に大きなせん断変形を受けて破断し、合成壁の耐力が低下するという問題がある。
本発明は、上述する問題点に鑑みてなされたもので、スタッドの変形性能を向上させることにより、合成壁の耐力低下を防ぐことを目的とする。
However, as in the invention described in Patent Document 2, when the waterproof material is present at the stud base end, the stud base end tends to be displaced as compared with the case where there is no waterproof material. In particular, there is a problem that the composite wall is broken by receiving a very large shear deformation and the yield strength of the composite wall is lowered.
This invention is made | formed in view of the problem mentioned above, and it aims at preventing the yield strength fall of a synthetic wall by improving the deformation | transformation performance of a stud.

上記目的を達成するため、本発明に係る合成壁は、山留壁の前面側に鉄筋コンクリート壁を形成するとともに、前記山留壁と前記鉄筋コンクリート壁とを一体化するためのスタッドが前記山留壁の芯材に植設されて前記鉄筋コンクリート壁中にその側部がコンクリートに直接接する状態で埋設されてなる合成壁において、前記スタッドの破断伸びが25%以上の鋼材であることを特徴とする。 In order to achieve the above object, the composite wall according to the present invention forms a reinforced concrete wall on the front side of the retaining wall, and a stud for integrating the retaining wall and the reinforced concrete wall includes the retaining wall. In the synthetic wall, which is embedded in the core material and embedded in the reinforced concrete wall in a state in which the side portion thereof is in direct contact with the concrete, the breaking elongation of the stud is a steel material of 25% or more.

図2はスタッドの直接せん断試験方法を示し、立設する一対の直方体状の鉄筋コンクリート体10、10によってH形鋼11が鉛直方向に挟持されるとともに、H形鋼11の両フランジ面にそれぞれスタッド12が溶接されて鉄筋コンクリート体10中に埋設されている。また、H形鋼11と鉄筋コンクリート体10との境界面には防水シート13が介装されている。
スタッドの直接せん断試験では、H形鋼11の一方の端部11aを押圧することにより、H形鋼11と鉄筋コンクリート体10とを相対変形させてスタッド12にせん断力を発生させ、スタッド12基端部のずれを計測する。
図3は上記試験結果を示し、縦軸はスタッド1本当たりのせん断力、横軸はスタッド基端部のずれの平均値である。同図より、破断伸びが20%のスタッド(NO.1試験体)の場合、スタッド基端部のずれが8mm程度になるとスタッドが破断し、以後スタッドのせん断力は低下するが、破断伸びが25%のスタッド(NO.2試験体)の場合、スタッド基端部のずれが14mm程度までスタッドは破断せず、スタッドのせん断力も上昇することがわかる。即ち、スタッドの破断伸びを25%以上とすることにより、スタッドの変形性能が向上し、スタッドの耐力低下を防ぐことができる。
本発明では、山留壁と鉄筋コンクリート壁とを一体化するためのスタッドの破断伸びを25%以上とすることにより、合成壁の変形性能が向上し、合成壁の耐力低下を防ぐことができる。
FIG. 2 shows a direct shear test method for studs. H-shaped steel 11 is sandwiched in the vertical direction by a pair of cuboid reinforced concrete bodies 10, 10 erected, and studs are placed on both flange surfaces of H-shaped steel 11. 12 is welded and embedded in the reinforced concrete body 10. Further, a waterproof sheet 13 is interposed at the boundary surface between the H-shaped steel 11 and the reinforced concrete body 10.
In the direct shear test of the stud, by pressing one end 11a of the H- section steel 11 , the H- section steel 11 and the reinforced concrete body 10 are relatively deformed to generate a shear force on the stud 12, and the stud 12 base end The deviation of the part is measured.
FIG. 3 shows the test results, where the vertical axis represents the shear force per stud and the horizontal axis represents the average value of the deviation of the stud base end. From the figure, in the case of a stud with a breaking elongation of 20% (No. 1 specimen), the stud breaks when the deviation of the stud base end becomes about 8 mm, and the shearing force of the stud decreases thereafter, but the breaking elongation decreases. In the case of a 25% stud (NO. 2 test specimen), it can be seen that the stud does not break up to about 14 mm and the shearing force of the stud also increases. That is, by setting the elongation at break of the stud to 25% or more, the deformation performance of the stud can be improved and the yield strength of the stud can be prevented from being lowered.
In the present invention, by setting the fracture elongation of the stud for integrating the retaining wall and the reinforced concrete wall to 25% or more, the deformation performance of the synthetic wall can be improved and the yield strength of the synthetic wall can be prevented from being lowered.

また、本発明に係る合成壁では、極低降伏点鋼からなる前記スタッドを用いることが好ましい。
極低降伏点鋼は、普通鋼に比べて降伏点が100N/mm 程度と低く、破断伸びも50%以上ある高い靭性を有する鋼材である。
このため、スタッドに極低降伏点鋼を用いることにより、スタッドの変形性能が一層向上し、スタッドの耐力低下を防ぐことができる。よって、より確実に、合成壁の変形性能を向上させることができ、合成壁の耐力低下を防ぐことが可能になる。
In the synthetic wall according to the present invention, it is preferable to use the stud made of extremely low yield point steel.
The ultra-low yield point steel is a steel material having a high toughness with a yield point as low as about 100 N / mm 2 and a fracture elongation of 50% or more as compared with ordinary steel .
For this reason, by using extremely low yield point steel for the stud, the deformation performance of the stud can be further improved, and a decrease in the yield strength of the stud can be prevented. Therefore, it is possible to improve the deformation performance of the composite wall more reliably, and to prevent a decrease in the yield strength of the composite wall.

本発明によれば、山留壁と鉄筋コンクリート壁とを一体化するためのスタッドの破断伸びを25%以上とすることにより、スタッドの変形性能が向上し、スタッドの耐力低下を防ぐことができる。このため、合成壁の変形性能が向上し、合成壁の耐力低下を防ぐことができる。 According to the present invention, when the breaking elongation of the stud for integrating the mountain retaining wall and the reinforced concrete wall is 25% or more, the deformation performance of the stud is improved, and the deterioration of the proof stress of the stud can be prevented. For this reason, the deformation | transformation performance of a synthetic | combination wall improves and it can prevent the yield strength fall of a synthetic | combination wall.

以下、本発明に係る合成壁の実施形態について図面に基いて説明する。
図1は、本発明に係る合成壁の実施形態の一例を示す部分平断面図である。
図1に示すように、本実施形態による合成壁6では、H形鋼を芯材2とする山留壁1の前面側に鉄筋コンクリート壁3が形成され、山留壁1と鉄筋コンクリート壁3とを一体化するためのスタッド4が芯材2の一方のフランジ2fに溶接されて鉄筋コンクリート壁3中に埋設されている。
また、山留壁1と鉄筋コンクリート壁3の境界面には防水シート7が介装されているが、防水シート7に代えて塗膜系防水材を使用してもよい。
Hereinafter, embodiments of a synthetic wall according to the present invention will be described with reference to the drawings.
FIG. 1 is a partial plan sectional view showing an example of an embodiment of a synthetic wall according to the present invention.
As shown in FIG. 1, in the composite wall 6 according to the present embodiment, a reinforced concrete wall 3 is formed on the front side of a mountain retaining wall 1 having an H-shaped steel as a core material 2, and the mountain retaining wall 1 and the reinforced concrete wall 3 are connected to each other. A stud 4 for integration is welded to one flange 2 f of the core member 2 and embedded in the reinforced concrete wall 3.
Moreover, although the waterproof sheet 7 is interposed in the boundary surface of the mountain retaining wall 1 and the reinforced concrete wall 3, you may use a coating-type waterproof material instead of the waterproof sheet 7. FIG.

スタッド4は、先端部に拡径部を有する鉄筋からなり、その材質は極低降伏点鋼である。この拡径部は、熱間据込加工によってスタッド4に頭部を形成したり、あるいは、スタッド4の端部に平板を溶接等により植設したものである。
なお、スタッド4の破断伸びが25%以上であれば、極低降伏点鋼に代えて普通鋼など他の鋼材でもよい。
The stud 4 is made of a reinforcing bar having an enlarged diameter portion at the tip, and the material thereof is an extremely low yield point steel. The enlarged diameter portion is formed by forming a head portion on the stud 4 by hot upsetting, or by installing a flat plate on the end portion of the stud 4 by welding or the like.
In addition, if the elongation at break of the stud 4 is 25% or more, other steel materials such as ordinary steel may be used instead of the ultra low yield point steel.

上記の合成壁6を施工するには、山留壁1を通常の工法により施工した後、その前面側を掘削して芯材2の表面を露出させて芯材2を清掃する。そして、必要箇所に防水シート7を接着等により取り付けるとともに、スタッド4を芯材2に溶接等により植設する。
その後、通常のように壁筋5を配筋して型枠を立て込んだ後、コンクリートを打設し、所定の養生期間を経て型枠を解体して完成となる。
To construct the synthetic wall 6, the mountain retaining wall 1 is constructed by a normal construction method, and then the front side is excavated to expose the surface of the core material 2 and clean the core material 2. And while attaching the waterproof sheet 7 to a required location by adhesion | attachment etc., the stud 4 is planted to the core material 2 by welding.
Then, after placing the wall reinforcement 5 as usual and setting up the formwork, concrete is placed, and the formwork is disassembled after a predetermined curing period to complete.

なお、防水シート7を芯材2の表面にも取り付ける場合には、山留壁1の表面をサンドブラスターあるいは高圧水洗浄機等により洗浄するとともに、防水シート7にはスタッド4の取付予定位置に孔または切込を形成しておき、スタッド4をその孔または切込に通して芯材2に植設した後、スタッド4の基端部に防水シート片を重ねてシールすれば良い。
塗膜系防水材や吹付け防水材の場合も、山留壁1の施工後、芯材2を露出させて芯材2の表面を清掃するとともに、スタッド4を芯材2に溶接等で植設する。その後、スタッド4に防水材が付着しないように養生した後、防水材を塗布あるいは吹付ける。
When the waterproof sheet 7 is also attached to the surface of the core member 2, the surface of the mountain retaining wall 1 is washed with a sand blaster or a high-pressure water washer, and the stud 4 is attached to the waterproof sheet 7 at a position where the stud 4 is to be attached. A hole or notch is formed in advance, and the stud 4 is passed through the hole or notch and planted in the core member 2, and then a waterproof sheet piece is stacked on the base end of the stud 4 and sealed.
In the case of a coating-type waterproofing material or a spraying waterproofing material, the core material 2 is exposed to clean the surface of the core material 2 after construction of the mountain retaining wall 1, and the stud 4 is planted on the core material 2 by welding or the like. Set up. Then, after curing so that a waterproof material may not adhere to the stud 4, a waterproof material is apply | coated or sprayed.

本実施形態による合成壁6では、山留壁1と鉄筋コンクリート壁3とを一体化するためのスタッド4に極低降伏点鋼を用いることにより、合成壁6の変形性能が向上し、合成壁6の耐力低下を防ぐことができる。
また、本実施形態による合成壁6では、拡径部を有する鉄筋をスタッド4として用いることにより、山留壁1と鉄筋コンクリート壁3とを強固に一体化できるうえ、スタッド4がせん断補強筋として機能するので、鉄筋コンクリート壁3のせん断耐力が増大する。
さらに、本実施形態による合成壁6では、山留壁1と鉄筋コンクリート壁3との境界面に防水シート7が介装されているので、合成壁6の止水性が向上する。
In the composite wall 6 according to the present embodiment, by using an extremely low yield point steel for the stud 4 for integrating the mountain retaining wall 1 and the reinforced concrete wall 3, the deformation performance of the composite wall 6 is improved, and the composite wall 6 It is possible to prevent a decrease in proof stress.
Further, in the composite wall 6 according to the present embodiment, the steel retaining wall 1 and the reinforced concrete wall 3 can be firmly integrated by using a reinforcing bar having an enlarged diameter portion as the stud 4, and the stud 4 functions as a shear reinforcing bar. Therefore, the shear strength of the reinforced concrete wall 3 is increased.
Furthermore, in the composite wall 6 according to the present embodiment, the waterproof sheet 7 is interposed at the boundary surface between the mountain retaining wall 1 and the reinforced concrete wall 3, so that the water stoppage of the composite wall 6 is improved.

以上、本発明に係る合成壁の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、全てのスタッドについて破断伸びが25%以上のものを使用してもよいが、スタッドのせん断力が大きい箇所のみ破断伸びが25%以上のものを使用してもよい。また、上記の実施形態では、山留壁と鉄筋コンクリート壁の境界面に防水シートが介装されているが、止水性が問題とならない場合は防水シートは無くてもよい。   As mentioned above, although the embodiment of the synthetic wall which concerns on this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably. For example, all of the studs may have a breaking elongation of 25% or more, but only a portion having a large shearing force of the stud may have a breaking elongation of 25% or more. In the above embodiment, the waterproof sheet is interposed on the boundary surface between the mountain retaining wall and the reinforced concrete wall, but the waterproof sheet may be omitted if water-stopping is not a problem.

本発明に係る合成壁の実施形態の一例を示す部分平断面図である。It is a partial plane sectional view showing an example of an embodiment of a synthetic wall concerning the present invention. スタッドの直接せん断試験方法を示す概略図である。It is the schematic which shows the direct shear test method of a stud. スタッドの直接せん断試験の結果を示す図である。It is a figure which shows the result of the direct shear test of a stud.

符号の説明Explanation of symbols

1 山留壁
2 芯材
3 鉄筋コンクリート壁
4 スタッド
5 壁筋
6 合成壁
7 防水シート
1 Yamadome Wall 2 Core Material 3 Reinforced Concrete Wall 4 Stud 5 Wall Reinforcement 6 Synthetic Wall 7 Waterproof Sheet

Claims (2)

山留壁の前面側に鉄筋コンクリート壁を形成するとともに、前記山留壁と前記鉄筋コンクリート壁とを一体化するためのスタッドが前記山留壁の芯材に植設されて前記鉄筋コンクリート壁中にその側部がコンクリートに直接接する状態で埋設されてなる合成壁において、
前記スタッドの破断伸びが25%以上の鋼材であることを特徴とする合成壁。
A reinforced concrete wall is formed on the front side of the retaining wall, and a stud for integrating the retaining wall and the reinforced concrete wall is planted in the core of the retaining wall, and the side in the reinforced concrete wall In the synthetic wall that is embedded in a state where the part is in direct contact with the concrete,
A synthetic wall, wherein the stud is made of a steel material having a breaking elongation of 25% or more.
極低降伏点鋼からなる前記スタッドを用いることを特徴とする請求項1に記載の合成壁。The synthetic wall according to claim 1, wherein the stud made of extremely low yield point steel is used.
JP2004165713A 2004-06-03 2004-06-03 Synthetic wall Expired - Fee Related JP4552114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165713A JP4552114B2 (en) 2004-06-03 2004-06-03 Synthetic wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165713A JP4552114B2 (en) 2004-06-03 2004-06-03 Synthetic wall

Publications (2)

Publication Number Publication Date
JP2005344387A JP2005344387A (en) 2005-12-15
JP4552114B2 true JP4552114B2 (en) 2010-09-29

Family

ID=35497023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165713A Expired - Fee Related JP4552114B2 (en) 2004-06-03 2004-06-03 Synthetic wall

Country Status (1)

Country Link
JP (1) JP4552114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013420A (en) * 2016-06-08 2016-10-12 中国十七冶集团有限公司 Supporting steel lattice column and bottom concrete composite device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515579B2 (en) * 2009-10-01 2014-06-11 株式会社大林組 Mountain retaining wall structure, method for constructing mountain retaining wall structure
CN107975042A (en) * 2017-12-08 2018-05-01 中冶天工集团天津有限公司 A kind of supporting type water-stop curtain and its construction method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04312682A (en) * 1991-04-11 1992-11-04 Taisei Corp Vibration damper of steel framed construction
JPH06341247A (en) * 1993-06-01 1994-12-13 Kumagai Gumi Co Ltd Aseismic wall with vibration energy absorbing function
JPH0913404A (en) * 1995-06-30 1997-01-14 Mitsui Fudosan Kensetsu Kk Construction method for underground structure
JPH11131693A (en) * 1997-10-24 1999-05-18 Nippon Steel Corp Earthquake resistant reinforcing structure for existing building
JPH11323916A (en) * 1998-05-21 1999-11-26 Ohbayashi Corp Construction method of underground wall
JP2001159136A (en) * 1999-12-03 2001-06-12 Asahi Glass Co Ltd Waterproof construction method of earth-retaining wall surface
JP2001159146A (en) * 1999-12-03 2001-06-12 Kajima Corp Waterproof structure for underground exterior wall
JP2002212944A (en) * 2001-01-17 2002-07-31 Ando Corp Underground wall construction
JP2002317454A (en) * 2001-02-15 2002-10-31 Geotop Corp Pile-to-footing junction structure
JP2002371545A (en) * 2001-06-13 2002-12-26 Shimizu Corp Composite underground outer wall and its construction method
JP2004036228A (en) * 2002-07-03 2004-02-05 Shimizu Corp Composite underground wall

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04312682A (en) * 1991-04-11 1992-11-04 Taisei Corp Vibration damper of steel framed construction
JPH06341247A (en) * 1993-06-01 1994-12-13 Kumagai Gumi Co Ltd Aseismic wall with vibration energy absorbing function
JPH0913404A (en) * 1995-06-30 1997-01-14 Mitsui Fudosan Kensetsu Kk Construction method for underground structure
JPH11131693A (en) * 1997-10-24 1999-05-18 Nippon Steel Corp Earthquake resistant reinforcing structure for existing building
JPH11323916A (en) * 1998-05-21 1999-11-26 Ohbayashi Corp Construction method of underground wall
JP2001159136A (en) * 1999-12-03 2001-06-12 Asahi Glass Co Ltd Waterproof construction method of earth-retaining wall surface
JP2001159146A (en) * 1999-12-03 2001-06-12 Kajima Corp Waterproof structure for underground exterior wall
JP2002212944A (en) * 2001-01-17 2002-07-31 Ando Corp Underground wall construction
JP2002317454A (en) * 2001-02-15 2002-10-31 Geotop Corp Pile-to-footing junction structure
JP2002371545A (en) * 2001-06-13 2002-12-26 Shimizu Corp Composite underground outer wall and its construction method
JP2004036228A (en) * 2002-07-03 2004-02-05 Shimizu Corp Composite underground wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013420A (en) * 2016-06-08 2016-10-12 中国十七冶集团有限公司 Supporting steel lattice column and bottom concrete composite device

Also Published As

Publication number Publication date
JP2005344387A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4786485B2 (en) Reinforcing structure and reinforcing method for H-section steel material
JP4552114B2 (en) Synthetic wall
JP2006233671A (en) Reinforcing method of single arrangement existing foundation for low-rise housing
JP2006241696A (en) Joint structure of concrete of foundation or footing to pile head and structure having the joint structure
KR101942855B1 (en) Perforated steel plate shear wall system with dry connecting method applied outside RC structure
JP2005171488A (en) Connection structure between steel wall and reinforced concrete plate
KR20080037436A (en) Concrete filled steel column connected interior diaphram with shear hole
JP4844477B2 (en) Synthetic wall structure and its construction method
JP2004285823A (en) Floor slab bridge and floor slab unit
JP4044945B2 (en) Interior construction method and interior structure of underground structure
JP2005344388A (en) Pile head connection structure
JP5936059B2 (en) Ready-made pile
JP2010242392A (en) Seismic strengthening structure
JPH11303062A (en) Soil-cement wall
JP2017137690A (en) Structure for reinforcing steel pipe
JP3752436B2 (en) Reinforced cast-in-place concrete pile
JP3578210B2 (en) Underground wall structure
JP2009185549A (en) Method of reinforcing structural skeleton and structural skeleton
JP2004270416A (en) Pile with large-diameter bearing plate, and structure for joining pile head thereof
JP3582957B2 (en) Fixing jig for reinforcing mesh for reinforcing concrete bridge and method of reinforcing slab of concrete bridge using the same
JP2020070589A (en) Reinforcement structure for column base part of steel column
JP2018178364A (en) Earthquake reinforcement structure for building and construction method thereof
JP2006037471A (en) Reinforced structure of tunnel construction by frp panel
JP2001254519A (en) Reinforcing construction and reinforcing method using steel plate with joint bar
JP2001073559A (en) Reinforcing joint for concrete structure and reinforcing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees