JPS5952703B2 - Surface coated cemented carbide parts - Google Patents

Surface coated cemented carbide parts

Info

Publication number
JPS5952703B2
JPS5952703B2 JP8374579A JP8374579A JPS5952703B2 JP S5952703 B2 JPS5952703 B2 JP S5952703B2 JP 8374579 A JP8374579 A JP 8374579A JP 8374579 A JP8374579 A JP 8374579A JP S5952703 B2 JPS5952703 B2 JP S5952703B2
Authority
JP
Japan
Prior art keywords
cemented carbide
coated
layer
metals
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8374579A
Other languages
Japanese (ja)
Other versions
JPS569365A (en
Inventor
俊一 村井
武志 阿部
頼嗣 細谷
正実 粥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP8374579A priority Critical patent/JPS5952703B2/en
Publication of JPS569365A publication Critical patent/JPS569365A/en
Publication of JPS5952703B2 publication Critical patent/JPS5952703B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、すぐれた耐摩耗性および耐塑性変形性を有
し、かつ靭性に富んだ、特に切削工具として使用した場
合に重負荷の加わる切削の領域においてすぐれた切削性
能を示す表面被覆超硬合金部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cutting tool that has excellent wear resistance and plastic deformation resistance, and is rich in toughness, and is particularly effective in the area of cutting where heavy loads are applied when used as a cutting tool. The present invention relates to a surface-coated cemented carbide member that exhibits excellent performance.

従来、例えば炭化タングステン(以下WCで示、す)基
超硬合金部材の表面に、周期律表の4a、5a、および
6a族の金属、Al、Si、およびBの炭化物、窒化物
、および酸化物、さらにこれらの2種以上の固溶体から
なる群のうちの1種の単層または2種以上の多重層から
なる被覆層を形成したフ表面被覆超硬合金部材は公知で
あり、その一部は広く実用に供されている。
Conventionally, for example, carbides, nitrides, and oxides of metals of groups 4a, 5a, and 6a of the periodic table, Al, Si, and B have been coated on the surface of a tungsten carbide (hereinafter referred to as WC)-based cemented carbide member. Surface-coated cemented carbide members in which a coating layer consisting of a single layer or a multilayer of two or more of solid solutions of two or more of these solid solutions are well known, and some of them include is widely used in practice.

しかし、上記従来表面被覆超硬合金部材においては、上
記被覆層は超硬合金基体に比して硬質ではあるが、脆弱
であるために、超硬合金基体のみ5の場合より、はるか
に低い応力で前記被覆層にはクラックが発生し易く、ま
た超硬合金基体の表面に被覆層を形成するに際して、表
面被覆法として広く用いられている化学蒸着法を適用し
た場合、温度1000〜1100℃の高温で蒸着処理が
行なわれるため、その冷却過程における超硬合金基体と
被覆層との熱膨張係数の違いによつて被覆層には引張り
応力が加わるようになることから、クラツクが発生する
場合があり、このように一旦被覆層にクラツクが発生す
ると、例えば切削工具として使用した場合、クラツクの
先端部に切削応力が集中するために、クラツクは急速に
超硬合金基体の内部に伝幡し、ついには切刃を欠損に至
らしめるという問題点があつた。
However, in the above-mentioned conventional surface-coated cemented carbide member, although the coating layer is harder than the cemented carbide base, it is brittle, so the stress is much lower than in the case of only the cemented carbide base 5. Cracks are likely to occur in the coating layer, and when a chemical vapor deposition method, which is widely used as a surface coating method, is applied to form a coating layer on the surface of a cemented carbide substrate, a temperature of 1000 to 1100°C is required. Since the vapor deposition process is carried out at high temperatures, cracks may occur as tensile stress is applied to the coating layer due to the difference in thermal expansion coefficient between the cemented carbide substrate and the coating layer during the cooling process. Once a crack occurs in the coating layer, for example, when used as a cutting tool, the crack rapidly propagates inside the cemented carbide base because cutting stress is concentrated at the tip of the crack. Eventually, there was a problem in that the cutting edge was damaged.

そこで、上記従来表面被覆超硬合金部材における超硬合
金基体の組成を靭性に富んだものにしてクラツクの伝幡
を阻止することも考えられたが、このように超硬合金基
体を靭性に富んだものにすると、反面耐塑性変形性およ
び耐摩耗性が劣化したものになるのを避けることができ
ず、したがつて、このような状態の表面被覆超硬合金部
材を重負荷の加わる切削領域で使用した場合には、被覆
層がほとんど摩耗していないにもかかわらず、超硬合仝
基体が塑性変形を起して所望の性能が得られないという
問題点があつた。
Therefore, it has been considered to prevent the propagation of cracks by making the composition of the cemented carbide base in the conventional surface-coated cemented carbide member rich in toughness. On the other hand, if the surface-coated cemented carbide parts are used in a heavy-load cutting area, it is unavoidable that the plastic deformation resistance and wear resistance deteriorate. When used in this case, there was a problem in that, although the coating layer was hardly worn, the cemented carbide base material underwent plastic deformation, making it impossible to obtain the desired performance.

本発明者等は、上述のような観点から、上記従来表面被
覆超硬合金部材のもつ問題点を解決して、耐摩耗性およ
び耐塑性変形性にすぐれ、しか!も靭性に富んだ表面被
覆超硬合金部材を得べく研究を行なつた結果、(a)超
硬合金基体の表面部を、超硬合金基体内部より軟らかく
、かつ靭性に富んだWC一鉄族金属系合金からなる軟化
層(以下表面軟化層とい♂う)とすると、被覆層よりの
クラツクの伝幡が抑制され、しかも靭性が大幅に向上す
るようになること。
From the above-mentioned viewpoints, the present inventors have solved the problems of the conventional surface-coated cemented carbide members, and achieved excellent wear resistance and plastic deformation resistance. As a result of conducting research to obtain a surface-coated cemented carbide member with high toughness, we found that (a) the surface of the cemented carbide base was coated with WC monoiron group material, which is softer and more tough than the inside of the cemented carbide base; A softened layer made of a metal alloy (hereinafter referred to as a "surface softened layer") suppresses propagation of cracks from the coating layer and significantly improves toughness.

(b)上記表面軟化層のもつ上記の作用効果は、超硬合
金基体における結合相量と密接な関係があ3り、表面軟
化層を構成する結合相量を超硬合金基体の結合相量に比
して多くすると、その作用効果は増幅されるようになる
こと。
(b) The above effects of the surface softening layer are closely related to the amount of binder phase in the cemented carbide base, and the amount of binder phase constituting the surface softening layer is the amount of binder phase in the cemented carbide base. If the amount is increased compared to , the effect will be amplified.

(C)上記表面軟化層の結合相中に窒素を固溶させると
にの場合超硬合金基体内部に窒素が固溶41してもよい
)、前記表面軟化層は強化されるようになり、この結果
部材の耐塑性変形性が向上すること。
(C) When nitrogen is dissolved as a solid solution in the binder phase of the surface softening layer, the surface softening layer is strengthened; As a result, the plastic deformation resistance of the member is improved.

以上(a)〜(c)に示される知見を得たのである。The findings shown in (a) to (c) above were obtained.

ノこの発明は、上記知見にとづいてなされたものであつ
て、超硬合金基体の表面に、周期律表の4a、5a、お
よび6a族の金属、Al.Si、およびBの炭化物、窒
化物、および酸化物、さらにこれらの2種以上の固溶体
からなる群のうちの1種の単層または2種以上の多重層
からなる層厚1〜20μmの被覆層を形成した表面被覆
超硬合金部材において、前記超硬合金基体の内部を、炭
化タングステン:40〜95%、 周期律表の4a、5a、および6a族の金属の窒化物お
よび炭窒化物のうちの1種または2種以上からなるNa
Cl型結晶構造化合物:2〜30%、鉄族金属のうちの
1種または2種以上および不可避不純物:残り、からな
る組成で構成し、また上記超硬合金基体の表面部を、そ
の基体表面より2〜100μmの深さに亘つて、炭化タ
ングステン:65〜95%、 固溶窒素:0.01〜2.0%、 鉄族金属のうちの1種または2種以上および不可避不純
物:残り、からなる組成を有し、かつ上記超硬合金基体
内部の硬さよりビツカース硬さで5〜50%軟らかく、
しかも結合相量が上記超硬合金基体内部における結合相
量に対して10〜200%(以上容量%、以下%は容量
%を意味する)多い表面軟化層で構成することによつて
、すぐれた靭性、耐摩耗性、および耐塑性変形性を付与
した表面被覆超硬合金部材に特徴を有するものである。
This invention was made based on the above findings, and includes metals from groups 4a, 5a, and 6a of the periodic table, Al. A coating layer with a thickness of 1 to 20 μm consisting of a single layer or a multilayer of two or more of the carbides, nitrides, and oxides of Si and B, and solid solutions of two or more of these. In the surface-coated cemented carbide member, the interior of the cemented carbide base is made of 40 to 95% tungsten carbide, one of nitrides and carbonitrides of metals from groups 4a, 5a, and 6a of the periodic table. Na consisting of one or more types of
Cl type crystal structure compound: 2 to 30%, one or more iron group metals, and unavoidable impurities: the remainder, and the surface portion of the cemented carbide substrate is Over a depth of 2 to 100 μm, tungsten carbide: 65 to 95%, solid solution nitrogen: 0.01 to 2.0%, one or more iron group metals and unavoidable impurities: the remainder, and is 5 to 50% softer in terms of Bitkers hardness than the hardness inside the cemented carbide base,
In addition, the surface softening layer has an amount of binder phase that is 10 to 200% larger than the amount of binder phase inside the cemented carbide substrate (the above is volume %, the below % is volume %), which provides an excellent surface softening layer. It is characterized by a surface-coated cemented carbide member that has toughness, wear resistance, and plastic deformation resistance.

つぎに、この発明の表面被覆超硬合金部材における表面
軟化層および超硬合金基体内部について詳述する。
Next, the surface softening layer and the inside of the cemented carbide substrate in the surface-coated cemented carbide member of the present invention will be described in detail.

(a)表面軟化層 上述のように表面被覆超硬合金部材の欠損は、通常被覆
層よりの超硬合金基体内部へのクラツク伝幡により生じ
ると考えられており、したがつてこの発明においては、
被覆層の直下、すなわち超硬合金基体の表面部に、2〜
100μmの深さに亘つて、基体内部よりビツカース硬
さで5〜50%軟化した、WC:65〜95%、固溶窒
素:0.01〜2.0%、鉄族金属および不可避不純物
:残りからなる成分組成の靭性に富んだ表面軟化層を形
成することによつて、硬質被覆層よりのクラツクの伝幡
を抑制すると共に、強度、靭性、および耐塑性変形性の
向上をはかつたものである。
(a) Surface Softening Layer As mentioned above, it is believed that cracks in surface-coated cemented carbide members are usually caused by propagation of cracks from the coating layer into the interior of the cemented carbide base. ,
Immediately below the coating layer, that is, on the surface of the cemented carbide base, 2 to
WC: 65-95%, solid solution nitrogen: 0.01-2.0%, iron group metals and unavoidable impurities: remainder, softened by 5-50% in terms of Vickers hardness from the inside of the substrate over a depth of 100 μm. By forming a surface softening layer with a high toughness of the composition, it suppresses the propagation of cracks from the hard coating layer, and improves strength, toughness, and plastic deformation resistance. It is.

この場合、WCの含有量が65%未満では、相対的に鉄
族金属の含有量が多くなり過ぎて耐摩耗性が低下するよ
うになり、一方95%を越えてWCを含有させると、相
対的に鉄族金属の含有量が少なくなり過ぎて所望の靭性
改善効果が得られないことから、WCの含有量を65〜
95%と定めた。
In this case, if the WC content is less than 65%, the iron group metal content becomes relatively too large and wear resistance decreases, whereas if the WC content exceeds 95%, the relative In general, the content of iron group metals becomes too low and the desired toughness improvement effect cannot be obtained, so the WC content is increased from 65 to 65%.
It was set at 95%.

また、鉄族金属に窒素を固溶させると、前記鉄族金属に
よつて構成される結合相が強化され、靭性の低下なく耐
塑性変形性が大幅に向上するようになるが、固溶窒素の
含有量が0.01%未満では所望の耐塑性変形性向上効
果を確保することができず、一方2.0%を越えて固溶
させると、靭性が低下するようになつて表面軟化層のも
つ機能がそこなわれるようになることから、固溶窒素の
含有量を0.01〜2.0%と定めた。
In addition, when nitrogen is dissolved in iron group metals, the binder phase composed of the iron group metals is strengthened, and the plastic deformation resistance is greatly improved without decreasing toughness. If the content of The content of solid solution nitrogen was determined to be 0.01 to 2.0% because the functions of nitrogen would be impaired.

さらに、基体内部に比してビツカース硬さで5%未満の
軟化では、所望の靭性改善効果を確保することができず
、一方50%を越えて軟化させると、耐塑性変形性およ
び耐摩耗性の低下が著しくなることから、表面軟化層の
硬さを基体内部硬さよりビツカース硬さで5〜50%軟
化させた硬さとしたのである。
Furthermore, if the softening is less than 5% in terms of Bitkers hardness compared to the inside of the base, the desired toughness improvement effect cannot be secured, while if it is softened by more than 50%, the plastic deformation resistance and wear resistance will be reduced. The hardness of the surface softening layer was set to be 5 to 50% softer in terms of Vickers hardness than the internal hardness of the base.

また、その深さ(層厚)が2μm未満では、同様に所望
の靭性改善効果が得られず、一方100μmを越えた層
厚にすると、著しい耐塑性変形性の低下をきたすことか
ら、表面軟化層の深さ(層厚)を2〜100μmと定め
た。
In addition, if the depth (layer thickness) is less than 2 μm, the desired toughness improvement effect cannot be obtained, while if the layer thickness exceeds 100 μm, the plastic deformation resistance will be significantly reduced. The depth (layer thickness) of the layer was determined to be 2 to 100 μm.

さらに、またその結合相量が基体内部を構成する超硬合
金における結合相量に対する割合で、10%未満の増量
では、ビツカース硬さで5〜50%基体内部に比して軟
化させたとしても、所望の靭性改善効果を確保すること
はできす、一方200%(2倍)を越えた増量にすると
、著しい耐摩耗性および耐塑性変形性の低下をきたすよ
うになることから、表面軟化層の結合相量を基体内部の
結合相量に対して10〜200%多くした。
Furthermore, if the amount of the binder phase is increased by less than 10% in proportion to the amount of the binder phase in the cemented carbide constituting the inside of the base, even if the Vickers hardness is softened by 5 to 50% compared to the inside of the base. However, if the amount is increased by more than 200% (doubling), the wear resistance and plastic deformation resistance will be significantly reduced. The amount of the binder phase was increased by 10 to 200% relative to the amount of the binder phase inside the substrate.

(b)超硬合金基体内部 超硬合金基体の内部は、被覆層および表面軟化層が摩耗
により摩滅した後においても所定の耐摩耗性をもつもの
でなければならないし、また表面軟化層と共に、部材に
靭性を付与するものでなければならない。
(b) Inside of the cemented carbide base The inside of the cemented carbide base must have a certain level of wear resistance even after the coating layer and the surface softening layer are worn away by abrasion, and together with the surface softening layer, It must impart toughness to the member.

しかしながら、硬質相形成成分であるWCの含有量が4
0%未満では、相対的に結合相形成成分である鉄族金属
の含有量が多くなり過ぎ、被覆層および表面軟化層が存
在していても、切削時に加わる切削抵抗に抗しきれず、
切刃に著しい塑性変形が生じるようになり、一方95%
を越えたWC含有量にすると、相対的に鉄族金属の含有
量が少なくなり過ぎて所望の靭性を確保することができ
なくなることから、WCの含有量を40〜95%と定め
た。
However, the content of WC, which is a hard phase forming component, is 4
If it is less than 0%, the content of iron group metals, which are binder phase forming components, will be relatively too high, and even if a coating layer and a surface softening layer are present, the cutting resistance applied during cutting will not be able to be resisted.
Significant plastic deformation began to occur on the cutting edge, while 95%
If the WC content exceeds 20%, the iron group metal content becomes relatively too low, making it impossible to secure the desired toughness. Therefore, the WC content was set at 40% to 95%.

また、NaCl型結晶構造化合物は、化学的に安定な成
分であり、被覆層および表面軟化層が摩耗により摩滅し
た後においても部材が所定の耐摩耗性を確保すると共に
、表面軟化層のもつ特性が十分に発揮されるように含有
される成分であるが、その含有量が、2%未満では所望
の耐摩耗性改善効果および表面軟化層のもつ特性を十分
に発揮させる効果が得られず、一方30%を越えて含有
させると、部材の靭性低下が著しいことから、その含有
量を2〜30%と定めた。
In addition, the NaCl-type crystal structure compound is a chemically stable component, and even after the coating layer and the surface softening layer are worn away due to wear, the component maintains the desired wear resistance, and the characteristics of the surface softening layer. It is a component that is contained so that the properties of the surface softening layer can be sufficiently exhibited, but if the content is less than 2%, the desired effect of improving wear resistance and the effect of fully exhibiting the characteristics of the surface softening layer cannot be obtained. On the other hand, if the content exceeds 30%, the toughness of the member will decrease significantly, so the content was set at 2 to 30%.

なお、被覆層の層厚に関しては、その層厚が1μm未満
では所望の耐摩耗性改善効果が確保できず、一方20μ
mを越えた層厚にすると、靭性低下が著しいことから、
1〜20μmと定めた。また、この発明の表面被覆超硬
合金部材における被覆層は、通常の化学蒸着法、イオン
プレーテイング法、およびスパツタリング法などの被覆
層形成手段によつて形成することができる。
Regarding the thickness of the coating layer, if the layer thickness is less than 1 μm, the desired effect of improving wear resistance cannot be secured;
If the layer thickness exceeds m, the toughness decreases significantly, so
It was determined to be 1 to 20 μm. Further, the coating layer in the surface-coated cemented carbide member of the present invention can be formed by a coating layer forming method such as a usual chemical vapor deposition method, ion plating method, or sputtering method.

さらに、この発明の表面被覆超硬合金部材における表面
軟化層を有する超硬合金基体は、(a)超硬合金基体の
内部を構成する超硬合金に比して、焼結後ビツカース硬
さで5〜50%軟らかい硬さをもち、かつ結合相量が1
0〜100%多い表面軟化層を形成すべく、WC粉末と
鉄族金属とを通常の粉末冶金法によつて調合し、しかる
後スラリーとなし、ついで超硬合金基体の内部を形成す
べく通常の粉末冶金法によつて別途形成された圧粉体の
表面に、上記スラリーを窒素雰囲気中において噴霧して
2〜100μmの厚さ付着させた後、減圧下で乾燥し、
最終的に全体を通常の粉末冶金法によつて焼結するに際
して、例えば超硬合金の液相出現温度以上の温度で、窒
素ガスを所定の一定圧力で導入して表面軟化層を構成す
る鉄族金属(結合相)に窒素を固溶させる方法、 (b)予め通常の粉末冶金法によつて焼結形成された所
定組成の超硬合金基体素材を、まずCOガス雰囲気中、
超硬合金の液相出現温度以上の温度に所定時間保持する
ことによつて再焼結し、続いて窒素ガス雰囲気中で、再
び超硬合金の液相出現温度以上の温度に所定時間保持す
る方法。
Furthermore, the cemented carbide substrate having the surface softening layer in the surface-coated cemented carbide member of the present invention has (a) a hardness of Bitkers after sintering compared to the cemented carbide constituting the interior of the cemented carbide substrate; 5 to 50% soft hardness and a binder phase amount of 1
In order to form a 0-100% more surface softening layer, WC powder and iron group metal are mixed by a conventional powder metallurgy method, then made into a slurry, and then conventionally processed to form the inside of the cemented carbide substrate. The above slurry is sprayed in a nitrogen atmosphere onto the surface of a green compact separately formed by the powder metallurgy method to adhere to a thickness of 2 to 100 μm, and then dried under reduced pressure.
When the whole is finally sintered by the usual powder metallurgy method, for example, nitrogen gas is introduced at a predetermined constant pressure at a temperature higher than the liquid phase appearance temperature of cemented carbide to form a surface softening layer on the iron. (b) A cemented carbide base material of a predetermined composition, which has been sintered in advance by a normal powder metallurgy method, is first sintered in a CO gas atmosphere.
Re-sintering is carried out by holding at a temperature higher than the liquid phase appearance temperature of the cemented carbide for a predetermined time, and then held again at a temperature higher than the liquid phase appearance temperature of the cemented carbide for a predetermined time in a nitrogen gas atmosphere. Method.

なお、この場合、表面軟化層の組成、結合相中への窒素
固溶量、層厚、おび硬さは、PcO分圧、PN2分圧、
再焼結温度などを調整することによつて所望のものとす
ることができる。また、この場合、前記の焼結および再
焼結を超硬合金の液相出現温度以上の温度で連続的に行
なつてもよい。以上(a)および(b)に示される方法
などによつて製造することができる。
In this case, the composition of the surface softening layer, the amount of solid solution of nitrogen in the binder phase, the layer thickness, and the hardness are determined by the PcO partial pressure, the PN2 partial pressure,
A desired result can be obtained by adjusting the resintering temperature and the like. In this case, the sintering and resintering may be performed continuously at a temperature higher than the liquid phase appearance temperature of the cemented carbide. It can be manufactured by the methods shown in (a) and (b) above.

ついで、この発明の表面被覆超硬合金部材を実施例によ
り説明する。
Next, the surface-coated cemented carbide member of the present invention will be explained using examples.

実施例 1 超硬合金基体の内部における最終成分組成が、WC−1
5%CO−10%TaC−2%NbC−10%TiC−
5%TiNとなるように、市販の原料粉末を配合し、ボ
ールミルにて48時間湿式混合し、乾燥した.−後、1
5kg/Mllの圧力でプレスして圧粉体を成形した。
Example 1 The final component composition inside the cemented carbide base was WC-1.
5%CO-10%TaC-2%NbC-10%TiC-
Commercially available raw material powders were blended to give 5% TiN, wet mixed in a ball mill for 48 hours, and dried. -After, 1
A green compact was formed by pressing at a pressure of 5 kg/ml.

ついで、この圧粉体を真空中、温度1400℃に1時間
保持して焼結した後、雰囲気のみを20t0rr(減圧
下)のCOガス雰囲気に代えて2時間保持し、さらに引
続いて50気圧のN2ガス雰囲気中、j温度1320℃
に0.2時間保持することによつて、この発明にかかる
超硬合金基体たるSNU432型スローアウエイチツプ
Aを製造した。このスローアウエイチツプAにおいては
、表面より30μmの深さに亘つて、ビツカース硬さH
v:1150を有し、かzつWC−0.15%固溶窒素
−26%COからなる組成をもつた表面軟化層が形成さ
れ、しかも基体内部碩さはビツカース硬さHv:142
0をもつものであつた。ノ ついで、上記スローアウエイチツプAを化学蒸着用処理
炉内に装入し、大気圧下でTiCl4:4%、CH4:
4%、H2:92%(容量%)からなる組成を有するガ
スを導入しながら、温度:1050℃に2時間保持する
ことによつて、層厚:5μmのTiC層で被覆された本
発明表面被覆スローアウエイチツプAを製造した。
Next, this green compact was sintered by holding it in a vacuum at a temperature of 1400°C for 1 hour, and then only the atmosphere was changed to a CO gas atmosphere of 20t0rr (under reduced pressure) and held for 2 hours, and then the temperature was changed to a CO gas atmosphere of 20t0rr (under reduced pressure). in N2 gas atmosphere, j temperature 1320℃
By holding the sample for 0.2 hours, an SNU432 type throwaway chip A, which is a cemented carbide base according to the present invention, was manufactured. This throw-away chip A has a Vickers hardness H over a depth of 30 μm from the surface.
V: 1150, a surface softening layer having a composition consisting of WC, 0.15% solid solution nitrogen, and 26% CO is formed, and the internal roughness of the substrate is Vickers hardness Hv: 142.
It had a value of 0. Next, the throw-away chip A was placed in a chemical vapor processing furnace, and treated with TiCl4:4% and CH4:
The surface of the present invention was coated with a TiC layer with a layer thickness of 5 μm by maintaining the temperature at 1050° C. for 2 hours while introducing a gas having a composition of 4% H2 and 92% H2 (volume %). A coated throw-away tip A was manufactured.

また、比較の目的で、上記圧粉体の成形におけると同一
の条件で成形した圧粉体を真空中、温度1400℃に1
時間保持することによつて製造した表面軟化層の形成の
ない比較スローアウエイチツプAの表面に、直接同一の
条件でTiC層を被覆することによつて比較表面被覆ス
ローアウエイチツプAを製造した。
In addition, for the purpose of comparison, a green compact molded under the same conditions as in the above green compact molding was heated to 1400°C in vacuum for 1 hour.
A comparative surface-coated throwaway chip A was produced by directly coating the TiC layer under the same conditions on the surface of a comparative throwaway chip A, which had been produced by holding for a period of time and had no surface softening layer formed.

つぎに、上記本発明表面被覆スローアウエイチツプAお
よび比較表面被覆スローアウエイチツプAについて、被
削材:SNCM−8(硬さHB:260)、切削速度:
150m/Min、送り:0.35mm/Rev.、 切込み:4mm、 の条件で連続切削試験を行ない、切削時間に対する逃げ
面摩耗およびすくい面摩耗をそれぞれ測定した。
Next, regarding the surface-coated throwaway chip A of the present invention and the comparative surface-coated throwaway chip A, workpiece material: SNCM-8 (hardness HB: 260), cutting speed:
150m/Min, feed: 0.35mm/Rev. Continuous cutting tests were conducted under the conditions of , depth of cut: 4 mm, and flank wear and rake face wear with respect to cutting time were measured, respectively.

この測定結果を第1図および第2図に示した。図示され
るように、本発明表面被覆スローアウエイチツプAはす
ぐれた耐摩耗性を示すのに対して、比較表面被覆スロー
アウエイチツプAは靭性および耐塑性変形性が劣るなめ
に切削開始後75分で欠損するものであつた。さらに、
靭性を評価する目的で、第3図および第4図にそれぞれ
正面図および側面図で示されるように、回転ドラム1の
外周面上の相互反対側位置に、長さ方向に沿つて角柱状
被削材2を嵌め込み固定し、図示の位置に上記両表面被
覆スローアウエイチツプ3を当てがい、被削材:SCM
−4(硬さHB:250)、切削速度:100m/Mi
n、送り:0.45mm/Rev.、 切込み:3mm、 切削時間:3min、 の条件で断続切削試験を行ない、試験チツプ:20個の
欠損率(欠損チツプ数/試験チツプ数×100)を測定
した。
The measurement results are shown in FIGS. 1 and 2. As shown in the figure, the surface-coated throw-away tip A of the present invention exhibits excellent wear resistance, whereas the comparative surface-coated throw-away tip A exhibits inferior toughness and plastic deformation resistance after 75 minutes after the start of cutting. It was something that was missing. moreover,
For the purpose of evaluating toughness, as shown in the front and side views of FIGS. 3 and 4, respectively, prismatic coatings were placed on the outer peripheral surface of the rotating drum 1 at opposite positions along its length. Insert and fix the cutting material 2, apply the above-mentioned double-surface coated throw-away tip 3 to the position shown in the figure, and cut the material: SCM.
-4 (hardness HB: 250), cutting speed: 100m/Mi
n, Feed: 0.45mm/Rev. An intermittent cutting test was conducted under the following conditions: depth of cut: 3 mm, cutting time: 3 min, and the defect rate (number of defective chips/number of test chips x 100) of 20 test chips was measured.

この結果本発明表面被覆スローアウエイチツプAは、欠
損率:10%を示し、すぐれた靭性を有するものである
のに対して、比較表面被覆スローアウエイチツプAは、
欠損率:80%を示し、靭性の劣るものであつた。実施
例 2 超硬合金基体の内部における最終成分組成が、LWC−
15%CO−5%TiC−5%TiN−3%TaCl%
NbC−2%TaNとなるように、市販の原料粉末を配
合し、ボールミルにて48時間湿式混合し、乾燥し、プ
レスすることによつて圧粉体を成形し、ついでこの圧粉
体の表面に、別途予め用意1したWC粉末:80%、C
O粉末:20%からなる混合スラリーを30μmの厚さ
にN2ガス雰囲気中で一様に噴霧して減圧下で乾燥した
As a result, the surface-coated throw-away chip A of the present invention showed a chipping rate of 10% and had excellent toughness, whereas the comparative surface-coated throw-away chip A had a chipping rate of 10%.
The defect rate was 80%, and the toughness was poor. Example 2 The final component composition inside the cemented carbide substrate was LWC-
15%CO-5%TiC-5%TiN-3%TaCl%
Commercially available raw material powders were blended to give NbC-2% TaN, wet mixed in a ball mill for 48 hours, dried, and pressed to form a green compact. WC powder prepared separately in advance: 80%, C
A mixed slurry consisting of 20% O powder was uniformly sprayed to a thickness of 30 μm in an N2 gas atmosphere and dried under reduced pressure.

このように2重構造とした圧粉体を、真空中、温度14
00℃に1時間保持して焼結した後、引続いて圧力:3
0気圧のl窒素ガス雰囲気中、温度1400℃に、それ
ぞれ0.1時間、0.2時間、および0.4時間保持(
窒素固溶化処理)することによつて、本発明にかかる超
硬合金基体たるSNU432型スローアウエイチツプB
、C、およびDをそれぞれ製造した。この結果得ら2れ
たスローアウエイチツプB−Dには、それぞれ0.15
%、0.25%、および0.37%の固溶窒素を含有し
、いずれもその表面より30μmの深さに亘つてビツカ
ース硬さHv:1150を有する表面軟化層が形成され
ており、またその内部硬さはいずれもビ2ツカース硬さ
Hv:1480をもつもので゛あつた。ついで、上記ス
ローアウエイチツプB−Dのそれぞれの表面に実施例1
におけると同一の条件で層厚5μm(7)TiCからな
る被覆層を形成することによつて本発明表面被覆スロー
アウエイチツプB・〜Dを製造した。また、比較の目的
で上記窒素固溶化処理を行なわない以外は、同一の条件
で比較表面被覆スローアウエイチツプBを製造した。こ
のように製造された本発明表面被覆スローアウエイチツ
プB−Dおよび比較表面被覆スローアウエイチツプBに
ついて、被削材:SNCM−8 (硬さHB:270)
、切削速度:170m/Min、送り :0.45mm
/Rev.、 切込み:4mm、 切削時間:30min1 の条件で連続切削試験を行ない、ブランク摩耗およびク
レータ摩耗を測定した。
The compacted powder having a double structure in this way was heated in a vacuum at a temperature of 14°C.
After sintering by holding at 00°C for 1 hour, the pressure: 3
In a nitrogen gas atmosphere of 0 atm, the temperature was maintained at 1400°C for 0.1 hour, 0.2 hour, and 0.4 hour, respectively (
SNU432 type throwaway chip B, which is a cemented carbide base according to the present invention, is
, C, and D, respectively. The two throwaway tips B-D obtained as a result each contain 0.15
%, 0.25%, and 0.37% of solid solution nitrogen, and a surface softening layer having a Vickers hardness of Hv: 1150 is formed at a depth of 30 μm from the surface of each layer, and All of them had internal hardness of 1480 bits hardness Hv. Next, Example 1 was applied to each surface of the throwaway chips B-D.
Surface-coated throwaway chips B to D of the present invention were manufactured by forming a coating layer of 5 μm thick (7) TiC under the same conditions as in Example 1. Further, for comparison purposes, a comparative surface-coated throw-away chip B was manufactured under the same conditions except that the nitrogen solution treatment was not performed. Regarding the surface-coated throwaway tip B-D of the present invention and the comparative surface-coated throwaway tip B manufactured in this way, workpiece material: SNCM-8 (Hardness HB: 270)
, Cutting speed: 170m/Min, Feed: 0.45mm
/Rev. A continuous cutting test was conducted under the following conditions: depth of cut: 4 mm, cutting time: 30 min1, and blank wear and crater wear were measured.

この測定結果を第1表に示した。なお、第1表には表面
軟化層における固溶窒素含有量も合せて示した。第1表
に示されるように本発明表面被覆スローアウエイチツプ
B−Dはいずれも表面軟化層に固溶窒素を含有しない比
較表面被覆スローアウエイチツプBに比してすぐれた切
削性能を示すことが明らかで゛ある。
The measurement results are shown in Table 1. Note that Table 1 also shows the solid solution nitrogen content in the surface softening layer. As shown in Table 1, the surface-coated throw-away tips B-D of the present invention both exhibit superior cutting performance compared to the comparative surface-coated throw-away tip B, which does not contain solid solution nitrogen in the surface softening layer. It's obvious.

実施例 3 超硬合金基体内部の組成を、WC−15%CO−5%T
iC−5%TiN−5%TaC−1%NbCとする以外
は、上記実施例2における本発明表面被覆スローアウエ
イチツプBの製造条件と同一の条件で本発明表面被覆ス
ローアウエイチツプEを製造した。
Example 3 The composition inside the cemented carbide base was WC-15%CO-5%T.
A surface-coated throwaway chip E of the present invention was manufactured under the same conditions as those for the surface-coated throwaway chip B of the present invention in Example 2, except for iC-5%TiN-5%TaC-1%NbC. .

また、比較の目的で、表面軟化層に対して窒素固溶化処
理を施さない以外は、上記本発明表面被覆スローアウエ
イチツプEの製造条件と同一の条件で比較表面被覆スロ
ーアウエイチツプEを製造した。
For comparison purposes, a comparative surface-coated throwaway chip E was manufactured under the same manufacturing conditions as the surface-coated throwaway chip E of the present invention, except that the surface softening layer was not subjected to nitrogen solid solution treatment. .

さらに、比較の目的で、表面軟化層を形成しない以外は
、同様に上記本発明表面被覆スローアウエイチツプEの
製造条件と同一の条件で比較表面被覆スローアウエイチ
ツプ(以下従来表面被覆スローアウエイチツプという)
を製造した。
Furthermore, for the purpose of comparison, a comparative surface-coated throwaway chip (hereinafter referred to as a conventional surface-coated throwaway chip) was manufactured under the same manufacturing conditions as the surface-coated throwaway chip E of the present invention, except that no surface softening layer was formed. )
was manufactured.

これらの表面被覆スローアウエイチツプについて、実施
例2におけると同一の条件で連続切削試験を行なつた。
Continuous cutting tests were conducted on these surface-coated throw-away chips under the same conditions as in Example 2.

この試験結果を第2表に示した。第2表に示されるよう
に、本発明表面被覆スローアウエイチツプEは、表面軟
化層に固溶窒素の含有がない比較表面被覆スローアウエ
イチツプE、および全く表面軟化層の形成がない従来表
面被覆スローアウエイチツプに比して、著しくすぐれた
切削特性をもつことが明らかである。上述のように、こ
の発明の表面被覆超硬合金部材は、固溶窒素を含有した
表面軟化層の存在によつて、すぐれた靭性、耐摩耗性、
および耐塑性変形性をもつので、特に切削工具として使
用した場合に著しく良好な切削性能を発揮するものであ
る。
The test results are shown in Table 2. As shown in Table 2, the surface-coated throwaway chip E of the present invention is different from the comparative surface-coated throwaway chip E in which the surface softening layer does not contain solid solution nitrogen, and the conventional surface-coated throwaway chip E in which no surface softening layer is formed. It is clear that it has significantly superior cutting characteristics compared to throw-away tips. As mentioned above, the surface-coated cemented carbide member of the present invention has excellent toughness, wear resistance, and
It also has plastic deformation resistance, so it exhibits extremely good cutting performance especially when used as a cutting tool.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明表面被覆スローアウエイチ
ツプと比較表面被覆スローアウエイチツプに関して連続
切削試験における切削時間と、逃げ面摩耗およびすくい
面摩耗との関係を示した曲線図、第3図および第4図は
断続切削試験態様を示した正面図および側面図である。
FIGS. 1 and 2 are curve diagrams showing the relationship between cutting time, flank wear, and rake face wear in continuous cutting tests for the surface-coated throw-away chip of the present invention and a comparative surface-coated throw-away chip; FIG. and FIG. 4 are a front view and a side view showing an interrupted cutting test mode.

Claims (1)

【特許請求の範囲】 1 超硬合金基体の表面に、周期律表の4a、5a、お
よび6a族の金属、Al、SiおよびBの炭化物、窒化
物、および酸化物、さらにこれらの2種以上の固溶体か
らなる群のうちの1種の単層または2種以上の多重層か
らなる層厚1〜20μmの被覆層を形成した表面被覆超
硬合金部材において、前記超硬合金基体の内部を、炭化
タングステン:40〜95%、 周期律表の4a、5a、および6a族の金属の窒化物お
よび炭窒化物のうちの1種または2種以上からなるNa
Cl型結晶構造化合物:2〜30%、鉄族金属のうちの
1種または2種以上および不可避不純物:残り、からな
る組成で構成し、また上記超硬合金基体の表面部を、そ
の基体表面より2〜100μmの深さに亘つて、炭化タ
ングステン:65〜95%、 固溶窒素:0.01〜2.0%、 鉄族金属のうちの1種または2種以上および不可避不純
物:残り、からなる組成を有し、かつ上記超硬合金基体
内部の硬さよりビッカース硬さで5〜50%軟らかく、
しかも結合相量が上記超硬合金基体内部における結合相
量に対して10〜200%多い表面軟化層で構成した(
以上容量%)ことを特徴とする表面被覆超硬合金部材。
[Scope of Claims] 1. On the surface of the cemented carbide substrate, metals of Groups 4a, 5a, and 6a of the periodic table, carbides, nitrides, and oxides of Al, Si, and B, and two or more of these metals are present. In a surface-coated cemented carbide member in which a coating layer of 1 to 20 μm thick is formed from a single layer of one type or a multilayer of two or more types from the group consisting of solid solutions, the interior of the cemented carbide base is Tungsten carbide: 40-95%, Na consisting of one or more of nitrides and carbonitrides of metals in groups 4a, 5a, and 6a of the periodic table
Cl type crystal structure compound: 2 to 30%, one or more iron group metals, and unavoidable impurities: the remainder, and the surface portion of the cemented carbide substrate is Over a depth of 2 to 100 μm, tungsten carbide: 65 to 95%, solid solution nitrogen: 0.01 to 2.0%, one or more iron group metals and unavoidable impurities: the remainder, and is 5 to 50% softer in terms of Vickers hardness than the hardness inside the cemented carbide base,
Furthermore, the surface softening layer has a binder phase amount that is 10 to 200% larger than the binder phase amount inside the cemented carbide substrate.
1. A surface-coated cemented carbide member characterized in that:
JP8374579A 1979-07-02 1979-07-02 Surface coated cemented carbide parts Expired JPS5952703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8374579A JPS5952703B2 (en) 1979-07-02 1979-07-02 Surface coated cemented carbide parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8374579A JPS5952703B2 (en) 1979-07-02 1979-07-02 Surface coated cemented carbide parts

Publications (2)

Publication Number Publication Date
JPS569365A JPS569365A (en) 1981-01-30
JPS5952703B2 true JPS5952703B2 (en) 1984-12-21

Family

ID=13811056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8374579A Expired JPS5952703B2 (en) 1979-07-02 1979-07-02 Surface coated cemented carbide parts

Country Status (1)

Country Link
JP (1) JPS5952703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356202U (en) * 1989-10-04 1991-05-30
EP0709484A1 (en) 1994-10-20 1996-05-01 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152541A (en) * 1980-04-25 1981-11-26 Sumitomo Electric Ind Ltd Coating tool for intermittent cutting
USRE34180E (en) * 1981-03-27 1993-02-16 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
CA1174438A (en) * 1981-03-27 1984-09-18 Bela J. Nemeth Preferentially binder enriched cemented carbide bodies and method of manufacture
US4497874A (en) * 1983-04-28 1985-02-05 General Electric Company Coated carbide cutting tool insert
US4571983A (en) * 1985-04-30 1986-02-25 United Technologies Corporation Refractory metal coated metal-working dies
JPS61297003A (en) * 1985-06-24 1986-12-27 Mitsubishi Metal Corp Cutting tool made of surface-coated tungsten carbide base sintered hard alloy for high-speed cutting
CA2235807C (en) * 1995-10-27 2001-07-24 Teledyne Industries, Inc. Anchored oxide coatings on hard metal cutting tools
IL151773A0 (en) 2000-03-24 2003-04-10 Kennametal Inc Cemented carbide tool and method for making the same
US6638474B2 (en) 2000-03-24 2003-10-28 Kennametal Inc. method of making cemented carbide tool
US7581906B2 (en) 2004-05-19 2009-09-01 Tdy Industries, Inc. Al2O3 ceramic tools with diffusion bonding enhanced layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356202U (en) * 1989-10-04 1991-05-30
EP0709484A1 (en) 1994-10-20 1996-05-01 Mitsubishi Materials Corporation Coated tungsten carbide-based cemented carbide blade member

Also Published As

Publication number Publication date
JPS569365A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
JP2684721B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool and its manufacturing method
US4268569A (en) Coating underlayers
US8043729B2 (en) Coated cutting tool insert
JP2985300B2 (en) Hard layer coated cermet
US7794830B2 (en) Sintered cemented carbides using vanadium as gradient former
JPS63431A (en) Sintered body for chip forming work
KR19990071775A (en) Coated milling inserts and methods of making the same
JP2762745B2 (en) Coated cemented carbide and its manufacturing method
JPS5952703B2 (en) Surface coated cemented carbide parts
JPS5928628B2 (en) Surface coated cemented carbide tools
JPH0293036A (en) Ticn-base cermet and its manufacture
JP3087503B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP3638332B2 (en) Coated hard alloy
JPH04231467A (en) Coated tic-base cermet
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JPH10237650A (en) Wc base cemented carbide and its production
JPH1121651A (en) Cutting tool made of surface coated cemented carbide, excellent in thermal shock resistance
JP2828511B2 (en) Surface coated TiCN based cermet
JPH04294907A (en) Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool
JP2932853B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP3368794B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JPS6343453B2 (en)
JPH06336634A (en) Surface-coated cermet
JPH0215159A (en) Production of cutting made of surface-treated cermet
JPS5935434B2 (en) Surface coated cemented carbide parts