JP2002205207A - Cutting tool - Google Patents

Cutting tool

Info

Publication number
JP2002205207A
JP2002205207A JP2001001906A JP2001001906A JP2002205207A JP 2002205207 A JP2002205207 A JP 2002205207A JP 2001001906 A JP2001001906 A JP 2001001906A JP 2001001906 A JP2001001906 A JP 2001001906A JP 2002205207 A JP2002205207 A JP 2002205207A
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting tool
phase
mass
tool according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001001906A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hirose
和弘 広瀬
Hideki Moriguchi
秀樹 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001001906A priority Critical patent/JP2002205207A/en
Publication of JP2002205207A publication Critical patent/JP2002205207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated cemented carbide tool for milling cutter in which heat resisting cracking property and an impact strength are compatible. SOLUTION: A cutting tool has cemented carbide consisting of a hard phase containing WC and a binder phase containing Co and a covering phase formed on the surface of the cemented carbide and satisfies under-mentioned conditions. (1) 1-25%mass at least one kind selected from a group consisting of carbide (except WC) of periodic tables 4a, 5a, and 6a group metals, nitride, oxide, and a solid solution is contained as a hard phase. (2) A content of a coupling phase in cemented carbide is 5-15 mass%. (3) An average grain size of WC is at least 2 μm. (4) A value of an anti magnetic force Hc of cemented carbide is in a range of 140-180. (5) A value (4 πσ/Co) obtained by dividing a saturated magnetic amount 4 πσ of cemented carbide by mass% of Co contained in cemented carbide is 8-15. (6) A η phase is not contained in cemented carbide. (7) A coated layer contains Al.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は切削工具に関するも
のである。特に、耐熱亀裂性と耐摩耗性を兼ね備えるフ
ライス切削用超硬工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool. In particular, it relates to a carbide tool for milling that has both heat crack resistance and wear resistance.

【0002】[0002]

【従来の技術】超硬合金切削工具においては、切削加工
ラインの高能率化ならびに環境対策の観点から切削の高
速化と乾式化が進んでおり、このような切削条件のもと
では、熱亀裂による破損が工具寿命の主要な決定要因と
なっている。熱亀裂による破損の対策として、超硬合金
表面にAl203層を有する被覆層を形成して耐熱性を向上
させる技術が提案されている。また、超硬合金の飽和磁
気量とCoの含有量の比率や抗磁力Hcを規定することで、
超硬合金の硬度と靭性の改善を図った技術も提案されて
いる(特公昭62-48751号公報、特開平4-202738号公報、
特開平5-98385号公報)。
2. Description of the Related Art In cemented carbide cutting tools, high-speed cutting and dry cutting have been promoted from the viewpoint of high efficiency of cutting lines and environmental measures, and under these cutting conditions, thermal cracking has occurred. Breakage is a major determinant of tool life. As a countermeasure against damage due to thermal cracking, a technique for improving the heat resistance by forming a coating layer having Al 2 0 3 layer on the cemented carbide surface has been proposed. Also, by defining the ratio of the saturation magnetic amount of the cemented carbide to the Co content and the coercive force Hc,
Techniques for improving the hardness and toughness of cemented carbide have also been proposed (Japanese Patent Publication No. 62-48751, Japanese Patent Laid-Open No. 4-202738,
JP-A-5-98385).

【0003】[0003]

【発明が解決しようとする課題】しかし、高速加工のよ
うな過酷な切削条件においては、被覆層の耐熱性をどれ
だけ向上させても発熱が生じ、超硬合金の熱亀裂が避け
られないという問題がある。つまり、高速やドライ加工
のように、工具の刃先部に発熱の生じやすい加工におい
ては、その被覆層の耐熱性はさることながら、超硬合金
自体の耐熱性を向上させることが重要となる。従って、
超硬合金の硬度と耐熱性もより一層の改善が要望されて
いた。
However, under severe cutting conditions such as high-speed machining, no matter how much the heat resistance of the coating layer is improved, heat is generated and thermal cracking of the cemented carbide cannot be avoided. There's a problem. In other words, in a process in which heat is likely to be generated at the cutting edge of a tool such as a high-speed or dry process, it is important to improve the heat resistance of the cemented carbide itself as well as the heat resistance of the coating layer. Therefore,
Further improvements in hardness and heat resistance of cemented carbide have been demanded.

【0004】そこで、本発明の主目的は、靭性と硬度を
兼ね備える切削用工具、特に耐熱亀裂性と衝撃強度とを
両立できるフライス切削用被覆超硬合金工具を提供する
ことにある。
Accordingly, it is a primary object of the present invention to provide a cutting tool having both toughness and hardness, and in particular, to provide a coated cemented carbide tool for milling which can achieve both heat crack resistance and impact strength.

【0005】[0005]

【課題を解決するための手段】本発明は、超硬合金中の
炭素量を適量に調節して、超硬合金の飽和磁気量4πσ
を超硬合金中に含まれるCoの質量%で除した値(4πσ/C
o)を通常の組織の良好域よりも低い値で安定化させ、さ
らに抗磁力Hcを通常よりも低い値で保持することにより
上記の目的を達成する。
SUMMARY OF THE INVENTION According to the present invention, the amount of carbon in a cemented carbide is adjusted to an appropriate amount so that the saturated magnetic amount of the cemented carbide is 4πσ.
Divided by the mass% of Co contained in the cemented carbide (4πσ / C
The above object is attained by stabilizing o) at a value lower than the normal good region of the tissue and maintaining the coercive force Hc at a lower value than usual.

【0006】すなわち、本発明切削工具は、WCを含む硬
質相とCoを含む結合相とからなる超硬合金と、超硬合金
表面に形成される被覆層とを有する切削工具であって、
以下の条件を満たすことを特徴とする。 硬質相として周期律表4a,5a,6a族金属の炭化物(WC
は除く)、窒化物、酸化物およびそれらの固溶体よりな
る群から選択される少なくとも一種を1〜25質量%含
む。 超硬合金中の結合相の含有量は5〜15質量%である。 WCの平均粒径が2μm以上である。 超硬合金の抗磁力Hcの値が140〜180の範囲である。 超硬合金の飽和磁気量4πσを超硬合金中に含まれるC
oの質量%で除した値(4πσ/Co)が8以上15未満である。 超硬合金中にη相を含有しない。 被覆層はAlを含有する。
That is, the cutting tool of the present invention is a cutting tool having a cemented carbide comprising a hard phase containing WC and a binder phase containing Co, and a coating layer formed on the surface of the cemented carbide,
It is characterized by satisfying the following conditions. As the hard phase, carbides of metals from groups 4a, 5a and 6a of the periodic table (WC
), At least one selected from the group consisting of nitrides, oxides, and solid solutions thereof, in an amount of 1 to 25% by mass. The content of the binder phase in the cemented carbide is 5 to 15% by mass. The average particle size of WC is 2 μm or more. The value of the coercive force Hc of the cemented carbide is in the range of 140 to 180. C contained in cemented carbide with saturation magnetic quantity of 4πσ of cemented carbide
The value (4πσ / Co) divided by the mass% of o is 8 or more and less than 15. Does not contain η phase in cemented carbide. The coating layer contains Al.

【0007】以下、本発明の構成を詳細に説明する。 (超硬合金の化学成分)本発明切削工具は、超硬合金
と、その表面に形成された被覆層とからなる。この超硬
合金は硬質相と結合相とから構成される。
Hereinafter, the configuration of the present invention will be described in detail. (Chemical composition of cemented carbide) The cutting tool of the present invention comprises a cemented carbide and a coating layer formed on its surface. This cemented carbide is composed of a hard phase and a binder phase.

【0008】硬質相はWCの他、周期律表4a,5a,6a族金
属の炭化物(WCを除く)、窒化物、酸化物およびそれら
の固溶体の少なくとも一種を1〜25質量%含む。これら
硬質相の含有量が1質量%未満では超硬合金自体の耐摩
耗性が著しく低下し、逆に25%を超えると硬度、靭性が
急激に低下するためである。
The hard phase contains, in addition to WC, 1 to 25% by mass of at least one of carbides (excluding WC), nitrides, oxides, and solid solutions of metals of Groups 4a, 5a, and 6a of the periodic table. If the content of these hard phases is less than 1% by mass, the wear resistance of the cemented carbide itself will be significantly reduced, and if it exceeds 25%, the hardness and toughness will be sharply reduced.

【0009】一方、結合相は、通常、コバルト(Co)を主
とする。結合相は合金中に5〜15質量%の割合で存在す
ることが望ましい。5%未満であると超硬合金自体の靭
性が著しく低下し、フライス切削において欠けが発生し
て良好な耐熱亀裂性が望めない。15%を超えると超硬合
金自体の硬度が著しく低下し、フライス切削における耐
摩耗性が低下することによって切削の際の刃先部発熱量
が増加してしまうからである。
On the other hand, the binder phase is usually mainly composed of cobalt (Co). The binder phase is desirably present in the alloy in a proportion of 5 to 15% by mass. If it is less than 5%, the toughness of the cemented carbide itself is significantly reduced, and chipping occurs in milling, so that good heat crack resistance cannot be expected. If it exceeds 15%, the hardness of the cemented carbide itself will be significantly reduced, and the heat resistance at the time of cutting will increase due to the reduced wear resistance in milling.

【0010】(抗磁力Hcと「飽和磁気量4πσ/Co含有
量」)超硬合金の抗磁力Hcを140〜180とし、飽和磁気量
4πσ(G/cm3/g)とCo含有量の比率4πσ/Coの値を8〜15
とする。
(Coercive force Hc and "saturated magnetic amount 4πσ / Co content") The coercive force Hc of the cemented carbide is set to 140 to 180, and the saturated magnetic amount
4πσ (G / cm 3 / g) and Co content ratio 4πσ / Co value of 8 to 15
And

【0011】一般に、結合相であるCoの厚みの指標とし
て、抗磁力Hcが超硬合金の特性を評価する一つの要因と
して知られている。この抗磁力は超硬合金内に含まれる
WC粒子の大きさとCo相の厚みに大きな関係を有し、WC粒
子が大きいとCo相が厚くなり、抗磁力は小さくなる。ま
た、WC粒子が小さいとWC粒子間のCo相間の厚みか薄くな
り、抗磁力は大きくなるという関係がある。
In general, coercive force Hc is known as an index of the thickness of Co as a binder phase as one factor for evaluating the characteristics of a cemented carbide. This coercive force is contained in the cemented carbide
There is a large relationship between the size of the WC particles and the thickness of the Co phase. When the WC particles are large, the Co phase becomes thick and the coercive force decreases. Also, there is a relationship that when the WC particles are small, the thickness between the Co phases between the WC particles becomes thin, and the coercive force increases.

【0012】さらに、従来から超硬合金自体の飽和磁気
量4πσと結合相であるCo含有量との比率、つまり4πσ
(G/cm3/g)/Co(質量%)で表される値が超硬合金の特性を
評価する一つの要因として知られている。この飽和磁気
量は、超硬合金内に含まれる炭素量とCo量に大きな関係
を有する。例えば、炭素量が少ないと、硬質相であるW
および添加物がCo中に固溶し、そのために見かけ上Coが
減少するために合金の飽和磁気量が低下するといった関
係がある。
Further, conventionally, the ratio of the saturated magnetic quantity 4πσ of the cemented carbide itself to the Co content of the binder phase, that is, 4πσ
The value represented by (G / cm 3 / g) / Co (% by mass) is known as one factor for evaluating the characteristics of a cemented carbide. This saturation magnetic amount has a great relationship with the amount of carbon and the amount of Co contained in the cemented carbide. For example, if the carbon content is small, the hard phase W
In addition, there is a relationship in which the additive forms a solid solution in Co and the apparent amount of Co decreases, so that the saturation magnetic amount of the alloy decreases.

【0013】一般に、超硬合金においては、4πσ(G/cm
3/g)/Co(質量%)の比率が15未満であると超硬合金中に
脆化相であるη相(Co2W3C,Co6W6C,Ni3W3C,Ni6W6C,Fe3W
3C,Fe6W6Cなど、炭素量の少ない複炭化物)が析出し、2
0を越えると合金中に遊離炭素が析出することにより特
性が劣化することが知られている。そのため、上記比率
がおよそ15〜20の範囲の超硬合金が良好域と称されてい
る。
Generally, in a cemented carbide, 4πσ (G / cm
If the ratio of 3 / g) / Co (% by mass) is less than 15, the η phase (Co 2 W 3 C, Co 6 W 6 C, Ni 3 W 3 C, Ni 6 W 6 C, Fe 3 W
3 C, Fe 6 W 6 C, etc., a low carbon content double carbide)
When it exceeds 0, it is known that the properties deteriorate due to the precipitation of free carbon in the alloy. Therefore, a cemented carbide having the above ratio in the range of about 15 to 20 is called a good range.

【0014】そして、抗磁力Hcは一般にWC粒度とCo量に
依存し、WCが微粒であるほど、またCo量が少量であるほ
ど高い値となる。そのため、従来は4πσ/Coの値が通常
の良好域よりも低い8以上15未満であると、WCの成長が
起こらず、Hcは200以上と高い値になると考えられてい
た。
The coercive force Hc generally depends on the WC particle size and the amount of Co. The higher the WC is, the smaller the amount of Co is, and the higher the value is. Therefore, conventionally, when the value of 4πσ / Co is 8 or more and less than 15 lower than the normal good range, WC growth does not occur, and Hc is considered to be as high as 200 or more.

【0015】本発明は、抗磁力Hcを通常よりも低い140
〜180に限定し、かつ4πσ(G/cm3/g)/Co(質量%)の値を
通常の良好域よりも低い8以上15未満で安定させ、この
超硬合金にAlを含有する被覆層を形成することで優れた
耐熱亀裂性を発揮するとの知見に基づくものである。
According to the present invention, the coercive force Hc is set lower than usual.
Limited to ~ 180, and stabilize the value of 4πσ (G / cm 3 / g) / Co (mass%) at 8 or more and less than 15 which is lower than the normal good range. This is based on the finding that by forming a layer, excellent heat crack resistance is exhibited.

【0016】本発明者らは、4πσ/Coの値を8〜15とし
ながらも抗磁力を140〜180という範囲に抑える手法を見
いだし、この範囲内の超硬合金工具において、優れた耐
熱亀裂性を示すことを見いだした。すなわち、高温で過
剰の炭素をCo相中へ固溶させ、常温まで急速に戻すこと
によって、4πσ(G/cm3/g)/Co(質量%)の値が15未満に
おいてもη相のない良好な組織を得ることができる。そ
して、Co中に多量のCが固溶しているために固溶強化を
起こし、耐熱衝撃性に優れた性能を示すことができる。
The present inventors have found a method of keeping the coercive force within the range of 140 to 180 while keeping the value of 4πσ / Co at 8 to 15, and have excellent heat crack resistance in cemented carbide tools within this range. To show that That is, the excess carbon is dissolved in the Co phase at a high temperature and rapidly returned to room temperature, so that the value of 4πσ (G / cm 3 / g) / Co (% by mass) does not include the η phase even when the value is less than 15. Good tissue can be obtained. And, since a large amount of C is dissolved in Co, solid solution strengthening is caused, and performance excellent in thermal shock resistance can be exhibited.

【0017】抗磁力Hcの値を140〜180としたのは、抗磁
力の値が140未満ではWCが粗粒になりWC間のCo相が厚く
なり、Co相を亀裂が伝播しやすくなるからである。逆
に、Hcが180を超えると、WCが微粒となることでWC間のC
o相が薄くなって、亀裂がCoとWの粒界を伝播しやすくな
り、耐熱亀裂性の向上が望めないためである。
The value of the coercive force Hc is set to 140 to 180 because if the value of the coercive force is less than 140, the WC becomes coarse, the Co phase between the WCs becomes thick, and cracks easily propagate through the Co phase. It is. Conversely, when Hc exceeds 180, the WC becomes finer and the C
o This is because the phase becomes thin, and the cracks easily propagate through the grain boundaries of Co and W, so that improvement in heat crack resistance cannot be expected.

【0018】4πσ(G/cm3/g)/Co(質量%)の値を8以上15
未満としたのは、8未満であると、多量の炭素を固溶さ
せてもη相が析出し、耐熱亀裂性が劣化するためであ
る。また、15以上であると遊離炭素の析出によって、耐
熱亀裂性の劣化が見られるためである。
The value of 4πσ (G / cm 3 / g) / Co (% by mass) should be 8 or more and 15
The reason for setting the value to less than 8 is that if the value is less than 8, even if a large amount of carbon is dissolved as a solid solution, the η phase is precipitated and the heat crack resistance deteriorates. On the other hand, if it is 15 or more, deterioration of heat crack resistance is observed due to precipitation of free carbon.

【0019】(Crの添加)超硬合金に微量のCrを添加す
ることによって、さらに耐熱亀裂性の向上が望まれる。
Co含有質量%に対するCr含有質量%の割合は0.03〜0.20
が望ましい。この割合が0.03未満であるとCrによるCo相
の固溶強化が促進されず、目的とする耐熱亀裂性の向上
が望めない。また、Cr含有質量%/Co含有質量%が0.20
を超えると、Crが超硬合金中のカーボンと反応してCr
Cとして析出するため、目的とする耐熱亀裂性の向上
が望めないためである。
(Addition of Cr) It is desired to further improve the heat crack resistance by adding a small amount of Cr to the cemented carbide.
The ratio of the Cr content% by mass to the Co content% is 0.03-0.20
Is desirable. If this ratio is less than 0.03, solid solution strengthening of the Co phase by Cr is not promoted, and the desired improvement in heat crack resistance cannot be expected. In addition, Cr content% by mass / Co content% by mass is 0.20%.
Exceeds the limit, Cr reacts with the carbon in the cemented carbide to form Cr 7
Precipitate as C 3, because can not be expected to improve the thermal cracking resistance of interest.

【0020】(Niの添加)さらに、超硬合金に微量のNi
を添加することによって、一層耐熱亀裂性の向上が望ま
れる。Co含有質量%に対するNi含有質量%の割合は0.03
〜0.10が望ましい。この割合が0.03未満であるとNiによ
るCo相の固溶強化が促進されず、目的とする耐熱亀裂性
の向上が望めない。また、Ni添加量を増加していくと、
結合相であるCoへのWの固溶量が増加するため、Co相の
固溶強化が望まれるが、Ni含有質量%/Co含有質量%が
0.10を超えると、WCが粗粒化し、耐熱亀裂性が劣化する
ためである。
(Addition of Ni) Further, a small amount of Ni is added to the cemented carbide.
, It is desired to further improve the heat crack resistance. The ratio of Ni content% by mass to Co content% is 0.03
~ 0.10 is desirable. If this ratio is less than 0.03, the solid solution strengthening of the Co phase by Ni is not promoted, and the desired improvement in heat crack resistance cannot be expected. Also, as the amount of Ni added increases,
Since the solid solution amount of W in the binder phase Co increases, solid solution strengthening of the Co phase is desired, but Ni content mass% / Co content mass%
If it exceeds 0.10, WC becomes coarse and the heat crack resistance deteriorates.

【0021】(Coの結晶構造)Co相の格子定数が3.580
Å以上であることが望ましい。上述したように、本発明
による超硬合金の耐熱亀裂性の向上は、Co中に炭素を基
本とする第三元素を固溶させることが重要であり、固溶
強化による耐熱亀裂性の向上効果を得るためには、Coの
格子定数が3.580Å以上であることが望ましい。
(Crystal Structure of Co) The lattice constant of the Co phase is 3.580.
It is desirable that it be Å or more. As described above, in order to improve the heat crack resistance of the cemented carbide according to the present invention, it is important to form a solid solution of a carbon-based third element in Co. In order to obtain Co, the lattice constant of Co is desirably 3.580 ° or more.

【0022】さらに、結合相であるCoの結晶構造が次式
を満たすことが望ましい。 0≦I(Co:hcp))/I(Co:fcc)≦0.2 ここで、I(Co:hcp)はhcp構造のCoの(101)面におけるX線
回折強度で、I(Co:fcc)はfcc構造のCoの(111)面におけ
るX線回折強度である。
Furthermore, it is desirable that the crystal structure of Co as the binder phase satisfies the following equation. 0 ≦ I (Co: hcp)) / I (Co: fcc) ≦ 0.2where I (Co: hcp) is the X-ray diffraction intensity on the (101) plane of Co of the hcp structure, and I (Co: fcc) Is the X-ray diffraction intensity on the (111) plane of Co having the fcc structure.

【0023】上記のI(Co:hcp)/I(Co:fcc)の値が0.2を超
えると脆弱なhcp構造のCoの割合が増加して靭性が不足
するためである。従って、切削工具とした場合、衝撃や
熱に伴う亀裂が発生しやすくなり、0.2以下に抑えるこ
とが重要である。
If the value of I (Co: hcp) / I (Co: fcc) exceeds 0.2, the proportion of Co in the fragile hcp structure increases and the toughness becomes insufficient. Therefore, when a cutting tool is used, cracks due to impact or heat are likely to occur, and it is important to suppress the cracking to 0.2 or less.

【0024】(被覆層)本発明の切削工具はAlを含有す
る被覆層を少なくとも一層有することが好ましい。Alを
含有する被覆層は単層でも多層でも良く、TiN、TiC、Si
C等の硬質被膜と積層しても良い。Alを含有する被覆層
としては、TiAl(CxNy)膜(x+y=1,0≦x≦1)が好まし
い。超硬合金上にTiAl(CxNy)膜(x+y=1,0≦x≦1)を被
覆すると、耐熱性に優れた特性を有するため、さらなる
耐熱亀裂性の向上と、耐摩耗性の向上を図ることができ
る。
(Coating Layer) The cutting tool of the present invention preferably has at least one coating layer containing Al. The coating layer containing Al may be a single layer or a multilayer, and may be TiN, TiC, Si
It may be laminated with a hard coating such as C. As the Al-containing coating layer, a TiAl (CxNy) film (x + y = 1, 0 ≦ x ≦ 1) is preferable. If a TiAl (CxNy) film (x + y = 1, 0 ≦ x ≦ 1) is coated on a cemented carbide, it has excellent heat resistance, so it will further improve heat crack resistance and wear resistance. be able to.

【0025】その他、Alを含有する被覆層としてはAl20
3膜が好ましい。Al203は特に耐熱性に優れているため、
耐熱亀裂性を向上させることができる。
In addition, as the Al-containing coating layer, Al 20
Three membranes are preferred. Al 2 O 3 is particularly excellent in heat resistance,
Heat crack resistance can be improved.

【0026】被覆層の好ましい総厚みは0.1〜30μm程度
である。
The preferable total thickness of the coating layer is about 0.1 to 30 μm.

【0027】(刃先処理)本発明の切削工具は、その刃
先処理がネガランド加工によって行われ、すくい面から
見たときの処理幅が0.03〜0.20mm、ネガランド角度が15
〜30°の大きさであることが好ましい。すくい面から見
たときのネガランド処理幅が0.03mm未満であるかネガラ
ンド角度が15°未満であると、刃先の強度が著しく低下
して切削時に欠けが発生する。また、ネガランド処理幅
が0.20mmを超えるかネガランド角度が30°を超えると、
切削時の発熱量が著しく増加してしまうため、好ましく
ない。
(Cutting edge treatment) In the cutting tool of the present invention, the cutting edge treatment is performed by negative land processing, the processing width when viewed from the rake face is 0.03 to 0.20 mm, and the negative land angle is 15
Preferably, the size is about 30 °. If the width of the negative land as viewed from the rake face is less than 0.03 mm or the angle of the negative land is less than 15 °, the strength of the cutting edge is significantly reduced, and chipping occurs during cutting. Also, if the negative land processing width exceeds 0.20 mm or the negative land angle exceeds 30 °,
The amount of heat generated during cutting is significantly increased, which is not preferable.

【0028】(製造方法)本発明切削工具の超硬合金は
1400℃程度で焼結を行うか、原料粉末をブロック状にプ
レスし、700℃程度で中間焼結後、その中間焼結体を所
定の工具形状に成形して1400℃程度で焼結してから冷却
することにより得られる。好ましい焼結温度は1380〜14
50℃である。焼結後の冷却過程では、1200℃〜1300℃の
温度からAr、N2等の不活性ガスおよび油、水等の冷媒を
用いて急冷を施すことが重要である。その際、冷却速度
の制御は、冷却ガス圧、冷媒温度などを変化させること
によって行い、これにより抗磁力Hcの値と、飽和磁気量
とCo量の比率(4πσ/Co)とを制御することができる。好
ましい冷却速度は15℃/sec以上である。
(Production method) The cemented carbide of the cutting tool of the present invention
Perform sintering at about 1400 ° C or press the raw material powder in a block shape, intermediate sinter at about 700 ° C, mold the intermediate sintered body into a predetermined tool shape, and sinter at about 1400 ° C. Obtained by cooling. Preferred sintering temperature is 1380-14
50 ° C. In the cooling process after sintering, it is important to perform rapid cooling from a temperature of 1200 ° C. to 1300 ° C. using an inert gas such as Ar and N 2 and a refrigerant such as oil and water. At that time, the cooling speed is controlled by changing the cooling gas pressure, the refrigerant temperature, etc., thereby controlling the value of the coercive force Hc and the ratio of the saturation magnetic amount and the Co amount (4πσ / Co). Can be. A preferred cooling rate is 15 ° C./sec or more.

【0029】また、被覆膜はプラズマCVD法、熱CVD法、
光励起CVD法などのCVD法(化学蒸着法)や、真空蒸着、
イオンプレーティング、スパッタリングなどのPVD法
(物理蒸着法)と言った公知の成膜技術を用いることで
得られる。
The coating film is formed by a plasma CVD method, a thermal CVD method,
CVD (chemical vapor deposition) such as photo-excited CVD, vacuum deposition,
It can be obtained by using a known film forming technique called a PVD method (physical vapor deposition method) such as ion plating and sputtering.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。 (実施例1)市販のWC粉末(平均粒径6.6μm)、TiC粉末(平
均粒径1μm)、TaC(平均粒径2μm)、Cr3C2(平均粒径2μ
m)とCo粉末(平均粒径1.2μm)とを表1に示す組成に配合
し、アトライターで湿式混合した後、乾燥造粒した原料
粉末を作製した。
Embodiments of the present invention will be described below. (Example 1) Commercially available WC powder (average particle size 6.6 μm), TiC powder (average particle size 1 μm), TaC (average particle size 2 μm), Cr 3 C 2 (average particle size 2 μm)
m) and Co powder (average particle size: 1.2 μm) were blended in the composition shown in Table 1, wet-mixed with an attritor, and dried to obtain a raw powder.

【0031】[0031]

【表1】 [Table 1]

【0032】この粉末を1ton/cm2の圧力でプレス成形
し、真空中で1380℃、60分間焼結した後、1250℃から急
冷を施した。急冷はN2ガスにおける加圧冷却および油冷
によって行い、Nガスの加圧圧力を変えることで表2に
示すサンプルを作製した。チップNo.2、3、4の冷却速度
は5℃/sec以上である。
This powder was press-molded at a pressure of 1 ton / cm 2 , sintered at 1380 ° C. for 60 minutes in a vacuum, and quenched from 1250 ° C. Quenching was performed by cooling under pressure and oil cooling in N 2 gas, to prepare a sample shown in Table 2 by changing the applied pressure of N 2 gas. The cooling rate of chip Nos. 2, 3, and 4 is 5 ° C./sec or more.

【0033】得られた焼結体については、抗磁力Hcを測
定し、X線回折によるCoの結晶構造(I(Co:hcp)/I(Co:fc
c))および格子定数を測定した後、同ロットの焼結体を
加工し、フライス用スローアウェイチップ形状に形成し
た。
With respect to the obtained sintered body, the coercive force Hc was measured, and the crystal structure of Co by X-ray diffraction (I (Co: hcp) / I (Co: fc
After measuring c)) and the lattice constant, the sintered body of the same lot was processed and formed into a throw-away tip shape for milling.

【0034】[0034]

【表2】 [Table 2]

【0035】それぞれの超硬チップ表面にPVD法によっ
て膜厚4μmのTiAlN膜をコーティングし、ネガランド加
工による刃先処理(すくい面側から見た処理幅:0.10m
m,ネガランド角度:20°)を施すことで、切削用スロー
アウェイチップとした。
The surface of each carbide tip is coated with a 4 μm-thick TiAlN film by the PVD method, and the edge is processed by negative land processing (processing width as viewed from the rake face side: 0.10 m)
m, negative land angle: 20 °) to obtain a cutting insert for cutting.

【0036】これらのスローアウェイチップを用いて切
削を行い、刃先の耐熱亀裂性を比較した。その切削条件
を表3に示す。
Cutting was performed using these indexable inserts, and the thermal crack resistance of the cutting edge was compared. Table 3 shows the cutting conditions.

【0037】[0037]

【表3】 [Table 3]

【0038】なお、切削においては超硬合金の熱亀裂に
よる損傷を加速するために、高速での湿式フライス切削
を行った。被削材を600mm切削した結果を表4に示す。耐
熱亀裂性の評価を行うために、チップをすくい面側から
ラッピングで追い込み、その熱亀裂の深さ、逃げ面側の
亀裂長さ、熱亀裂本数の観察を行った。
In the cutting, high-speed wet milling was performed in order to accelerate damage caused by thermal cracking of the cemented carbide. Table 4 shows the results of cutting the work material by 600 mm. In order to evaluate the heat crack resistance, the chip was driven in by lapping from the rake face side, and the depth of the heat crack, the crack length on the flank side, and the number of heat cracks were observed.

【0039】[0039]

【表4】 [Table 4]

【0040】上記結果を見ると、本発明チップ(チップ
No.2、3、4)が優れた耐熱亀裂性を有していることがわ
かる。
Looking at the above results, the chip of the present invention (chip
It can be seen that Nos. 2, 3, and 4) have excellent heat crack resistance.

【0041】(実施例2)実施例1に示したチップNo.2のチ
ップを用いて、ネガランド処理幅やネガランド角度を変
えて刃先処理を行った。刃先処理後、4μmの被覆層をコ
ーティングした。被覆層はそれぞれCVD法またはPVD法に
よって種々の積層構造のものを形成した。それぞれのチ
ップについて表5に示す。表5において、「膜組成」は左
が最下層の組成で右に向かって順次上層の組成であるこ
とを示している。
(Example 2) Using the tip No. 2 shown in Example 1, the cutting edge processing was performed while changing the negative land processing width and the negative land angle. After the edge treatment, a coating layer of 4 μm was coated. The coating layers were formed in various laminated structures by the CVD method or the PVD method, respectively. Table 5 shows each chip. In Table 5, “film composition” indicates that the composition of the lowermost layer is on the left and the composition of the upper layer is sequentially toward the right.

【0042】[0042]

【表5】 上記のチップを用いて、実施例1と同様の切削(切削条
件は表3を参照)を行い、刃先の耐熱亀裂性を比較し
た。被削材は直径30mmで、4本の溝付き丸棒材である。
[Table 5] Using the above-mentioned insert, the same cutting as in Example 1 (see Table 3 for cutting conditions) was performed, and the heat crack resistance of the cutting edge was compared. The work material is a round bar material with a diameter of 30 mm and four grooves.

【0043】被削材を600mm切削した結果を表6に示す。
耐熱亀裂性の評価を行うために、チップをすくい面側か
らラッピングで追い込み、その熱亀裂の深さ、逃げ面側
の亀裂長さ、熱亀裂本数の観察を行った。
Table 6 shows the results of cutting the work material by 600 mm.
In order to evaluate the heat crack resistance, the chip was driven in by lapping from the rake face side, and the depth of the heat crack, the crack length on the flank side, and the number of heat cracks were observed.

【0044】[0044]

【表6】 [Table 6]

【0045】上記結果より、被覆層に耐熱性に優れたAl
203膜を含有するCVDコーティング品は優れた耐熱亀裂性
を有することがわかる。また、ネガランド処理幅が小さ
い(チップNo.11)かネガランドの角度が小さい(チッ
プNo.12)と欠けやすくなり、逆にネガランド処理幅が
大きい(チップNo.16)かネガランドの角度が大きい
(チップNo.15)と高速切削の際、発熱しやすくなり、
熱亀裂が発生しやすいことがわかる。従って、本発明品
(チップNo.13、14)は耐熱亀裂性に優れた特性を示し
ていることがわかる。
From the above results, it was found that Al having excellent heat resistance was formed on the coating layer.
CVD coating product containing a 2 0 3 film found to have excellent thermal crack resistance. If the processing width of the negative land is small (Chip No. 11) or the angle of the negative land is small (Chip No. 12), chipping tends to occur, and conversely, the processing width of the negative land is large (Chip No. 16) or the angle of the negative land is large (Chip No. 16). When chip No. 15) and high-speed cutting, heat is easily generated,
It can be seen that thermal cracks easily occur. Therefore, it can be seen that the products of the present invention (chips Nos. 13 and 14) have excellent heat crack resistance.

【0046】[0046]

【発明の効果】以上説明したように、本発明切削工具
は、耐熱亀裂性に優れた性能を示す。従って、高速切削
・ドライ切削等、熱亀裂が工具寿命の主要な寿命決定要
因と考えられる切削分野で耐熱亀裂性が大幅に改善さ
れ、工具寿命を延長することができることから、耐熱亀
裂性に優れたフライス用工具を提供することができる。
As described above, the cutting tool of the present invention exhibits excellent heat crack resistance. Therefore, heat cracking is greatly improved in the cutting field where heat cracks are considered to be the main tool determinant of tool life, such as high-speed cutting and dry cutting, and tool life can be extended. Milling tool can be provided.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 WCを含む硬質相とCoを含む結合相とから
なる超硬合金と、超硬合金表面に形成される被覆層とを
有する切削工具であって、以下の条件を満たすことを特
徴とする切削工具。 硬質相として周期律表4a,5a,6a族金属の炭化物(WC
は除く)、窒化物、酸化物およびそれらの固溶体よりな
る群から選択される少なくとも一種を1〜25質量%含
む。 超硬合金中の結合相の含有量は5〜15質量%である。 WCの平均粒径が2μm以上である。 超硬合金の抗磁力Hcの値が140〜180の範囲である。 超硬合金の飽和磁気量4πσを超硬合金中に含まれるC
oの質量%で除した値(4πσ/Co)が8以上15未満である。 超硬合金中にη相を含有しない。 被覆層はAlを含有する。
1. A cutting tool having a cemented carbide comprising a hard phase containing WC and a binder phase containing Co, and a coating layer formed on the surface of the cemented carbide, and satisfying the following conditions. Features cutting tools. As the hard phase, carbides of metals from groups 4a, 5a and 6a of the periodic table (WC
), At least one selected from the group consisting of nitrides, oxides, and solid solutions thereof, in an amount of 1 to 25% by mass. The content of the binder phase in the cemented carbide is 5 to 15% by mass. The average particle size of WC is 2 μm or more. The value of the coercive force Hc of the cemented carbide is in the range of 140 to 180. C contained in cemented carbide with saturation magnetic quantity of 4πσ of cemented carbide
The value (4πσ / Co) divided by the mass% of o is 8 or more and less than 15. Does not contain η phase in cemented carbide. The coating layer contains Al.
【請求項2】 さらに結合相にCrを含有し、 (Cr含有質量%)/(Co含有質量%)が0.03〜0.20であるこ
とを特徴とする請求項1に記載の切削工具。
2. The cutting tool according to claim 1, further comprising Cr in the binder phase, wherein (Cr content mass%) / (Co content mass%) is 0.03 to 0.20.
【請求項3】 さらに結合相にNiを含有し、 (Ni含有質量%)/(Co含有質量%)の値が0.03〜0.10であ
ることを特徴とする請求項1に記載の切削工具。
3. The cutting tool according to claim 1, further comprising Ni in a binder phase, wherein a value of (Ni content mass%) / (Co content mass%) is 0.03 to 0.10.
【請求項4】 結合相であるCoのfcc相の格子定数が3.5
80Å以上であることを特徴とする請求項1〜3のいずれか
に記載の切削工具。
4. The lattice constant of the fcc phase of Co as the binder phase is 3.5
The cutting tool according to any one of claims 1 to 3, wherein the cutting tool is at least 80 mm.
【請求項5】 結合相であるCoの結晶構造が次式を満た
すことを特徴とする請求項1〜4のいずれかに記載の切削
工具。 0≦I(Co:hcp)/I(Co:fcc)≦0.2 ここで、I(Co:hcp)はhcp構造のCoの(101)面におけるX線
回折強度で、I(Co:fcc)はfcc構造のCoの(111)面におけ
るX線回折強度である。
5. The cutting tool according to claim 1, wherein the crystal structure of Co as the binder phase satisfies the following expression. 0 ≦ I (Co: hcp) / I (Co: fcc) ≦ 0.2where I (Co: hcp) is the X-ray diffraction intensity of the (101) plane of Co of the hcp structure, and I (Co: fcc) is 7 is an X-ray diffraction intensity on the (111) plane of Co having an fcc structure.
【請求項6】 前記被覆層がTiAl(CxNy)膜(x+y=1,x
は0以上1以下)を含むことを特徴とする請求項1に記載
の切削工具。
6. The coating layer is a TiAl (CxNy) film (x + y = 1, x
2. The cutting tool according to claim 1, wherein 0 to 1).
【請求項7】 前記被覆層がAl203膜を含むことを特徴
とする請求項1に記載の切削工具。
7. The cutting tool according to claim 1, wherein the coating layer includes an Al 2 O 3 film.
【請求項8】 前記超硬合金の刃先処理がネガランド加
工によって行われ、すくい面側から見たときの処理幅が
0.03〜0.20mm、ネガランド角度が15〜30°であることを
特徴とする請求項1に記載の切削工具。
8. The cutting edge processing of the cemented carbide is performed by negative land processing, and the processing width when viewed from the rake face side is reduced.
2. The cutting tool according to claim 1, wherein the cutting tool has a negative land angle of 15 to 30 degrees.
JP2001001906A 2001-01-09 2001-01-09 Cutting tool Pending JP2002205207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001906A JP2002205207A (en) 2001-01-09 2001-01-09 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001906A JP2002205207A (en) 2001-01-09 2001-01-09 Cutting tool

Publications (1)

Publication Number Publication Date
JP2002205207A true JP2002205207A (en) 2002-07-23

Family

ID=18870486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001906A Pending JP2002205207A (en) 2001-01-09 2001-01-09 Cutting tool

Country Status (1)

Country Link
JP (1) JP2002205207A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336565A (en) * 2004-05-27 2005-12-08 Kyocera Corp Cemented carbide
JP2007119888A (en) * 2005-10-31 2007-05-17 Sumitomo Electric Ind Ltd Method for manufacturing hard metal
JP2009035802A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Cemented carbide
JP2010012552A (en) * 2008-07-03 2010-01-21 Mitsubishi Materials Corp Cemented carbide-made miniature drill excellent in breaking resistance
JP2012166220A (en) * 2011-02-14 2012-09-06 Sumitomo Electric Ind Ltd Rotary tool
JP2012166219A (en) * 2011-02-14 2012-09-06 Sumitomo Electric Ind Ltd Rotary tool
JP2012193406A (en) * 2011-03-16 2012-10-11 Sumitomo Electric Hardmetal Corp Exchangeable cutting tip, cutting method using the same, and method for producing exchangeable cutting tip
JP2014515784A (en) * 2011-03-28 2014-07-03 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide material
EP2474634A4 (en) * 2009-08-20 2016-11-23 Sumitomo Electric Industries Super hard alloy and cutting tool using same
CN106413954A (en) * 2014-04-23 2017-02-15 三菱综合材料株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
WO2019138599A1 (en) * 2018-01-09 2019-07-18 住友電工ハードメタル株式会社 Super-hard alloy and cutting tool
WO2021079561A1 (en) * 2019-10-25 2021-04-29 住友電気工業株式会社 Cemented carbide and cutting tool comprising same as base material
WO2021241021A1 (en) * 2020-05-26 2021-12-02 住友電気工業株式会社 Cutting tool
CN114845828A (en) * 2019-12-20 2022-08-02 山特维克科洛曼特公司 Cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397866A (en) * 1989-09-08 1991-04-23 Hitachi Tool Eng Ltd Coated cemented carbide tool
JPH08199284A (en) * 1995-01-20 1996-08-06 Hitachi Tool Eng Ltd Sintered hard alloy with high corrosion resistance and high wear resistance
JPH11138326A (en) * 1997-11-10 1999-05-25 Mitsubishi Materials Corp Cemented carbide ball end mill having ball nose part whose half tip part indicates excellent antifriction property
JP2000234136A (en) * 1999-02-09 2000-08-29 Sumitomo Electric Ind Ltd Cemented carbide, coated cemented carbide and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397866A (en) * 1989-09-08 1991-04-23 Hitachi Tool Eng Ltd Coated cemented carbide tool
JPH08199284A (en) * 1995-01-20 1996-08-06 Hitachi Tool Eng Ltd Sintered hard alloy with high corrosion resistance and high wear resistance
JPH11138326A (en) * 1997-11-10 1999-05-25 Mitsubishi Materials Corp Cemented carbide ball end mill having ball nose part whose half tip part indicates excellent antifriction property
JP2000234136A (en) * 1999-02-09 2000-08-29 Sumitomo Electric Ind Ltd Cemented carbide, coated cemented carbide and production thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336565A (en) * 2004-05-27 2005-12-08 Kyocera Corp Cemented carbide
JP2007119888A (en) * 2005-10-31 2007-05-17 Sumitomo Electric Ind Ltd Method for manufacturing hard metal
JP4673189B2 (en) * 2005-10-31 2011-04-20 住友電気工業株式会社 Method for producing cemented carbide and cemented carbide produced thereby
JP2009035802A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Cemented carbide
JP2010012552A (en) * 2008-07-03 2010-01-21 Mitsubishi Materials Corp Cemented carbide-made miniature drill excellent in breaking resistance
EP2474634A4 (en) * 2009-08-20 2016-11-23 Sumitomo Electric Industries Super hard alloy and cutting tool using same
JP2012166220A (en) * 2011-02-14 2012-09-06 Sumitomo Electric Ind Ltd Rotary tool
JP2012166219A (en) * 2011-02-14 2012-09-06 Sumitomo Electric Ind Ltd Rotary tool
JP2012193406A (en) * 2011-03-16 2012-10-11 Sumitomo Electric Hardmetal Corp Exchangeable cutting tip, cutting method using the same, and method for producing exchangeable cutting tip
JP2014515784A (en) * 2011-03-28 2014-07-03 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Cemented carbide material
CN106413954A (en) * 2014-04-23 2017-02-15 三菱综合材料株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
US10307830B2 (en) 2014-04-23 2019-06-04 Mitsubishi Materials Corporation Surface-coated cutting tool having hard coating layer that exhibits excellent chipping resistance
WO2019138599A1 (en) * 2018-01-09 2019-07-18 住友電工ハードメタル株式会社 Super-hard alloy and cutting tool
CN111566241A (en) * 2018-01-09 2020-08-21 住友电工硬质合金株式会社 Cemented carbide and cutting tool
JPWO2019138599A1 (en) * 2018-01-09 2020-10-01 住友電工ハードメタル株式会社 Cemented carbide and cutting tools
EP3739074A4 (en) * 2018-01-09 2021-06-23 Sumitomo Electric Hardmetal Corp. Super-hard alloy and cutting tool
CN111566241B (en) * 2018-01-09 2022-04-29 住友电工硬质合金株式会社 Cemented carbide and cutting tool
US11332810B2 (en) 2018-01-09 2022-05-17 Sumitomo Electric Hardmetal Corp. Cemented carbide and cutting tool
WO2021079561A1 (en) * 2019-10-25 2021-04-29 住友電気工業株式会社 Cemented carbide and cutting tool comprising same as base material
JPWO2021079561A1 (en) * 2019-10-25 2021-04-29
US12005507B2 (en) 2019-10-25 2024-06-11 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool including same as substrate
JP7392714B2 (en) 2019-10-25 2023-12-06 住友電気工業株式会社 Cemented carbide and cutting tools containing it as a base material
CN114845828A (en) * 2019-12-20 2022-08-02 山特维克科洛曼特公司 Cutting tool
JP7111262B2 (en) 2020-05-26 2022-08-02 住友電気工業株式会社 Cutting tools
JPWO2021241021A1 (en) * 2020-05-26 2021-12-02
WO2021241021A1 (en) * 2020-05-26 2021-12-02 住友電気工業株式会社 Cutting tool

Similar Documents

Publication Publication Date Title
KR101326325B1 (en) A cutting tool milling insert, method of making a cutting tool milling insert and method of using an insert
EP3228726A1 (en) Coated cutting tool
JP4028368B2 (en) Surface coated cemented carbide cutting tool
JP2002205207A (en) Cutting tool
KR20110100621A (en) Improved coated cutting insert for rough turning
JPH09323205A (en) Multilayer coated hard tool
KR20040084760A (en) Coated cutting tool insert
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
KR101529726B1 (en) Coated cutting insert for milling applications
JP2018164960A (en) Coated cemented carbide tool with superior chipping resistance
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JPH08209336A (en) Coated hard alloy
JP7415223B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting.
JP7453613B2 (en) surface coated cutting tools
JP2009035802A (en) Cemented carbide
WO2020166683A1 (en) Surface-coated cutting tool
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
KR20230073856A (en) Cutting tool having hard coating layer with ecellent wear resistance and toughness
JP2009006427A (en) Surface coated cutting tool
JP7137149B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JPS5914534B2 (en) Tough cermet with a softened surface layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101119