JPH0397866A - Coated cemented carbide tool - Google Patents

Coated cemented carbide tool

Info

Publication number
JPH0397866A
JPH0397866A JP23382589A JP23382589A JPH0397866A JP H0397866 A JPH0397866 A JP H0397866A JP 23382589 A JP23382589 A JP 23382589A JP 23382589 A JP23382589 A JP 23382589A JP H0397866 A JPH0397866 A JP H0397866A
Authority
JP
Japan
Prior art keywords
coated
cemented carbide
nitride
carbide
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23382589A
Other languages
Japanese (ja)
Other versions
JP2645340B2 (en
Inventor
Hitoshi Horie
堀江 仁
Hiroshi Ueda
広志 植田
Nobuhiko Shima
順彦 島
Masayuki Matsuzaki
松崎 正幸
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP1233825A priority Critical patent/JP2645340B2/en
Publication of JPH0397866A publication Critical patent/JPH0397866A/en
Application granted granted Critical
Publication of JP2645340B2 publication Critical patent/JP2645340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a coated cemented carbide tool improved in wear resistance by using a sintered body composed of the specific composition of WC base cemented carbide and specified with carbon containing condition and saturation magnetic flux density in the finish sintered body as a base body and forming the coated tool. CONSTITUTION:The sintered body of the WC base cemented carbide composed of one or more kinds among carbide, nitride and carbide-nitride of IV A, V A and VI A groups in the periodic table and one or more kinds in Fe group and Cr group, and in which the content of carbon is in the low carbon range of two phase range, and having <=(14-16) gauss per Co 1% the saturation magnetic flux density, is used as the base body. On the base body, inner layer of titanium carbide-nitride having 0.5-10mu thickness is formed with CVD process using organic CN compound as reaction gas and further, outer layer composed of one or more layers of aluminum oxide, titanium carbide-nitride and/or titanium nitride having 0.5-10mu thickness is formed with the CVD process. By this method, the coated tool being available to high speed continuous cutting field, is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被覆超硬合金工具の改良に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in coated cemented carbide tools.

詳細には、より高速切削性能を向上したM覆超硬合金工
具の応用範囲の拡大に関する。
Specifically, the present invention relates to expanding the range of applications of M-covered cemented carbide tools with improved high-speed cutting performance.

【従来の技術〕[Conventional technology]

硬質相がW C − C o、WC− (WT i T
 a) CN−Coからなる超硬合金にT i C.A
 l 20 3、TiCN,TiN等を種々組み合わせ
た多層被覆工具は、その通用範囲が広くかつ長寿命の切
ΔIJL具等として実用に供せられている。
The hard phase is WC-Co, WC-(WT i T
a) TiC. A
Multilayer coated tools made of various combinations of l 20 3, TiCN, TiN, etc. have a wide range of applications and are in practical use as long-life cutting ΔIJL tools.

その製造方法は主としてCVD法、P V D 法が用
いられているが、プロセス技術の進歩により様々な被覆
方法もとられている。
The CVD method and the PVD method are mainly used as the manufacturing method, but various coating methods are also being used due to advances in process technology.

また、基体にはJIS  M系超硬合金にTiN、を微
量添加した合金が広く用いられ、窒素の添加により、脱
β層等の表面改質が計れ、より靭性が向上している。従
来、耐摩耗性位視の用途にはCVD法によりT i C
,  A ]. 203等の多層被覆が使用され耐欠損
性重視の用途には強度の劣化が少ないPVD法によりT
iNを被覆した工具が適用されている。
In addition, alloys in which a small amount of TiN is added to JIS M cemented carbide are widely used for the substrate, and by adding nitrogen, surface modification such as removal of β layer can be achieved, and toughness is further improved. Conventionally, T i C was used for wear-resistant positioning applications using the CVD method.
, A]. For applications where multi-layer coatings such as 203 are used and fracture resistance is important, T
A tool coated with iN is applied.

[発明が解決しようとする問題点〕 上記の様に従来の酎摩粍重視の用途には、′l゛IC,
  A. 1 20 3等の被覆を実施し表面部に耐摩
耗性11)高い膜を被覆し効果を上げているが、その反
面、成11時に基体と皮膜界面に生ずる脆弱な脱炭層の
ため耐欠損性に弱いという欠点があり、その改善とし、
て基体中にカーボンを過剰に添加したり、 表面近傍に
カーボンを富化させたりしてその強度の改清を計ってい
る。しかし、基体中にカーボンを常化させることは、基
体中の酎塑性変形性、耐摩耗性を減ずるため、カーボン
は町能な限り低い方がbFましい。
[Problems to be solved by the invention] As mentioned above, for conventional uses that emphasize chuma, 'l゛IC,
A. 1 20 3 etc. is applied to the surface to coat the surface with a highly wear-resistant film 11), which is effective, but on the other hand, due to the fragile decarburized layer that forms at the interface between the substrate and the film during formation, chipping resistance is reduced. It has the disadvantage of being weak in
Attempts are being made to improve its strength by adding too much carbon into the base or enriching it near the surface. However, since the constant presence of carbon in the base body reduces the plastic deformability and wear resistance of the base body, it is preferable that the carbon content be as low as possible.

「問題点を解決するT.段〕 そのため、本発明者らは.J.ISM系超硬合金におい
て異相を生じない低いカーボン量の合金において皮模一
基体の界面に生ずる脱炭層を抑える?4覆ji法を検討
し、た結果、通常のCVD法を低温化し反応性に寓むガ
スを使用すれば良い事を見いいだした。
"T. Stage to Solve the Problems" Therefore, the present inventors have proposed the following: J. Is it possible to suppress the decarburized layer that occurs at the interface of the skin-like substrate in an alloy with a low carbon content that does not produce foreign phases in ISM cemented carbide?4 As a result of studying the CVD method, we found that it would be better to use a gas that makes the normal CVD method lower in temperature and more reactive.

また、この基体に窒化物を添加するとその効果がより相
乗される。その窒化物は4a、5a族の窄化物、炭窒化
物で有れば良く、その用途、目的に応じて、例えば、高
速連続切削等にはNbN、TiN等が優れ、断続を念む
ような用途、目的にはT a N,  Z r N, 
 H f N等が優れる傾向にあり、また複数の室化物
、炭窒化物を使用しても同様な効果が{りられる。
Further, when nitride is added to this substrate, the effect is further enhanced. The nitride may be a 4a or 5a group condensate or carbonitride. Depending on the use and purpose, for example, NbN, TiN, etc. are excellent for high-speed continuous cutting, etc., and for applications that require intermittent cutting. , the purpose is T a N, Z r N,
H f N and the like tend to be superior, and similar effects can be obtained even when a plurality of nitrides and carbonitrides are used.

[作用〕 以上のごとく、本発明は周期{1 aの4a,5a,6
a族の炭化物、窒化物、炭窒化物の1種以上と、Fe族
、Cr族の1種以上よりなるWC基超硬合金を基体とし
、最終焼結体におけるカーボン含イ]量が2相域中の低
炭素領域で有り、飽和硼東密度でCol%あたり14 
〜16gauss以Fである焼結体を基体とし、基体上
に内層が0.5−10ミクロンの有機CN化合物を反応
ガスとするCVD法による炭窒化チタンを被覆し、さら
に0.5−10ミクロンのCVD法による酸化アルミニ
ウム、炭窒化チタン及び/または窒化チタンt If4
及び/または多層、被覆したことを特徴とする被覆超硬
合金工具である。
[Operation] As described above, the present invention has a period {1 a of 4a, 5a, 6
The base material is a WC-based cemented carbide made of one or more of group A carbides, nitrides, and carbonitrides and one or more of Fe group and Cr group, and the carbon content in the final sintered body is two-phase. It is a low carbon region in the region, and the saturated density is 14 per Col%.
The base is a sintered body with a temperature of ~16 gauss or more, and the inner layer is coated with titanium carbonitride of 0.5-10 microns by the CVD method using an organic CN compound as a reaction gas, and further coated with titanium carbonitride of 0.5-10 microns. Aluminum oxide, titanium carbonitride and/or titanium nitride t If4 by CVD method
and/or a coated cemented carbide tool characterized by being coated with multiple layers.

本発明による被覆工具の基体及び膜は以ドの理由により
限定される。
The substrate and membrane of the coated tool according to the invention are limited for the following reasons.

1)i&終焼結体における炭素置 飽和磁束密度でCol%あたり14〜16gauss 
(2相城中の低炭素領域)燃焼法におけるカーボン分F
r値では誤差項が大きいため、超硬合金に一般に使用さ
れている飽和磁束密度を用いた。飽和磁束密度を用いた
理由はド発明の月的とする低炭素領域のカーボン測定に
ついて最も高持度に測定できるためである。
1) Carbon saturation magnetic flux density in i & final sintered body is 14 to 16 gauss per Col%
(Low carbon region in 2 phases) Carbon content F in combustion method
Since the r value has a large error term, the saturation magnetic flux density commonly used for cemented carbide was used. The reason for using the saturation magnetic flux density is that carbon measurement in the low carbon region, which is the subject of this invention, can be carried out with the highest degree of stability.

p8和磁東密度がCal%当たり1 4 g a LJ
 S S.4S満ではカーボンが不足し異相を生じ易く
、また+6)ζa U S Sを越えると粒成長を生じ
易くなり高速切削に不適となるため、co1%あたり1
4〜j6gaussとした。
p8 Japanese magnetic density is 14 g a LJ per Cal%
SS. If less than 4S, carbon is insufficient and foreign phases are likely to occur, and if it exceeds +6) ζa USS, grain growth tends to occur and is unsuitable for high-speed cutting.
4 to j6 gauss.

2)内層 0.  5〜10ミクロン 有機CN化合物を使用するCVD法 炭窒化チタン 内層が0, 5ミクロン未満て′はCの移動を抑制する
のに允分な効里がなく、また単層でlOミクロンを越え
ると著しく靭性を阻害するために、0.5〜lOミクロ
ンとした。
2) Inner layer 0. CVD method using 5-10 micron organic CN compound If the inner layer of titanium carbonitride is less than 0.5 micron, it is not effective in suppressing C migration, and if the inner layer is less than 10 micron, In order to significantly inhibit toughness, the thickness was set to 0.5 to 10 microns.

3)外層 0,5〜10ミクロン CVD法 酸化アルミニウム、炭窒化チタン 窒化チタンの1層及びまたは多層 外層が0.5ミクロン未満では充分な耐摩粍性を付写す
ることが出来ず、 10ミクロンをこえると1層とし2
て厚く成りすぎ脆くなるため、 0.5〜10ミクロン
とした。
3) Outer layer 0.5 to 10 microns CVD method If the single layer and/or multilayer outer layer of aluminum oxide, titanium carbonitride, and titanium nitride is less than 0.5 microns, sufficient abrasion resistance cannot be imparted. If it exceeds 1 layer, 2
Since it would become too thick and brittle, it was set to 0.5 to 10 microns.

以下、本発明に関し具体的に説明する。The present invention will be specifically explained below.

〔実施例1〕 市販のWC粉末(平均粒度5,0μm)、1”jC粉末
(同1.0μm)   TiN粉末(同1.0μm)、
TaC粉末(1.5,um)及び結合用としてCo粉末
を使用して、  aに旋削用のJIf:体に使用される
JIS  M20相当( II!成 残WC−2TiC
−5TaC−7Co−0.3TiN)になるように配合
した。カーボンの調整はWの添加により{jった。これ
らの粉末を配合し、混合ト了後、乾燥した接、プレス成
形し、A空中1・100゜C T I h r焼結した
のち、抗折力試験片を製作した。その試験片の飽和磁束
密度、硬さ、破壊靭性値を7!N定した。その結果を第
1表に示す。
[Example 1] Commercially available WC powder (average particle size 5.0 μm), 1”jC powder (average particle size 1.0 μm), TiN powder (average particle size 1.0 μm),
Using TaC powder (1.5, um) and Co powder for bonding, JIf for turning is used for turning: equivalent to JIS M20 used for bodies (II! Residual WC-2TiC
-5TaC-7Co-0.3TiN). The carbon content was adjusted by adding W. These powders were blended, mixed, dried, pressed, and sintered in air at 1.100°C for 1 hour to prepare transverse rupture strength test pieces. The saturation magnetic flux density, hardness, and fracture toughness values of the test piece were 7! N was determined. The results are shown in Table 1.

第1表 試料番号8.9では脱炭相の為破壊靭性値が極端に低丁
した。
In sample number 8.9 in Table 1, the fracture toughness value was extremely low due to the decarburized phase.

この合金よりS N M A 4. 3 2の形状のチ
ップを加[した。また、このチップをCVD反応炉中に
i21し、H,ガスを流しながら、s o o ”cま
で昇温した. 800℃よりTj.CI4 2%、 C
H,CN2%、HJ4からなる混合気体をill it
 7 if / m in 圧力4 0 m m H 
gの条件で供給し0.5Rl+6反応させ基体上にTj
CNを2ミクロン被覆した。
SNMA from this alloy 4. 3 Added a chip with the shape of 2. In addition, this chip was placed in a CVD reactor, and the temperature was raised to so ``c'' while flowing H gas.Tj.CI4 2%, C from 800℃
Ill it a mixed gas consisting of H, CN2%, HJ4
7 if / min pressure 4 0 mm H
Tj
A 2 micron coating of CN was applied.

そのチップを、さらにiooo℃まで昇温し、混合気体
をTiC1,  2%、N,2%の紐成に変え6時間反
応させ基体上にTjNを6ミクロン形成さゼた。次に混
合気体をCo2 2% AIC”13 2% H2残か
らなる混合気体を流量7 ’1K / min圧力4 
0 m m I{ gの条件で供給し4時間反応させ基
体上にA ]. 20 3を2ミクロン被覆した。
The chip was further heated to 100° C., and the gas mixture was changed to a mixture of 1.2% TiCl and 2% N, and the mixture was reacted for 6 hours to form 6 microns of TjN on the substrate. Next, a mixed gas consisting of Co2 2% AIC"13 2% H2 remainder was mixed at a flow rate of 7'1K/min and a pressure of 4.
A ]. 203 was coated with 2 microns.

このチップを市販のTtC6ミクロンーA12032ミ
クロンのチップと切削試験をUFの条件で実施した。
A cutting test was conducted on this chip using a commercially available TtC6 micron-A12032 micron chip under UF conditions.

切削試験の条件は横造用鋼丸棒の長手連続LηiTI1
にて実施した。長手連続切削では負荷が連続するため、
切削性能上重要な耐塑性変形性を確認した。
The cutting test conditions are longitudinal continuous steel bar for horizontal forming LηiTI1
It was carried out at Since the load is continuous in longitudinal continuous cutting,
Plastic deformation resistance, which is important for cutting performance, was confirmed.

切削速度 200m/mjn 送り    0.  2mrn/rev切込み  3.
Ornm 切削時間 2min 30min その結果を第2表に示す。
Cutting speed 200m/mjn Feed 0. 2mrn/rev cutting depth 3.
Ornm Cutting time 2 min 30 min The results are shown in Table 2.

第2表 試料番号8。 9では脱炭相の為試験は行わなかったが
、本発明のチップはカーボン量の減少にともない塑性変
形墳が減少し、正常な摩耗を示したのに対し,市販のチ
ップは塑性変形が大きく、ノ一ズに異常な摩耗が発生し
ている。さらに耐摩耗性を比較するため切削時間30分
でも各チップとも大差ないが30分切削擾の逃げ面最大
摩耗量は本発明チップと市販チップでは定状摩耗での傾
きが異なり大きな差となった。
Table 2 sample number 8. 9 was not tested due to the decarburization phase, but the chip of the present invention showed normal wear with a decrease in plastic deformation as the amount of carbon decreased, whereas the commercially available chip had large plastic deformation. , abnormal wear has occurred on the nose. Furthermore, in order to compare the wear resistance, it was found that there was no significant difference between the chips even when the cutting time was 30 minutes, but the maximum amount of wear on the flank surface after 30 minutes of cutting was different in the slope of the constant wear between the inventive chip and the commercially available chip, and there was a large difference. .

〔実施例2〕 市販のWC粉末(平均粒度5.  Oμm)   Ta
C粉末(1.5μm)及び結合相としてCo粉末を使用
して、一1に旋削用の基体に使用されるJIs  KI
O相当(組成 残W C − 3 T a C − f
3Co)になるように配合した。カーボンの調整はWの
添加またはカーボンの添加により行った。 これらの粉
末を配合し、混合終r後、乾燥した{釈プレス成形し、
真空中1400″Cでlhr焼結したのち、抗折力試験
片を製作した。その試験片の飽和磁束密度、硬さ、破壊
靭性値を測定した。
[Example 2] Commercially available WC powder (average particle size 5.0 μm) Ta
JIs KI used for turning substrate in 11 using C powder (1.5 μm) and Co powder as binder phase
O equivalent (composition remaining W C-3 T a C-f
3Co). Carbon was adjusted by adding W or carbon. These powders were blended, and after the mixing was completed, they were dried and press-molded.
After 1hr sintering in vacuum at 1400''C, a transverse rupture strength test piece was produced.The saturation magnetic flux density, hardness, and fracture toughness of the test piece were measured.

その結果を第3表に示す。The results are shown in Table 3.

第3表 試料番号18.19では脱炭相の為破壊靭性値が極端に
低fした。
Sample No. 18.19 in Table 3 had an extremely low fracture toughness f due to the decarburized phase.

この合金よりSNMA432の形状のチップを加1二し
た,また、このチップをCVD反応炉中に設置し、H 
,ガスを流しながら、800℃まで昇温した。 800
℃よりTIC1.42%、 C H 3C N2%、H
2残からなる混合気体を流t 7 i!I / m i
n 圧力4 0 m m H gの条件で供給し0.5
時間反応させ基体上にTiCNを2ミクロン被覆した。
A chip in the shape of SNMA432 was added to this alloy, and this chip was placed in a CVD reactor and H
, The temperature was raised to 800° C. while flowing gas. 800
TIC1.42% from ℃, C H3C N2%, H
Flow a mixed gas consisting of 2 residues t 7 i! I/mi
Supplied under the conditions of n pressure 40 mm Hg 0.5
A 2 micron layer of TiCN was coated onto the substrate by reacting for a period of time.

そのチップを、さらに1000℃まで昇温し、混合気体
をTiC1.  2%、N,2%、CH4 2%の組成
に変え6 R間反応させ基体上にTiCNを6ミクロン
形成させた。次にTiC1<2%、N,  2% H2
9*からなる混合気体を流量7 rl /min圧力4
0mmHgの条件で供給し2特開反応させ基体上にTi
Nを2ミクロン被覆した。
The temperature of the chip was further raised to 1000°C, and the mixed gas was mixed with TiC1. The composition was changed to 2% N, 2% CH4, and 2% CH4, and a 6R reaction was performed to form 6 microns of TiCN on the substrate. Next, TiC1<2%, N, 2% H2
9* at a flow rate of 7 rl/min and a pressure of 4
Ti is supplied under the condition of 0 mmHg, and Ti
A 2 micron coating of N was applied.

このチップを市販のTiC6ミクロン−A 1 20 
32ミクロンのチップと切削試験を以下の条件で実施し
た。
This chip is commercially available TiC6 micron-A 120
A cutting test with a 32 micron chip was conducted under the following conditions.

切削試験の条件はダクタイル鋳鉄の切削にて実施した。The conditions for the cutting test were to cut ductile cast iron.

切削性能上重要な耐塑性変形性を確認した。Plastic deformation resistance, which is important for cutting performance, was confirmed.

切削速度 2 5 0 m / m i n送り   
 0.  2mm/rev 切込み  3.0mm 切削時間 2min  30min その結果を第4表に示す。
Cutting speed 250 m/min feed
0. 2mm/rev Depth of cut 3.0mm Cutting time 2min 30min The results are shown in Table 4.

第2表 とも大差ないが30分切削徨の逃げ面最大摩耗量は本発
明チップと市販チップでは定状摩耗での傾きが異なり大
きな差となった。
Although there is not much difference from Table 2, the maximum amount of wear on the flank surface after 30 minutes of cutting differs between the inventive chip and the commercially available chip in terms of the slope of steady wear, resulting in a large difference.

〔発明の効果〕〔Effect of the invention〕

本発明の被覆超硬合金工具は最終焼結体における基体に
カーボン量を特定することにより、基体中の耐塑性変形
性を向上させ、刃先強度を増し,耐摩耗性を向上させた
ものであり、被覆工具の特徴である高速連続切削分野へ
より適用範囲を広げた工具である。
The coated cemented carbide tool of the present invention has improved plastic deformation resistance in the base, increased cutting edge strength, and improved wear resistance by specifying the amount of carbon in the base in the final sintered body. This is a tool that has expanded its scope of application to the field of high-speed continuous cutting, which is a feature of coated tools.

Claims (1)

【特許請求の範囲】[Claims]  周期律表の4a、5a、6a族の炭化物、窒化物、炭
窒化物の1種以上と、Fe族、Cr族の1種以上よりな
るWC基超硬合金を基体とし、最終焼結体におけるカー
ボン含有量が2相域中の低炭素領域で有り、飽和磁束密
度でCol%あたり14〜16gauss以下である焼
結体を基体とし、基体上に内層が0.5−10ミクロン
の有機CN化合物を反応ガスとするCVD法による炭窒
化チタンを被覆し、さらに0.5−10ミクロンのCV
D法による酸化アルミニウム、炭窒化チタン及び/また
は窒化チタン1層及び/または多層、被覆したことを特
徴とする被覆超硬合金工具。
The base material is a WC-based cemented carbide consisting of one or more carbides, nitrides, and carbonitrides of groups 4a, 5a, and 6a of the periodic table, and one or more of the Fe group and Cr group, and the final sintered body The base is a sintered body whose carbon content is in the low carbon region of the two-phase region, and the saturation magnetic flux density is 14 to 16 gauss per Col% or less, and an organic CN compound with an inner layer of 0.5 to 10 microns on the base. Coated with titanium carbonitride by CVD method using as a reaction gas, and further coated with 0.5-10 micron CV
A coated cemented carbide tool coated with one layer and/or multiple layers of aluminum oxide, titanium carbonitride and/or titanium nitride by method D.
JP1233825A 1989-09-08 1989-09-08 Manufacturing method of coated cemented carbide tool Expired - Fee Related JP2645340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233825A JP2645340B2 (en) 1989-09-08 1989-09-08 Manufacturing method of coated cemented carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233825A JP2645340B2 (en) 1989-09-08 1989-09-08 Manufacturing method of coated cemented carbide tool

Publications (2)

Publication Number Publication Date
JPH0397866A true JPH0397866A (en) 1991-04-23
JP2645340B2 JP2645340B2 (en) 1997-08-25

Family

ID=16961153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233825A Expired - Fee Related JP2645340B2 (en) 1989-09-08 1989-09-08 Manufacturing method of coated cemented carbide tool

Country Status (1)

Country Link
JP (1) JP2645340B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734250A (en) * 1991-06-07 1995-02-03 Hitachi Tool Eng Ltd Coated carbide tool
US5624766A (en) * 1993-08-16 1997-04-29 Sumitomo Electric Industries, Ltd. Cemented carbide and coated cemented carbide for cutting tool
EP1103635A3 (en) * 1999-11-25 2002-03-27 Seco Tools Ab Coated cutting insert for milling and turning applications
JP2002205207A (en) * 2001-01-09 2002-07-23 Sumitomo Electric Ind Ltd Cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244572A (en) * 1985-08-21 1987-02-26 Hitachi Carbide Tools Ltd Surface coated tool
JPS6288509A (en) * 1985-10-11 1987-04-23 Hitachi Carbide Tools Ltd Surface coated cemented carbide end mill
JPS63103070A (en) * 1986-10-17 1988-05-07 Hitachi Tool Eng Ltd Surface coated sintered hard alloy
JPH01233827A (en) * 1988-03-15 1989-09-19 Matsushita Electric Ind Co Ltd Local oscillation circuit for uhf channel reception of television tuner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244572A (en) * 1985-08-21 1987-02-26 Hitachi Carbide Tools Ltd Surface coated tool
JPS6288509A (en) * 1985-10-11 1987-04-23 Hitachi Carbide Tools Ltd Surface coated cemented carbide end mill
JPS63103070A (en) * 1986-10-17 1988-05-07 Hitachi Tool Eng Ltd Surface coated sintered hard alloy
JPH01233827A (en) * 1988-03-15 1989-09-19 Matsushita Electric Ind Co Ltd Local oscillation circuit for uhf channel reception of television tuner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734250A (en) * 1991-06-07 1995-02-03 Hitachi Tool Eng Ltd Coated carbide tool
US5624766A (en) * 1993-08-16 1997-04-29 Sumitomo Electric Industries, Ltd. Cemented carbide and coated cemented carbide for cutting tool
EP1103635A3 (en) * 1999-11-25 2002-03-27 Seco Tools Ab Coated cutting insert for milling and turning applications
JP2002205207A (en) * 2001-01-09 2002-07-23 Sumitomo Electric Ind Ltd Cutting tool

Also Published As

Publication number Publication date
JP2645340B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
KR101326325B1 (en) A cutting tool milling insert, method of making a cutting tool milling insert and method of using an insert
JPH02197569A (en) Coated sintered hard alloy and production thereof
JP2762745B2 (en) Coated cemented carbide and its manufacturing method
JP5099747B2 (en) Coated cermet cutting tool
JP2000515588A (en) Coated turning insert and method of manufacturing the same
JPH08281503A (en) Cutting insert and production thereof
SE526674C2 (en) Coated cemented carbide insert
JP2009012167A (en) Coated cutting tool insert
JPS58211862A (en) Composite silicon nitride cutting tool also executing coating
JPS5952703B2 (en) Surface coated cemented carbide parts
JPH0397866A (en) Coated cemented carbide tool
JPH0293036A (en) Ticn-base cermet and its manufacture
JPH08269719A (en) Production of cutting tool surface-coated with titanium oxycarbonitride layer
JPH10237650A (en) Wc base cemented carbide and its production
JPH0364469A (en) Coated sintered hard alloy tool
KR100388759B1 (en) Coated turning insert
JPH0387368A (en) Coated sintered hard alloy tool
JPH0215159A (en) Production of cutting made of surface-treated cermet
JPH04294907A (en) Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool
JPH03122280A (en) Coated cemented carbide tool
JPS63103069A (en) Surface coated sintered hard alloy
JPH04231468A (en) Surface coated ticn-base cermet
JPS63103071A (en) Surface coated sintered hard alloy
JPS60174876A (en) Manufacture of coated cutting tool
JPS5935434B2 (en) Surface coated cemented carbide parts

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees