JP2002206151A - Soft magnetic alloy powder and production method therefor - Google Patents
Soft magnetic alloy powder and production method thereforInfo
- Publication number
- JP2002206151A JP2002206151A JP2001001318A JP2001001318A JP2002206151A JP 2002206151 A JP2002206151 A JP 2002206151A JP 2001001318 A JP2001001318 A JP 2001001318A JP 2001001318 A JP2001001318 A JP 2001001318A JP 2002206151 A JP2002206151 A JP 2002206151A
- Authority
- JP
- Japan
- Prior art keywords
- alloy powder
- powder
- soft magnetic
- added
- magnetic alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 91
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 25
- 239000000956 alloy Substances 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910003271 Ni-Fe Inorganic materials 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 21
- 238000010791 quenching Methods 0.000 claims description 13
- 230000000171 quenching effect Effects 0.000 claims description 13
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 230000004907 flux Effects 0.000 claims description 7
- 229910003296 Ni-Mo Inorganic materials 0.000 claims description 2
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 abstract description 5
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- 238000009689 gas atomisation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 229910018499 Ni—F Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- 238000005029 sieve analysis Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14708—Fe-Ni based alloys
- H01F1/14733—Fe-Ni based alloys in the form of particles
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、軟磁性合金粉末及
びその製造方法に関し、特に、液体急冷法によりフレー
ク状合金粉末を得た後、これを粉砕して得られる軟磁性
合金粉末及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic alloy powder and a method for producing the same, and more particularly, to a soft magnetic alloy powder obtained by obtaining a flake-like alloy powder by a liquid quenching method and then pulverizing the same. About the method.
【0002】[0002]
【従来の技術】従来、軟磁性合金粉末である、Ni−F
e合金、Ni−Mo−Fe合金粉末等のNi−Fe系合
金粉末を製造する方法としては、原料を高周波溶解等で
溶解しインゴットを製造した後、ジョークラッシャー、
ボールミル、振動ミルのような粉砕機を用いて希望する
粒度の粉末を得るか、溶湯金属から直接合金粉末をガス
アトマイズ法、水アトマイズ法等により得ることが知ら
れている。また、別の方法としては、ロール急冷法、す
なわち高速回転する冷却ロールの周面に溶湯金属をノズ
ルから自然落下させて周面上で急冷凝固させ、フレーク
状粉末を得、これを粉砕して粉末を製造する方法が提案
されている。2. Description of the Related Art Conventionally, soft magnetic alloy powder, Ni-F
As a method for producing Ni-Fe alloy powder such as e-alloy and Ni-Mo-Fe alloy powder, a raw material is melted by high frequency melting or the like to produce an ingot, and then a jaw crusher,
It is known to obtain a powder having a desired particle size by using a pulverizer such as a ball mill or a vibration mill, or to obtain an alloy powder directly from a molten metal by a gas atomizing method, a water atomizing method, or the like. Further, as another method, a roll quenching method, that is, a molten metal is naturally dropped from a nozzle on a peripheral surface of a cooling roll that rotates at a high speed and rapidly cooled and solidified on the peripheral surface to obtain a flake-like powder, which is pulverized. Methods for producing powder have been proposed.
【0003】[0003]
【発明が解決しようとする課題】ところが、Ni−Fe
系合金粉末をインゴットから製造しようとした場合、振
動ミルのような粉砕機を用いて粉砕するには靱性があり
困難であった。さらに粉砕され細かくなっても、粉砕工
程中に造粒してしまい、なかなか微細な粉末を得にくい
という問題があった。However, Ni-Fe
When an attempt was made to produce a system alloy powder from an ingot, it was difficult to pulverize using a pulverizer such as a vibration mill because of its toughness. Further, even if it is pulverized and fine, there is a problem that granulation occurs during the pulverization step and it is difficult to obtain a very fine powder.
【0004】一方、アトマイズ法並びにロール急冷法等
の溶湯合金から直接粉末を製造する液体急冷法では、ノ
ズル孔から溶湯を噴出する際にノズル孔で閉塞しやすい
という問題があり、さらに、ロール急冷法で製造される
製品は、薄帯状のものが積層してしまい、フレーク状粉
末が得られない問題があった。この薄帯状の堆積物を粉
砕し、粉末にするにはインゴットほどでないにしろ、従
来の方法で粉砕するには時間が必要であった。On the other hand, the liquid quenching method for producing powder directly from a molten alloy, such as the atomizing method and the roll quenching method, has a problem that when the molten metal is ejected from the nozzle hole, it is easily blocked by the nozzle hole. The product manufactured by the method has a problem that thin strips are laminated and flake-like powder cannot be obtained. It takes time to pulverize the ribbon-shaped sediment by a conventional method, though not as much as an ingot, to pulverize the sediment into a powder.
【0005】また、ガスアトマイズ法では、フレーク状
もしくは扁平状粉末のようなアスペクト比が1以上の粉
末を得ることは製造原理的に不可能であり、水アトマイ
ズ法では、ガスアトマイズ法に比べ、高アスペクト比が
得られやすいものの、扁平状の粉末を得ることは困難で
あり、加えて冷却時の粉末表面の汚染という問題があっ
た。[0005] In addition, it is impossible in principle to obtain a powder having an aspect ratio of 1 or more, such as a flake-like or flat powder, by the gas atomization method. Although the ratio can be easily obtained, it is difficult to obtain a flat powder, and in addition, there is a problem that the powder surface is contaminated during cooling.
【0006】また、粉砕性の向上と粘性の低下のために
第三元素を添加した場合、製造した粉末は元素を添加せ
ずに製造した粉末と比べ、保磁力の増加、飽和磁化の低
下というような磁気特性の著しい劣化がみられるという
問題があった。In addition, when a third element is added to improve the pulverizability and lower the viscosity, the produced powder has an increased coercive force and a reduced saturation magnetization as compared with a powder produced without the addition of an element. There is a problem that such remarkable deterioration of magnetic properties is observed.
【0007】本発明は、上記の問題点を解決し、粉砕性
が向上したフレーク状合金粉末を安価な設備で、収率よ
く安価に製造でき、その上、磁気特性の劣化がない軟磁
性合金粉末及びその製造方法を提供することにある。The present invention solves the above-mentioned problems, and can produce flake-like alloy powder having improved pulverizability at low cost with good facilities at a good yield, and furthermore, a soft magnetic alloy having no deterioration in magnetic properties. It is to provide a powder and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】そこで、上記問題を解決
するために、本発明者等は、第三添加元素としてPを添
加した。In order to solve the above-mentioned problems, the present inventors have added P as a third additive element.
【0009】即ち、本発明は、Niが36.0〜60.0
wt%、残部Feの組成からなるNi−Fe軟磁性合金
粉末において、Pが0.05〜0.5wt%添加されたこ
とを特徴とする軟磁性合金粉末である。That is, according to the present invention, Ni is 36.0 to 60.0.
A soft magnetic alloy powder characterized in that P is added in an amount of 0.05 to 0.5 wt% in a Ni--Fe soft magnetic alloy powder having a composition of wt% and the balance of Fe.
【0010】また、本発明は、Niが70.0〜85.0
wt%、Moが5.0wt%以下、残部Feの組成から
なるNi−Mo−Fe合金粉末において、Pが0.05
〜0.5wt%添加されたことを特徴とする軟磁性合金
粉末である。In the present invention, the Ni content is preferably from 70.0 to 85.0.
wt%, Mo is 5.0 wt% or less, and in a Ni-Mo-Fe alloy powder having a balance of Fe, P is 0.05.
It is a soft magnetic alloy powder characterized by being added in an amount of up to 0.5 wt%.
【0011】また、本発明は、上記の軟磁性合金粉末に
おいて、平均粒径が20〜150μm、平均アスペクト
比が1.0〜5.0(1.0を含まず)であることを特徴
とする軟磁性合金粉末である。Further, the present invention is characterized in that the soft magnetic alloy powder has an average particle diameter of 20 to 150 μm and an average aspect ratio of 1.0 to 5.0 (excluding 1.0). Soft magnetic alloy powder.
【0012】また、本発明は、上記の軟磁性合金粉末に
おいて、飽和磁束密度Bsが17000G以上、保磁力
Hcが15Oe以下であることを特徴とする軟磁性合金
粉末である。Further, the present invention provides the soft magnetic alloy powder, wherein the soft magnetic alloy powder has a saturation magnetic flux density Bs of 17000 G or more and a coercive force Hc of 15 Oe or less.
【0013】また、本発明は、上記の軟磁性合金粉末に
おいて、飽和磁束密度Bsが7000G以上、保磁力H
cが10Oe以下であることを特徴とする軟磁性合金粉
末である。Further, according to the present invention, the soft magnetic alloy powder has a saturation magnetic flux density Bs of 7000 G or more and a coercive force H
The soft magnetic alloy powder, wherein c is 10 Oe or less.
【0014】また、本発明は、冷却ロールを用いた液体
急冷法により、フレーク状合金粉末を得た後、該粉末を
粉砕して、Niが36.0〜60.0wt%、残部Feの
組成からなるNi−Fe合金粉末を製造する方法におい
て、Pを0.05〜0.5wt%添加することを特徴とす
る軟磁性合金粉末の製造方法である。Further, according to the present invention, a flake-like alloy powder is obtained by a liquid quenching method using a cooling roll, and the powder is pulverized to obtain a composition of 36.0 to 60.0 wt% of Ni and the balance of Fe. The method for producing a soft magnetic alloy powder according to claim 1, wherein P is added in an amount of 0.05 to 0.5 wt%.
【0015】また、本発明は、冷却ロールを用いた液体
急冷法により、フレーク状合金粉末を得た後、該粉末を
粉砕して、Niが70.0〜85.0wt%、Moが5.
0wt%以下、残部Feの組成からなるNi−Mo−F
e合金粉末を製造する方法において、Pを0.05〜0.
5wt%添加することを特徴とする軟磁性合金粉末の製
造方法である。Further, according to the present invention, a flake-like alloy powder is obtained by a liquid quenching method using a cooling roll, and then the powder is pulverized to obtain a Ni content of 70.0 to 85.0 wt% and a Mo content of 5.0.
Ni-Mo-F having a composition of 0 wt% or less and the balance of Fe
In a method for producing an e-alloy powder, P is set to 0.05 to 0.5.
This is a method for producing a soft magnetic alloy powder characterized by adding 5 wt%.
【0016】Pは高い電気陰性度のため、鉄族遷移元素
と不対称に結合するため結合エネルギーの相互作用が減
少し、溶湯合金とした場合、少量の添加で粘性を低下さ
せるのに有効な元素である。Since P has a high electronegativity and is symmetrically bonded to the iron group transition element, the interaction of the binding energy is reduced. When a molten alloy is used, P is effective for lowering the viscosity by adding a small amount. Element.
【0017】しかし、あまり添加量が少ないと添加の効
果が得られず、逆に多いと磁気特性の劣化を生じる。N
i−Fe系合金にPを添加した場合、添加量0.05w
t%以上で合金溶湯の粘性を低下させ、液体急冷法によ
る粉末製造において、ノズル孔の閉塞防止につながる効
果が得られる。また、添加量0.5wt%を超えると、
保磁力Hc、飽和磁化Bs等の磁気特性の著しい劣化が
みられることから、P添加量を0.05〜0.5wt%の
範囲に定めた。However, if the addition amount is too small, the effect of the addition cannot be obtained, and if it is too large, the magnetic characteristics deteriorate. N
When P is added to the i-Fe alloy, the addition amount is 0.05 w.
At t% or more, the viscosity of the molten alloy is reduced, and an effect of preventing clogging of nozzle holes can be obtained in powder production by a liquid quenching method. When the amount exceeds 0.5 wt%,
Since remarkable deterioration of magnetic properties such as coercive force Hc and saturation magnetization Bs is observed, the amount of P added is set in the range of 0.05 to 0.5 wt%.
【0018】また、Ni−Fe合金のNi含有量を3
6.0〜60.0wt%の範囲に限定したのは、36wt
%未満では磁歪定数、磁気異方性が大きく所望の高透磁
率が得られず、一方、60wt%を超えると飽和磁束密
度が低下するためである。同様の理由から、Ni−Mo
−Fe合金のNi含有量は、70.0〜85.0wt%の
範囲とした。Moは、Ni−Fe合金の軟磁性を改善
し、高透磁率を安定して得るために添加すると効果があ
り、その量が5.0wt%を超えると効果が一定とな
り、かつ飽和磁束密度が著しく低下するため、5.0w
t%以下とした。The Ni content of the Ni—Fe alloy is 3
36 wt% is limited to the range of 6.0 to 60.0 wt%.
%, The desired high magnetic permeability cannot be obtained because the magnetostriction constant and the magnetic anisotropy are large, and if it exceeds 60 wt%, the saturation magnetic flux density decreases. For the same reason, Ni-Mo
The Ni content of the -Fe alloy was in the range of 70.0 to 85.0 wt%. Mo has an effect when added to improve the soft magnetism of the Ni—Fe alloy and stably obtain a high magnetic permeability. When the amount exceeds 5.0 wt%, the effect becomes constant, and the saturation magnetic flux density becomes low. 5.0w
t% or less.
【0019】また、平均粒径を20〜150μmの範囲
に限定したのは、液体急冷法でフレーク状粉末を得、そ
れを粉砕し圧粉磁芯を製造した場合、150μmを超え
ると、フレーク状粉末の厚みが大きくなるため、粒子内
部に流れる渦電流損失が大きくなり、その結果、周波数
特性が低下するからである。また、20μm以上とした
のは、20μm未満の微細な粉末は、得られにくいから
である。なお、ここでいう粒径は、ふるい分析またはそ
れに類似した方法によって求めたふるいのサイズで決め
られる。The reason why the average particle size is limited to the range of 20 to 150 μm is that flake-like powder is obtained by a liquid quenching method, and is crushed to produce a dust core. This is because the thickness of the powder increases, so that the eddy current loss flowing inside the particles increases, and as a result, the frequency characteristics deteriorate. The reason why the thickness is 20 μm or more is that it is difficult to obtain a fine powder having a size of less than 20 μm. The particle size here is determined by the size of the sieve obtained by sieve analysis or a method similar thereto.
【0020】平均アスペクト比については、5.0を超
えると圧粉体とした場合、粉末が長くなってしまい成型
性が悪化するため、平均アスペクト比の範囲を1.0〜
5.0(1.0を含まず)とした。より好ましくは、平均
アスペクト比1.0〜3.0(1.0を含まず)である。If the average aspect ratio exceeds 5.0, when the green compact is used, the powder becomes longer and the moldability deteriorates.
5.0 (not including 1.0). More preferably, the average aspect ratio is 1.0 to 3.0 (excluding 1.0).
【0021】[0021]
【発明の実施の形態】ロール急冷法でNiが36.0〜
60.0wt%、Pが0.05〜0.5wt%、残部Fe
とNiが70.0〜85.0wt%、Moが5.0wt%
以下、残部Feの組成からなるフレーク状粉末を製造し
た。P添加量が0.05wt%以上で合金溶湯の粘性を
下げ溶湯落下孔の閉塞を防止し、回収部分でフレーク状
粉末を得ることができた。P添加量が0.05wt%未
満では、溶湯落下孔の閉塞の防止にはなるものの、回収
部分で薄帯状の堆積物になってしまい、フレーク状の粉
末を得ることができなかった。しかし、P添加量が0.
5wt%を超えると粉末の粉砕性は向上するものの、飽
和磁束密度等の磁気特性の著しい低下がみられ、無添加
のものより劣化する。また、Niが36.0〜60.0w
t%、Pが0.05〜0.5wt%、残部FeとNiが7
0.0〜85.0wt%、Moが5.0wt%以下、残部
Feの組成において、振動ミルによる粉砕によって平均
粒径20〜150μmの範囲で平均アスペクト比が1.
0〜5.0(1.0を含まず)である合金粉末を製造した
場合、粉砕時間は大幅に短縮される。BEST MODE FOR CARRYING OUT THE INVENTION In the roll quenching method, Ni is 36.0 to 36.0.
60.0 wt%, P is 0.05-0.5 wt%, balance Fe
And Ni are 70.0 to 85.0 wt% and Mo is 5.0 wt%.
Hereinafter, a flake powder having a composition of the balance Fe was manufactured. When the amount of P added was 0.05 wt% or more, the viscosity of the molten alloy was reduced, the blockage of the molten metal falling hole was prevented, and flake-like powder could be obtained at the recovery portion. If the amount of P added is less than 0.05 wt%, the blockage of the molten metal falling hole is prevented, but a strip-like deposit is formed at the recovery portion, and a flake-like powder cannot be obtained. However, when the amount of P added is 0.
If the content exceeds 5 wt%, the pulverizability of the powder is improved, but the magnetic properties such as the saturation magnetic flux density are remarkably reduced, and the powder is more deteriorated than the non-added one. Ni is 36.0 to 60.0 w.
t%, P is 0.05 to 0.5 wt%, and the balance Fe and Ni are 7%.
In the composition of 0.0 to 85.0 wt%, Mo of 5.0 wt% or less, and the balance of Fe, the average aspect ratio is 1.0 in the range of 20 to 150 μm in average particle diameter by grinding with a vibration mill.
When alloy powders of 0 to 5.0 (excluding 1.0) are produced, the pulverization time is greatly reduced.
【0022】[0022]
【実施例】以下、本発明を実施例によって説明する。The present invention will be described below with reference to examples.
【0023】(実施例1)ロール急冷法にて、Niが4
8.0wt%、Pが0.01、0.05、0.1、0.2
5、0.5、0.75wt%、残部Feの組成からなるフ
レーク状粉末を図7に示す装置を用い、表1に示す条件
で製造し、投入した原料の90%以上が150μm以
下、アスペクト比が1.0〜5.0となるまで、表2に示
す条件にて、振動ミルにて粉砕した。得られた粉末を用
い、振動型磁力計により磁気特性を評価した。(Example 1) Ni was 4 by the roll quenching method.
8.0 wt%, P is 0.01, 0.05, 0.1, 0.2
A flake powder having a composition of 5, 0.5, 0.75 wt% and the balance of Fe was produced using the apparatus shown in FIG. 7 under the conditions shown in Table 1, and 90% or more of the input raw material was 150 μm or less, It grind | pulverized with the vibration mill on the conditions shown in Table 2 until the ratio became 1.0-5.0. Using the obtained powder, the magnetic properties were evaluated by a vibrating magnetometer.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】図1に、振動ミルによって粉砕粒径が15
0μm以下、アスペクト比が1.0〜5.0になるまで粉
砕したときの粉砕時間とP添加量の関係を示す。図2
に、振動型磁力計の測定結果から導出した飽和磁化Bs
とP添加量の関係を示す。図3に、振動型磁力計の測定
結果から導出した保磁力HcとP添加量の関係を示す。FIG. 1 shows that the crushed particle size was 15
The relationship between the pulverization time and the amount of P added when pulverization is performed to 0 μm or less and the aspect ratio becomes 1.0 to 5.0 is shown. FIG.
The saturation magnetization Bs derived from the measurement results of the vibrating magnetometer
The relationship between P and the amount of P added is shown. FIG. 3 shows the relationship between the coercive force Hc and the amount of P added derived from the measurement results of the vibrating magnetometer.
【0027】図1より、P添加量0.05%以上で粉砕
性が著しく向上し、0.25wt%以上で、ほぼ一定の
時間になることがわかる。また、図2、図3より、P添
加量0.05〜0.5wt%でP無添加(0.01wt
%)の粉末と同等な磁気特性が得られることがわかる。From FIG. 1, it can be seen that the pulverizability is remarkably improved when the P content is 0.05% or more, and substantially constant when the P content is 0.25% or more. From FIG. 2 and FIG. 3, it was found that P was not added (0.01 wt.
%) Can be obtained.
【0028】(実施例2)ロール急冷法にて、Niが8
0.0wt%、Mo5.0wt%、Pが0.01、0.0
5、0.1、0.25、0.5、0.75wt%、残部Fe
の組成からなるフレーク状粉末を上記図7の装置を用
い、表1の条件で製造し、投入した原料の90%以上が
150μm以下、アスペクト比が1.0〜5.0となるま
で、表2の条件で、振動ミルにて粉砕した。得られた粉
末を用い、振動型磁力計により磁気特性を評価した。(Example 2) Ni was 8 by the roll quenching method.
0.0wt%, Mo5.0wt%, P is 0.01, 0.0
5, 0.1, 0.25, 0.5, 0.75 wt%, balance Fe
The flake-like powder having the composition shown in FIG. 7 was produced using the apparatus shown in FIG. 7 under the conditions shown in Table 1, and until 90% or more of the input raw materials became 150 μm or less and the aspect ratio became 1.0 to 5.0. Under the conditions of 2, the powder was pulverized with a vibration mill. Using the obtained powder, the magnetic properties were evaluated by a vibrating magnetometer.
【0029】図4に、振動ミルによって粉末の粉砕粒径
が150μm以下、アスペクト比が1.0〜5.0になる
まで粉砕したときの粉砕時間とP添加量の関係を示す。
図5に、振動型磁力計の測定結果から導出した飽和磁化
BsとP添加量の関係を示す。図6に、振動型磁力計の
測定結果から導出した保磁力HcとP添加量の関係を示
す。FIG. 4 shows the relationship between the pulverization time and the amount of P added when the powder is pulverized by a vibration mill until the powder has a pulverized particle size of 150 μm or less and an aspect ratio of 1.0 to 5.0.
FIG. 5 shows the relationship between the saturation magnetization Bs and the P addition amount derived from the measurement results of the vibration magnetometer. FIG. 6 shows the relationship between the coercive force Hc and the P addition amount derived from the measurement results of the vibration magnetometer.
【0030】図4より、P添加量0.05%以上で粉砕
性が著しく向上し、0.25wt%以上で、ほぼ一定の
時間になることがわかる。また、図5、図6より、P添
加量0.05〜0.5wt%でP無添加の粉末と同等な磁
気特性が得られることがわかる。FIG. 4 shows that the pulverizability is remarkably improved when the P content is 0.05% or more, and the time becomes almost constant when the P content is 0.25% by weight or more. 5 and 6 that the magnetic properties equivalent to those of the P-free powder can be obtained when the P content is 0.05 to 0.5 wt%.
【0031】なお、本発明と従来例で収率を比較したと
ころ、従来の約30%から約90%以上に向上した。Incidentally, when the yield was compared between the present invention and the conventional example, it was improved from about 30% of the conventional to about 90% or more.
【0032】[0032]
【発明の効果】以上、説明したように、本発明によれ
ば、粉砕性が向上したフレーク状合金粉末を安価な設備
で、収率よく安価に製造でき、その上、磁気特性の劣化
がない軟磁性合金粉末及びその製造方法を提供すること
ができた。As described above, according to the present invention, flake-like alloy powder having improved pulverizability can be produced at a low cost with good facilities at a good yield, and furthermore, there is no deterioration in magnetic properties. A soft magnetic alloy powder and a method for producing the same have been provided.
【図1】48.0wt%Ni−Fe合金粉末のP添加量
と粉砕時間の関係を示す図。FIG. 1 is a graph showing the relationship between the amount of P added and the pulverization time of a 48.0 wt% Ni—Fe alloy powder.
【図2】48.0wt%Ni−Fe合金粉末のP添加量
と飽和磁化の関係を示す図。FIG. 2 is a diagram showing the relationship between the amount of P added and saturation magnetization of a 48.0 wt% Ni—Fe alloy powder.
【図3】48.0wt%Ni−Fe合金粉末のP添加量
と保磁力の関係を示す図。FIG. 3 is a graph showing the relationship between the amount of P added and the coercive force of a 48.0 wt% Ni—Fe alloy powder.
【図4】80.0wt%Ni−5.0wt%Mo−Fe合
金粉末のP添加量と粉砕時間の関係を示す図。FIG. 4 is a graph showing the relationship between the amount of P added and the pulverization time of an 80.0 wt% Ni-5.0 wt% Mo—Fe alloy powder.
【図5】80.0wt%Ni−5.0wt%Mo−Fe合
金粉末のP添加量と飽和磁化の関係を示す図。FIG. 5 is a graph showing the relationship between the amount of P added and saturation magnetization of 80.0 wt% Ni-5.0 wt% Mo—Fe alloy powder.
【図6】80.0wt%Ni−5.0wt%Mo−Fe合
金粉末のP添加量と保磁力の関係を示す図。FIG. 6 is a graph showing the relationship between the amount of P added and the coercive force of an 80.0 wt% Ni-5.0 wt% Mo—Fe alloy powder.
【図7】本発明の軟磁性合金粉末の製造方法に用いた粉
末装置の概略構造を示す図。FIG. 7 is a view showing a schematic structure of a powder device used in the method for producing a soft magnetic alloy powder according to the present invention.
1 チャンバー 2 タンディッシュ 3 高周波誘導コイル 4 冷却ロール 5 ノズル 6 フレーク状合金粉末 DESCRIPTION OF SYMBOLS 1 Chamber 2 Tundish 3 High frequency induction coil 4 Cooling roll 5 Nozzle 6 Flaky alloy powder
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/08 C22C 38/08 H01F 1/147 H01F 1/20 1/20 1/14 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/08 C22C 38/08 H01F 1/147 H01F 1/20 1/20 1/14 B
Claims (7)
eの組成からなるNi−Fe合金粉末において、Pが
0.05〜0.5wt%添加されたことを特徴とする軟磁
性合金粉末。1. Ni content of 36.0 to 60.0 wt%, balance F
A soft magnetic alloy powder characterized in that 0.05 to 0.5 wt% of P is added to a Ni-Fe alloy powder having a composition of e.
5.0wt%以下、残部Feの組成からなるNi−Mo
−Fe合金粉末において、Pが0.05〜0.5wt%添
加されたことを特徴とする軟磁性合金粉末。2. Ni-Mo having a composition of 70.0-85.0 wt% of Ni, 5.0 wt% or less of Mo, and the balance of Fe.
-A soft magnetic alloy powder, wherein P is added in an amount of 0.05 to 0.5 wt% in the Fe alloy powder.
おいて、平均粒径が20〜150μm、平均アスペクト
比が1.0〜5.0(1.0を含まず)であることを特徴
とする軟磁性合金粉末。3. The soft magnetic alloy powder according to claim 1, wherein the average particle size is 20 to 150 μm and the average aspect ratio is 1.0 to 5.0 (excluding 1.0). Soft magnetic alloy powder.
おいて、飽和磁束密度Bsが17000G以上、保磁力
Hcが15Oe以下であることを特徴とする軟磁性合金
粉末。4. The soft magnetic alloy powder according to claim 1, wherein the saturation magnetic flux density Bs is 17000 G or more and the coercive force Hc is 15 Oe or less.
おいて、飽和磁束密度Bsが7000G以上、保磁力H
cが10Oe以下であることを特徴とする軟磁性合金粉
末。5. The soft magnetic alloy powder according to claim 2, wherein the saturation magnetic flux density Bs is 7000 G or more and the coercive force H
A soft magnetic alloy powder, wherein c is 10 Oe or less.
フレーク状合金粉末を得た後、該粉末を粉砕して、Ni
が36.0〜60.0wt%、残部Feの組成からなるN
i−Fe合金粉末を製造する方法において、Pを0.0
5〜0.5wt%添加することを特徴とする軟磁性合金
粉末の製造方法。6. A liquid quenching method using a cooling roll,
After obtaining the flake-like alloy powder, the powder is pulverized into Ni powder.
Consisting of 36.0 to 60.0 wt% and the balance of Fe
In the method for producing an i-Fe alloy powder, P is set at 0.0.
A method for producing a soft magnetic alloy powder, comprising adding 5 to 0.5 wt%.
フレーク状合金粉末を得た後、該粉末を粉砕して、Ni
が70.0〜85.0wt%、Moが5.0wt%以下、
残部Feの組成からなるNi−Mo−Fe合金粉末を製
造する方法において、Pを0.05〜0.5wt%添加す
ることを特徴とする軟磁性合金粉末の製造方法。7. A liquid quenching method using a cooling roll,
After obtaining the flake-like alloy powder, the powder is pulverized into Ni powder.
Is 70.0 to 85.0 wt%, Mo is 5.0 wt% or less,
A method for producing a Ni-Mo-Fe alloy powder having a balance of Fe, wherein P is added in an amount of 0.05 to 0.5 wt%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001001318A JP2002206151A (en) | 2001-01-09 | 2001-01-09 | Soft magnetic alloy powder and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001001318A JP2002206151A (en) | 2001-01-09 | 2001-01-09 | Soft magnetic alloy powder and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002206151A true JP2002206151A (en) | 2002-07-26 |
Family
ID=18869974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001001318A Pending JP2002206151A (en) | 2001-01-09 | 2001-01-09 | Soft magnetic alloy powder and production method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002206151A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140335A (en) * | 2002-08-19 | 2004-05-13 | Sumitomo Electric Ind Ltd | Electromagnetic wave absorbing material |
-
2001
- 2001-01-09 JP JP2001001318A patent/JP2002206151A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004140335A (en) * | 2002-08-19 | 2004-05-13 | Sumitomo Electric Ind Ltd | Electromagnetic wave absorbing material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007063969A1 (en) | Rare earth sintered magnet and method for producing same | |
CN105336488B (en) | Improve Fe3B/Nd2Fe14The preparation method of B series magnetic alloy intrinsic coercivity | |
JPH06346101A (en) | Magnetically anisotropic powder and its production | |
JP2002038245A (en) | Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet | |
JP2002249802A (en) | Amorphous soft magnetic alloy compact, and dust core using it | |
JPH02125801A (en) | Flat-state fe base soft magnetic alloy fine powder and manufacture thereof | |
JP2002206150A (en) | Soft magnetic alloy powder and production method therefor | |
JPH01294801A (en) | Production of flat fine fe-ni alloy powder | |
JP2816362B2 (en) | Powder for magnetic shielding, magnetic shielding material and powder manufacturing method | |
JP2002206151A (en) | Soft magnetic alloy powder and production method therefor | |
JPS60189901A (en) | Manufacture of alloy powder for rare earth-boron-iron group magnetic anisotropic permanent magnet | |
JP2007009288A (en) | Soft magnetic alloy powder | |
JP4282002B2 (en) | Alloy powder for RTB-based sintered magnet, manufacturing method thereof, and manufacturing method of RTB-based sintered magnet | |
JPH01294802A (en) | Production of flat fine fe-ni-al alloy powder | |
Branagan et al. | Engineering magnetic nanocomposite microstructures | |
JP5235264B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP2005243895A (en) | Powder for pressed powder core and pressed powder core employing it | |
JPH03264653A (en) | Sintered magnet alloy and production thereof | |
JP2735615B2 (en) | Flat Fe-Ni-based alloy fine powder and method for producing the same | |
JPS6257701B2 (en) | ||
JP4645336B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4451628B2 (en) | Alloy for permanent magnet | |
JP4972919B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP2004137536A (en) | Metal powder for compressed powder magnetic core | |
JPH0613212A (en) | Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet |