JP2002212653A - Method for producing metal-ceramics composite material - Google Patents

Method for producing metal-ceramics composite material

Info

Publication number
JP2002212653A
JP2002212653A JP2001004079A JP2001004079A JP2002212653A JP 2002212653 A JP2002212653 A JP 2002212653A JP 2001004079 A JP2001004079 A JP 2001004079A JP 2001004079 A JP2001004079 A JP 2001004079A JP 2002212653 A JP2002212653 A JP 2002212653A
Authority
JP
Japan
Prior art keywords
composite material
powder
preform
metal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001004079A
Other languages
Japanese (ja)
Inventor
Tamotsu Harada
保 原田
Hiromasa Shimojima
浩正 下嶋
Chokusui Odano
直水 小田野
Takeshi Higuchi
毅 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Ceranx Co Ltd
Original Assignee
Taiheiyo Cement Corp
Ceranx Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Ceranx Co Ltd filed Critical Taiheiyo Cement Corp
Priority to JP2001004079A priority Critical patent/JP2002212653A/en
Publication of JP2002212653A publication Critical patent/JP2002212653A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a metal-ceramics composite material by which the exudation of aluminum or its alloy is suppressed, and further, a barrier material is not left as dust on the surface. SOLUTION: In the method for producing the metal-ceramic composite material, a preform is formed of ceramics powder or ceramics fiber as a reinforcing material. The surface of the preform is coated with slurry consisting of low melting point oxide powder, and is dried. Thereafter, melted aluminum or its alloy as a matrix is infiltrated into the preform under non-pressurization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属−セラミック
ス複合材料の製造方法に関し、特に金属の染み出しを抑
える金属−セラミックス複合材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal-ceramic composite material, and more particularly to a method for producing a metal-ceramic composite material which suppresses the exudation of metal.

【0002】[0002]

【従来の技術】最近、半導体製造装置等にセラミックス
粉末またはセラミックス繊維を強化材とし、アルミニウ
ムまたはアルミニウム合金をマトリックスとする金属−
セラミックス複合材料が使われ始めている。
2. Description of the Related Art Recently, in semiconductor manufacturing equipment and the like, metal powders using ceramic powder or ceramic fiber as a reinforcing material and aluminum or an aluminum alloy as a matrix have been used.
Ceramic composite materials are beginning to be used.

【0003】この複合材料の製造方法、特に金属として
アルミニウムをマトリックスとする複合材料の製造方法
としては、粉末冶金法、高圧鋳造法、真空鋳造法等の方
法が従来から知られている。しかし、これらの方法で
は、強化材であるセラミックスの含有率を多くできな
い、あるいは大型の加圧装置が必要である、もしくはニ
アネットの成形が困難である、コストが極めて高いなど
に理由によりいずれも満足できるものではなかった。
[0003] As a method for producing this composite material, particularly a method for producing a composite material using aluminum as a matrix as a metal, methods such as powder metallurgy, high pressure casting, and vacuum casting have been conventionally known. However, in these methods, the content of the ceramics as a reinforcing material cannot be increased, or a large pressurizing device is required, or it is difficult to form a near net, and the cost is extremely high. It was not satisfactory.

【0004】そこで最近では、上記問題を解決する製造
方法として、米国ランクサイド社が開発した非加圧金属
浸透法(PrimexTM)がある。この方法は、SiC
やAl23などのセラミックス粉末で形成されたプリフ
ォームにMgを含むアルミニウム合金を接触させ、これ
をN2雰囲気炉中で700〜900℃の温度に加熱して
溶融したアルミニウム合金を浸透させる方法である。こ
れは、Mgの化学反応を利用してセラミックス粉末と溶
融金属との濡れ性を改善し、機械的な加圧を行わなくて
もプリフォーム中に浸透できるという特徴があるので、
加圧装置が不要な優れた方法である。
[0004] Recently, as a manufacturing method for solving the above problem, there is a non-pressurized metal infiltration method (Primex ) developed by Rankside Co., USA. This method uses SiC
, Al 2 O 3, or the ceramic powder preforms formed by the contacting the aluminum alloy containing Mg, such as, to which the permeate of aluminum was melted by heating to a temperature of 700 to 900 ° C. in a N 2 atmosphere furnace in the alloy Is the way. This has the feature that the wettability between the ceramic powder and the molten metal is improved by utilizing the chemical reaction of Mg, and that it can penetrate into the preform without performing mechanical pressing.
This is an excellent method that does not require a pressurizing device.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、プリフォームに浸透させたアルミニウム合金が
プリフォームからかなり多く染み出すので、プリフォー
ムの表面にカーボン粉末からなるバリア材を塗布するこ
とによって染み出しを抑えているが、成した複合材料の
表面には、塗布したバリア材を相当丁寧に除去しても、
バリア材であるカーボン粉末が付着性が強く極めて細か
いために、カーボン粉末がゴミとして多く残存するとい
う問題があった。
However, in this method, since the aluminum alloy permeated into the preform seeps out considerably from the preform, the aluminum alloy penetrated by applying a carbon powder barrier material to the surface of the preform. Although it suppresses the outflow, even if the applied barrier material is carefully removed on the surface of the formed composite material,
Since the carbon powder as a barrier material has strong adhesion and is extremely fine, there is a problem that a large amount of carbon powder remains as dust.

【0006】本発明は、上述した金属−セラミックス複
合材料の製造方法が有する課題に鑑みなされたものであ
って、その目的は、アルミニウムまたはアルミニウム合
金の染み出しを抑えることに加えて、表面にバリア材が
ゴミとして残存しない金属−セラミックス複合材料の製
造方法を提供することにある。
The present invention has been made in view of the problems of the above-described method for manufacturing a metal-ceramic composite material, and has as its object to suppress the exudation of aluminum or an aluminum alloy and to provide a barrier on the surface. An object of the present invention is to provide a method for producing a metal-ceramic composite material in which materials do not remain as dust.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、低融点酸化物粉末を
バリア材として用いれば、浸透してきたアルミニウムま
たはアルミニウム合金の染み出しを抑えると共に、表面
にバリア材がゴミとして残存しない複合材料が得られる
との知見を得て本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, it has been found that the use of a low-melting-point oxide powder as a barrier material suppresses seepage of aluminum or an aluminum alloy that has penetrated. At the same time, the inventors have found that a composite material in which the barrier material does not remain as dust on the surface can be obtained, and have completed the present invention.

【0008】即ち、本発明は、(1)強化材であるセラ
ミックス粉末またはセラミックス繊維でプリフォームを
形成し、そのプリフォームの表面に低融点酸化物粉末か
らなるスラリーを塗布し、乾燥した後、そのプリフォー
ムにマトリックスである溶融したアルミニウムまたはア
ルミニウム合金を非加圧で浸透させることを特徴とする
金属−セラミックス複合材料の製造方法(請求項1)と
し、(2)低融点酸化物粉末が、ワラストナイト粉末、
ケイ酸ガラス粉末、ホウケイ酸ガラス粉末であることを
特徴とする請求項1記載の金属−セラミックス複合材料
の製造方法(請求項2)とすることを要旨とする。以下
さらに詳細に説明する。
More specifically, the present invention provides (1) a preform formed of ceramic powder or ceramic fiber as a reinforcing material, a slurry of a low-melting oxide powder applied to the surface of the preform, and dried. A method for producing a metal-ceramic composite material, wherein a molten aluminum or an aluminum alloy as a matrix is infiltrated into the preform under no pressure (claim 1). Wollastonite powder,
The gist of the present invention is a method for producing a metal-ceramic composite material according to claim 1, wherein the method is a silicate glass powder or a borosilicate glass powder. This will be described in more detail below.

【0009】上記で述べたように、先ずプリフォームを
形成し、そのプリフォームの表面に低融点酸化物粉末か
らなるバリア材を形成し、そのプリフォームに溶融した
アルミニウムまたはアルミニウム合金を浸透させれば、
低融点酸化物粉末が溶融して膜となるので、浸透してき
たアルミニウムまたはアルミニウム合金の染み出しを抑
えると同時に、その膜が複合材料と強固に結合されてい
ることから、膜、すなわちバリア材がゴミとして残存し
ないこととなる。
As described above, first, a preform is formed, a barrier material made of a low-melting oxide powder is formed on the surface of the preform, and molten aluminum or aluminum alloy is infiltrated into the preform. If
Since the low-melting oxide powder melts to form a film, it suppresses the exudation of the infiltrated aluminum or aluminum alloy, and at the same time, the film, that is, the barrier material, is strongly bonded to the composite material. It will not remain as garbage.

【0010】その低融点酸化物粉末としては、アルミニ
ウムまたはアルミニウム合金を浸透させる温度で溶融す
る酸化物粉末であればなんでもよいが、その中でもワラ
ストナイト粉末、ケイ酸ガラス粉末、ホウケイ酸ガラス
粉末が汎用的で価格が安く、また取り扱い易いのでより
好ましい。
As the low melting point oxide powder, any oxide powder that melts at a temperature at which aluminum or an aluminum alloy is permeated may be used. Among them, wollastonite powder, silicate glass powder, and borosilicate glass powder are preferable. It is more preferable because it is versatile, inexpensive, and easy to handle.

【0011】[0011]

【発明の実施の形態】本発明の複合材料の製造方法をさ
らに詳しく述べると、セラミックス粉末またはセラミッ
クス繊維としてSiC、Al23、AlNなどのセラミ
ックス粉末またはセラミックス繊維を用意し、これにさ
らにバリア材としてワラストナイト粉末、ケイ酸ガラス
粉末、ホウケイ酸ガラス粉末などの低融点酸化物粉末も
用意する。一方、浸透させるアルミニウム合金としてM
gを含むアルミニウム合金のインゴットも用意する。
More particularly the method of producing a composite material of the embodiment of the present invention, SiC, a ceramic powder or ceramic fibers, such as Al 2 O 3, AlN were prepared as ceramic powders or ceramic fibers, further barriers to Low melting point oxide powders such as wollastonite powder, silicate glass powder, and borosilicate glass powder are also prepared as materials. On the other hand, M
An ingot of an aluminum alloy containing g is also prepared.

【0012】用意したセラミックス粉末またはセラミッ
クス繊維でセディメントキャスト法などの成形法により
プリフォームを形成する。これとは別に用意したバリア
材である低融点酸化物粉末に溶媒を加えてスラリーを調
製する。得られたスラリーをバリア材として先に形成し
たプリフォームの表面に塗布し、それを乾燥する。スラ
リーの塗り難い個所があっても、酸化物粉末の含有量を
少なくすることによりスラリーの粘度を低くできるの
で、塗り難い個所でも塗れるようになる。また、未浸透
部分が生じ易い個所があっても、同様スラリーの粘度を
低くできるので、薄く塗れるようになり、その薄く塗る
ことにより生成した膜に気孔が生じて通気性を有するよ
うになり、未浸透部分が生じ易い個所でもバリア効果を
発揮しつつ、未浸透部分をなくすことができるようにな
る。
A preform is formed from the prepared ceramic powder or ceramic fiber by a molding method such as a sediment casting method. A slurry is prepared by adding a solvent to a low melting point oxide powder, which is a barrier material prepared separately. The obtained slurry is applied to the surface of the preform previously formed as a barrier material, and dried. Even if there is a portion where the slurry is difficult to apply, the viscosity of the slurry can be reduced by reducing the content of the oxide powder, so that it is possible to apply even where the application is difficult. In addition, even if there is a place where a non-penetrated portion is likely to be generated, the viscosity of the slurry can be similarly reduced, so that the slurry can be applied thinly, and pores are generated in the film generated by applying the thinly, so that the film has air permeability, It is possible to eliminate the non-penetrated portion while exhibiting the barrier effect even in the portion where the non-penetrated portion is likely to be generated.

【0013】そのバリア材を塗布したプリフォームの上
面に用意したアルミニウム合金のインゴットを置き、そ
れを窒素雰囲気中で700〜900℃の温度で熱処理
し、溶融したアルミニウム合金を非加圧で浸透させ、冷
却して複合材料を作製する。バリア材で染み出しが抑え
られているので、肉厚にならずそのままでもよいが、必
要があれば機械加工で研削、研磨などしてさらに形状精
度を上げてもよい。
The prepared aluminum alloy ingot is placed on the upper surface of the preform coated with the barrier material, and the ingot is heat-treated at a temperature of 700 to 900 ° C. in a nitrogen atmosphere to allow the molten aluminum alloy to penetrate without pressure. And cooling to produce a composite material. Since the exudation is suppressed by the barrier material, it may be left as it is without increasing the wall thickness. However, if necessary, the shape accuracy may be further increased by grinding or polishing by machining.

【0014】以上の方法で金属−セラミックス複合材料
を作製すれば、アルミニウムまたはアルミニウム合金の
染み出しを抑えると共に、表面にバリア材がゴミとして
残存しない金属−セラミックス複合材料が得られる。
When the metal-ceramic composite material is manufactured by the above-described method, a metal-ceramic composite material in which the oozing of aluminum or an aluminum alloy is suppressed and the barrier material does not remain as dust on the surface can be obtained.

【0015】[0015]

【実施例】以下本発明の実施例を比較例と共に具体的に
挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by giving specific examples of the present invention together with comparative examples.

【0016】(実施例1) (1)金属−セラミックス複合材料の作製 強化材として#180(平均粒径66μm)の市販Si
C粉末70質量部と#500(平均粒径25μm)の市
販SiC粉末30質量部を用い、それにバインダーとし
てコロイダルシリカ液をシリカ固形分が2重量部となる
量を添加し、それに消泡剤としてフォーマスタVL(サ
ンノブコ社製)を0.2重量部、イオン交換水を24重
量部加え、ポットミルで12時間混合した。
Example 1 (1) Preparation of Metal-Ceramic Composite Material Commercially available Si of # 180 (average particle size 66 μm) as a reinforcing material
Using 70 parts by mass of C powder and 30 parts by mass of commercially available SiC powder of # 500 (average particle size 25 μm), a colloidal silica liquid was added as a binder in an amount such that the silica solid content became 2 parts by weight, and a defoaming agent was added thereto. 0.2 parts by weight of Formaster VL (manufactured by Sannobuco) and 24 parts by weight of ion-exchanged water were added and mixed by a pot mill for 12 hours.

【0017】得られたスラリーを300×300×10
0mmの成形体が得られるゴム型に流し込み、それを2
4時間静置し、SiC粉末を沈殿させ、上済み液を布な
どで除去した後、それを冷凍室に入れ、30時間冷凍さ
せて脱型した。得られた成形体を1000℃の温度で焼
成してSiC粉末の充填率が70体積%のプリフォーム
を形成した。
The obtained slurry is 300 × 300 × 10
Pour it into a rubber mold from which a 0 mm molded body can be obtained.
After leaving still for 4 hours to precipitate the SiC powder and removing the finished solution with a cloth or the like, it was put into a freezer, frozen for 30 hours and demolded. The obtained molded body was fired at a temperature of 1000 ° C. to form a preform having a filling ratio of SiC powder of 70% by volume.

【0018】これとは別に、ワラストナイト粉末にイオ
ン交換水を加え、混合してスラリーを調製し、得られた
スラリーを先に形成したプリフォームの上面以外の面に
塗布し、それを乾燥した。そのプリフォームの上面にA
l−12Si−3Mg組成のアルミニウム合金のインゴ
ットを置き、それを窒素雰囲気中で825℃の温度で熱
処理し、溶融したアルミニウム合金を24時間非加圧浸
透させた後、冷却して複合材料を作製した。
Separately, ion-exchanged water is added to the wollastonite powder and mixed to prepare a slurry. The obtained slurry is applied to a surface other than the upper surface of the preform previously formed, and dried. did. A on the top of the preform
An ingot of an aluminum alloy having a composition of 1-12Si-3Mg is placed, heat-treated at 825 ° C. in a nitrogen atmosphere, and the molten aluminum alloy is non-pressurized and infiltrated for 24 hours and then cooled to produce a composite material. did.

【0019】(2)評価 得られた複合材料の表面を目視観察し、遊離したワラス
トナイト粉末などのゴミの有無を調べた。その結果、飛
散するようなゴミは認められなかった。また、得られた
複合材料を切断し、その切断面を目視で観察し、浸透さ
せたアルミニウム合金の表面からの染みだしを調べた。
その結果、染み出しはほとんど認められなかった。
(2) Evaluation The surface of the obtained composite material was visually observed, and the presence or absence of dust such as liberated wollastonite powder was examined. As a result, no scattered garbage was found. Further, the obtained composite material was cut, and the cut surface was visually observed, and the seepage of the permeated aluminum alloy from the surface was examined.
As a result, almost no seepage was observed.

【0020】(実施例2) (1)金属−セラミックス複合材料の作製 ケイ酸ガラス粉末にイオン交換水を加え、混合してスラ
リーを調製し、得られたスラリーを実施例1に得られた
プリフォームの上面以外の面に塗布し、それを乾燥し
た。そのプリフォームの上面に実施例1と同様にAl−
12Si−3Mg組成のアルミニウム合金のインゴット
を置き、それを窒素雰囲気中で825℃の温度で熱処理
し、溶融したアルミニウム合金を24時間非加圧浸透さ
せた後、冷却して複合材料を作製した。
Example 2 (1) Preparation of Metal-Ceramic Composite Material Ion-exchanged water was added to silicate glass powder, mixed to prepare a slurry, and the obtained slurry was mixed with the powder obtained in Example 1. It was applied to a surface other than the upper surface of the reform and dried. Al-like on the upper surface of the preform as in Example 1.
An ingot of an aluminum alloy having a 12Si-3Mg composition was placed, heat-treated at 825 ° C. in a nitrogen atmosphere, and allowed to infiltrate the molten aluminum alloy without pressure for 24 hours, and then cooled to produce a composite material.

【0021】(2)評価 得られた複合材料の表面を目視観察し、ケイ酸ガラス粉
末などのゴミの有無を調べた。その結果、飛散するよう
なゴミは認められなかった。また、得られた複合材料を
切断し、その切断面を目視で観察し、浸透させたアルミ
ニウム合金の表面からの染みだしを調べた。その結果、
染み出しはほとんど認められなかった。このことは、先
の実施例1を含めて低融点酸化物粉末をバリア材とすれ
ば、アルミニウムまたはアルミニウム合金の染み出しを
抑えると共に、そのバリア材が表面にゴミとして残存し
ない金属−セラミックス複合材料とすることができるこ
とを示している。
(2) Evaluation The surface of the obtained composite material was visually observed to check for the presence of dust such as silicate glass powder. As a result, no scattered garbage was found. Further, the obtained composite material was cut, and the cut surface was visually observed, and the seepage of the permeated aluminum alloy from the surface was examined. as a result,
Little seepage was observed. This means that if the low-melting-point oxide powder is used as the barrier material in the first and second embodiments, it is possible to suppress the exudation of aluminum or aluminum alloy and to prevent the barrier material from remaining on the surface as dust. It indicates that it can be.

【0022】(比較例)比較のために、バリア材をカー
ボン粉末とする他は実施例1と同様に複合材料を作製
し、評価した。その結果、アルミニウム合金の染み出し
は認められなかったものの、複合材料の表面にカーボン
粉末がゴミとして多く残存していた。
Comparative Example For comparison, a composite material was prepared and evaluated in the same manner as in Example 1, except that carbon powder was used as the barrier material. As a result, although exudation of the aluminum alloy was not recognized, a large amount of carbon powder remained as dust on the surface of the composite material.

【0023】[0023]

【発明の効果】以上の通り、本発明の金属−セラミック
ス複合材料の製造方法であれば、金属の染み出しを抑え
ると共に、バリア材が表面にゴミとして残存しない金属
−セラミックス複合材料とすることができるようになっ
た。このことにより、染み出し金属を削る負担が減少す
ると同時に、表面にゴミの脱落のない清浄な雰囲気で使
用することができるようになった。
As described above, according to the method for producing a metal-ceramic composite material of the present invention, a metal-ceramic composite material can be obtained in which the exudation of metal is suppressed and the barrier material does not remain as dust on the surface. Now you can. As a result, the burden of shaving the exuded metal is reduced, and at the same time, it can be used in a clean atmosphere in which dust does not fall on the surface.

フロントページの続き (72)発明者 小田野 直水 宮城県仙台市泉区明通3−7 セランクス 株式会社仙台工場 (72)発明者 樋口 毅 宮城県仙台市泉区明通3−7 セランクス 株式会社仙台工場 Fターム(参考) 4K020 AA05 AA06 AA08 AA22 AC01 BA02 BB02 BB22 Continued on the front page (72) Inventor Naomizu Odano 3-7 Meido, Izumi-ku, Sendai City, Miyagi Prefecture Sendai Plant (72) Inventor Takeshi Higuchi 3-7 Meido, Izumi-ku, Sendai City, Miyagi Prefecture SELANX Sendai Co., Ltd. Factory F term (reference) 4K020 AA05 AA06 AA08 AA22 AC01 BA02 BB02 BB22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強化材であるセラミックス粉末またはセ
ラミックス繊維でプリフォームを形成し、そのプリフォ
ームの表面に低融点酸化物粉末からなるスラリーを塗布
し、乾燥した後、そのプリフォームにマトリックスであ
る溶融したアルミニウムまたはアルミニウム合金を非加
圧で浸透させることを特徴とする金属−セラミックス複
合材料の製造方法。
1. A preform is formed from ceramic powder or ceramic fiber as a reinforcing material, a slurry made of a low melting point oxide powder is applied to the surface of the preform, dried, and then a matrix is formed on the preform. A method for producing a metal-ceramic composite material, characterized by infiltrating molten aluminum or an aluminum alloy without applying pressure.
【請求項2】 低融点酸化物粉末が、ワラストナイト粉
末、ケイ酸ガラス粉末、ホウケイ酸ガラス粉末であるこ
とを特徴とする請求項1記載の金属−セラミックス複合
材料の製造方法。
2. The method for producing a metal-ceramic composite material according to claim 1, wherein the low melting point oxide powder is wollastonite powder, silicate glass powder, or borosilicate glass powder.
JP2001004079A 2001-01-11 2001-01-11 Method for producing metal-ceramics composite material Pending JP2002212653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004079A JP2002212653A (en) 2001-01-11 2001-01-11 Method for producing metal-ceramics composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004079A JP2002212653A (en) 2001-01-11 2001-01-11 Method for producing metal-ceramics composite material

Publications (1)

Publication Number Publication Date
JP2002212653A true JP2002212653A (en) 2002-07-31

Family

ID=18872312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004079A Pending JP2002212653A (en) 2001-01-11 2001-01-11 Method for producing metal-ceramics composite material

Country Status (1)

Country Link
JP (1) JP2002212653A (en)

Similar Documents

Publication Publication Date Title
JP2002212653A (en) Method for producing metal-ceramics composite material
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JP2002212652A (en) Method for producing metal-ceramics composite material
JP2002194456A (en) Method for manufacturing large-size thick-walled ceramics/metal composite material
JPH11172348A (en) Metal-ceramics composite and its production
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JP2002212690A (en) Method for producing metal-ceramics composite material having thickness part
JP2002235128A (en) Method for producing metal - ceramics composite material
JPH11157965A (en) Metal-ceramic composite material and its production
JPH1180860A (en) Production of metal-ceramics composite material
JP4167318B2 (en) Method for producing metal-ceramic composite material
JP2002241870A (en) Method for manufacturing metal/ceramic composite material having hollow
JP2002241871A (en) Metal/ceramic composite material having machinable part and manufacturing method thereof
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP2002339025A (en) Method for manufacturing ceramics and metal composite
JPH10140263A (en) Production of metal-ceramics composite
JPH10219369A (en) Composite material of ceramics and metal, and its production
JPH11172347A (en) Metal-ceramics composite and its production
JPH11228262A (en) Metal-ceramic composite material and its production
JP4183361B2 (en) Method for producing metal-ceramic composite material
JP4279370B2 (en) Method for producing metal-ceramic composite material
JPH1143728A (en) Production of metal-ceramics composite
JP2003003221A (en) Ceramics/metal composite material
JP2002322523A (en) Metal-ceramic composite material and method for producing the same
JP2002180155A (en) Method for producing large and thick metal-ceramic composite material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060808