JP2002203545A - Non-aqueous electrolytic solution battery and its manufacturing method - Google Patents

Non-aqueous electrolytic solution battery and its manufacturing method

Info

Publication number
JP2002203545A
JP2002203545A JP2000398683A JP2000398683A JP2002203545A JP 2002203545 A JP2002203545 A JP 2002203545A JP 2000398683 A JP2000398683 A JP 2000398683A JP 2000398683 A JP2000398683 A JP 2000398683A JP 2002203545 A JP2002203545 A JP 2002203545A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
electrode active
aqueous electrolyte
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000398683A
Other languages
Japanese (ja)
Inventor
Toshiro Furuhashi
利朗 古橋
Tetsutoshi Hirota
哲理 廣田
Nobuhiro Nishiguchi
信博 西口
Shoichi Inamine
正一 稲嶺
Katsuyuki Kida
勝之 喜田
Yoshitaka Minamida
善隆 南田
Masahiro Imanishi
雅弘 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000398683A priority Critical patent/JP2002203545A/en
Publication of JP2002203545A publication Critical patent/JP2002203545A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution battery which can prevent a liquid leakage or the like caused by generation of carbon dioxide by suppressing that an internal resistance of a battery becomes high, and even if the battery is exposed to a high temperature, by suppressing that niobium oxide and electrolytic solution will react. SOLUTION: In the non-aqueous electrolytic solution battery having a positive electrode 1 wherein a compound which can insert and remove lithium is taken as a positive electrode active substance, a negative electrode 2 wherein the material enabled to insert and remove lithium is taken as a negative electrode active substance, and the non-aqueous electrolytic solution, that which is calcined at a state that niobium oxide and boron oxide are mixed is used as the positive electrode active substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを挿入離脱可
能な化合物を正極活物質とする正極と、リチウムを挿入
離脱可能な材料を負極活物質とする負極と、非水電解液
と、を有する非水系電解液電池及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a positive electrode using a compound capable of inserting and removing lithium as a positive electrode active material, a negative electrode using a material capable of inserting and removing lithium as a negative electrode active material, and a non-aqueous electrolyte. The present invention relates to a non-aqueous electrolyte battery having the same and a method for producing the same.

【0002】[0002]

【従来の技術】近年、高エネルギー密度を有する電池と
して非水系電解液電池が注目されつつあるが、このよう
な非水電解液電池としては、例えば、正極には、二酸化
マンガン等のマンガン酸化物が検討されている一方、負
極には、リチウム単体、リチウム−アルミニウム合金、
あるいは炭素材料等が検討されている。そして、これら
の正負極材料を用いた電池では、3V以上の充放電電圧
を有している。
2. Description of the Related Art In recent years, a non-aqueous electrolyte battery has been receiving attention as a battery having a high energy density. As such a non-aqueous electrolyte battery, for example, a manganese oxide such as manganese dioxide is used for a positive electrode. On the other hand, for the negative electrode, lithium alone, lithium-aluminum alloy,
Alternatively, a carbon material or the like is being studied. Batteries using these positive and negative electrode materials have a charge / discharge voltage of 3 V or more.

【0003】一方、近年、携帯用情報機器に対して、小
型軽量化と、使用可能な時間の延長とが求められてお
り、機器の作動電圧を低下させ、低消費電力化をはかる
ことによって、これら相反する要求に対応している。従
来、上記機器の各種電源として使用される電池の充放電
電圧は、機器に搭載される半導体素子の作動電圧が3.
3V程度であることから、3V以上に設定されていた。
しかし、機器に使用される半導体素子の改良に伴って、
作動電圧は2.6V程度に低下し、最近では2V以下に
設定されている。このため、これら機器に用いられる電
池も、素子の作動電圧の低下に対応して、2V以下の電
圧でも充電可能な特性を有することが望まれている。
On the other hand, in recent years, there has been a demand for a portable information device to be smaller and lighter and extend the usable time, and by reducing the operating voltage of the device and reducing power consumption, It responds to these conflicting requirements. 2. Description of the Related Art Conventionally, the charge / discharge voltage of a battery used as various power supplies of the above-mentioned device is determined by the operating voltage of a semiconductor element mounted on the device.
Since it is about 3V, it was set to 3V or more.
However, with the improvement of semiconductor devices used in equipment,
The operating voltage has dropped to about 2.6V, and has recently been set to 2V or less. For this reason, it is desired that batteries used in these devices also have a characteristic that can be charged even at a voltage of 2 V or less in response to a decrease in the operating voltage of the element.

【0004】このようなことを考慮して、酸化ニオブを
正極活物質に用いた電池が提案されている(例えば、特
開2000−133313号公報参照)。しかしなが
ら、酸化ニオブを正極活物質に用いた場合には、二酸化
マンガンを正極活物質として用いた場合に比べて、電池
の内部抵抗が高くなる。加えて、電池が高温にさらされ
た場合、酸化ニオブと電解液とが反応して、二酸化炭素
ガスが発生して漏液等が生じるという課題もある。
[0004] In consideration of the above, a battery using niobium oxide as a positive electrode active material has been proposed (for example, see Japanese Patent Application Laid-Open No. 2000-133313). However, when niobium oxide is used as the positive electrode active material, the internal resistance of the battery becomes higher than when manganese dioxide is used as the positive electrode active material. In addition, when the battery is exposed to a high temperature, there is a problem that the niobium oxide reacts with the electrolytic solution to generate carbon dioxide gas and cause a liquid leakage or the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来の
課題を考慮してなされたものであって、その目的とする
ところは、電池の内部抵抗が高くなるのを抑制し、且つ
電池が高温にさらされた場合であっても、酸化ニオブと
電解液とが反応するのを抑制して、二酸化炭素ガスの発
生に起因する漏液等を防止することができる非水系電解
液電池及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned conventional problems, and has as its object to suppress the internal resistance of a battery from becoming high, A non-aqueous electrolyte battery capable of suppressing reaction between niobium oxide and an electrolyte even when exposed to high temperatures and preventing liquid leakage and the like caused by generation of carbon dioxide gas, and a non-aqueous electrolyte battery therefor. It is to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解液電池は、リチウムを挿入離
脱可能な化合物を正極活物質とする正極と、リチウムを
挿入離脱可能な材料を負極活物質とする負極と、非水電
解液と、を有する非水系電解液電池において、上記正極
活物質として、酸化ニオブと酸化ホウ素とが含有された
ものを用いることを特徴とする。上記構成であれば、内
部抵抗が低くなり、且つ電池が高温にさらされた場合で
あっても、二酸化炭素ガスが発生するのを抑制すること
ができる。
A non-aqueous electrolyte battery according to the present invention for achieving the above object comprises a positive electrode using a compound capable of inserting and removing lithium as a positive electrode active material, and a material capable of inserting and removing lithium. In a non-aqueous electrolyte battery having a negative electrode having a negative electrode active material and a non-aqueous electrolyte, a battery containing niobium oxide and boron oxide is used as the positive electrode active material. According to the above configuration, even when the internal resistance is low and the battery is exposed to a high temperature, generation of carbon dioxide gas can be suppressed.

【0007】電池の内部抵抗が低くなる理由は定かでは
ないが、酸化ニオブの粒径は二酸化マンガンの粒径より
も小さく、しかも正極活物質として、酸化ニオブと酸化
ホウ素とが含有されたものを用いれば、酸化ニオブの表
面に、ある程度酸化ホウ素が存在する。これらのことか
ら、酸化ニオブ粒子同士が隣接し易くなり、且つ酸化ニ
オブの表面に存在する酸化ホウ素が電解液の溶媒を含む
ことにより導電性被膜として作用するという理由による
ものと考えられる。また、二酸化炭素ガスが発生するの
を抑制することができる理由は、上記の如く、酸化ニオ
ブの表面に、ある程度酸化ホウ素が存在し、酸化ニオブ
の表面の一部を酸化ホウ素が覆っているので、酸化ニオ
ブと電解液とが接触する面積が減少し、電解液との副反
応が抑制されるという理由によるものと考えられる。
It is not clear why the internal resistance of the battery is low, but it is necessary to use niobium oxide having a particle size smaller than that of manganese dioxide and containing niobium oxide and boron oxide as a positive electrode active material. If used, boron oxide is present to some extent on the surface of niobium oxide. From these facts, it is considered that niobium oxide particles are likely to be adjacent to each other, and that the boron oxide present on the surface of the niobium oxide acts as a conductive film by containing the solvent of the electrolytic solution. Further, the reason why the generation of carbon dioxide gas can be suppressed is that, as described above, the surface of niobium oxide contains boron oxide to some extent, and a part of the surface of niobium oxide is covered with boron oxide. It is considered that this is because the area where the niobium oxide comes into contact with the electrolytic solution is reduced, and the side reaction with the electrolytic solution is suppressed.

【0008】ここで、特開平9−129228号公報で
は二酸化マンガンを酸化ホウ素で被覆したものが、特開
平9−265984号公報ではLiMnO2 の粒子表面
をホウ素で被覆したものが、特許3044812号公報
ではLiCoO2 の表面をホウ素で被覆したものが、そ
れぞれ提案されている。しかし、これらの先行技術で
は、酸化ホウ素(ホウ素)の量が多くなると、実用上使
用できないほど電池容量が小さくなるのに対して、本発
明の構成であれば、酸化ホウ素(ホウ素)の量がある程
度多くなっても、電池容量が小さくなることを抑制する
ことができるという利点がある。尚、このことは、下記
請求項3により明らかである。
Japanese Patent Application Laid-Open No. 9-129228 discloses a method in which manganese dioxide is coated with boron oxide, and Japanese Patent Application Laid-Open No. 9-265988 discloses a method in which the surface of LiMnO 2 particles is coated with boron. In this document, LiCoO 2 having a surface coated with boron has been proposed. However, in these prior arts, when the amount of boron oxide (boron) is large, the battery capacity is so small that it cannot be practically used, whereas in the configuration of the present invention, the amount of boron oxide (boron) is small. There is an advantage that even if the battery capacity is increased to some extent, the battery capacity can be prevented from being reduced. This is apparent from claim 3 below.

【0009】また、請求項2記載の発明は請求項1記載
の発明において、上記正極活物質は、上記酸化ホウ素が
溶解して上記酸化ニオブ表面に付着していることを特徴
とする。上記構成の如く、酸化ホウ素が溶解して上記酸
化ニオブ表面に付着していれば、両者間の付着力が大き
くなるので、請求項1に記載した効果が一層発揮され
る。
A second aspect of the present invention is characterized in that, in the first aspect of the present invention, the positive electrode active material dissolves the boron oxide and adheres to the niobium oxide surface. If the boron oxide dissolves and adheres to the niobium oxide surface as in the above configuration, the adhesive force between the two increases, and the effect described in claim 1 is further exhibited.

【0010】また、請求項3記載の発明は請求項1又は
2記載の発明において、ニオブに対するホウ素の原子比
が0.04以上0.38以下(特に0.12以上0.3
8以下)となるように、上記酸化ニオブに対する上記酸
化ホウ素の添加割合が規制されることを特徴とする。上
記のように規制するのは、ニオブに対するホウ素の原子
比が0.04未満になると、酸化ホウ素の添加量が少な
すぎて、電池の内部抵抗が十分に低くならず、且つ二酸
化炭素ガスが発生するのを十分に抑制することができな
い一方、ニオブに対するホウ素の原子比が0.38を越
えると、酸化ホウ素の添加量が多すぎるので(即ち、酸
化ニオブの相対的な量が減少するので)、電池容量が小
さくなるという課題を有しているからである。
[0010] The invention according to claim 3 is the invention according to claim 1 or 2, wherein the atomic ratio of boron to niobium is 0.04 or more and 0.38 or less (particularly 0.12 or more and 0.3 or less).
8 or less), the addition ratio of the boron oxide to the niobium oxide is regulated. The regulation as described above is that when the atomic ratio of boron to niobium is less than 0.04, the addition amount of boron oxide is too small, the internal resistance of the battery is not sufficiently reduced, and carbon dioxide gas is generated. On the other hand, when the atomic ratio of boron to niobium exceeds 0.38, the amount of boron oxide added is too large (that is, the relative amount of niobium oxide decreases). This is because there is a problem that the battery capacity is reduced.

【0011】また、請求項4記載の発明は請求項1〜3
記載の発明において、上記電池は、正負極及び非水電解
液の他に、外装缶、封口蓋、及びこれら外装缶と封口蓋
との間に介装されて電池を密閉する絶縁ガスケットを有
し、この絶縁ガスケットが主鎖に芳香族エーテル或いは
芳香族スルフィド又は芳香族エステル構造を有する高分
子材料から成ることを特徴とする。上記高分子材料は、
特にガスケットとして外装缶と封口蓋によりかしめられ
て圧力のかかった状態での耐熱性に優れるので、良好な
絶縁ガスケットが得られる。したがって、高温環境下に
曝して表面実装を行っようなリフロー法に適する電池が
得られる。
The invention described in claim 4 is the first to third inventions.
In the described invention, the battery, in addition to the positive and negative electrodes and the non-aqueous electrolyte, has an outer can, a sealing lid, and an insulating gasket interposed between the outer can and the sealing lid to seal the battery. The insulating gasket is made of a polymer material having an aromatic ether, aromatic sulfide, or aromatic ester structure in the main chain. The polymer material is
In particular, since the gasket is caulked by the outer can and the sealing lid and has excellent heat resistance under pressure, a good insulating gasket can be obtained. Therefore, a battery suitable for a reflow method in which surface mounting is performed by exposing to a high-temperature environment is obtained.

【0012】上記目的を達成するための本発明に係る非
水系電解液電池は、ホウ素化合物と酸化ニオブとを混合
した状態で焼成することにより正極活物質を作製するス
テップを備えた備えていることを特徴とする。上記方法
で正極活物質を作製すると、酸化ホウ素が溶解して酸化
ニオブ表面に付着する。したがって、内部抵抗が低く、
且つ高温時の二酸化炭素ガス発生量を抑制できる本発明
の非水系電解液電池を、容易に製造することができる。
また、請求項6記載の発明は請求項5記載の発明におい
て、上記ホウ素化合物は、酸化ホウソ又はホウ酸である
ことを特徴とする。
A non-aqueous electrolyte battery according to the present invention for achieving the above object has a step of producing a positive electrode active material by firing in a state where a boron compound and niobium oxide are mixed. It is characterized by. When the positive electrode active material is manufactured by the above method, boron oxide dissolves and adheres to the niobium oxide surface. Therefore, the internal resistance is low,
In addition, the nonaqueous electrolyte battery of the present invention, which can suppress the amount of carbon dioxide gas generated at high temperatures, can be easily manufactured.
The invention according to claim 6 is the invention according to claim 5, wherein the boron compound is boric oxide or boric acid.

【0013】[0013]

【発明の実施の形態】以下、発明の実施の形態について
詳細に説明するが、本発明は下記実施の形態に何ら限定
されるものではなく、その要旨を変更しない範囲におい
て適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments at all, and may be carried out with appropriate changes within the scope of the gist of the present invention. It is possible.

【0014】(正極の作製)先ず、1000℃で焼成し
た酸化ニオブ(Nb2 5 )に酸化ホウ素(B2 5
を混合した後、375℃で1時間焼成することにより、
正極活物質を作製した。この際、ニオブに対するホウ素
の原子比(以下、B/Nb比と称する)が0.20(質
量比では5wt%)となるように、上記酸化ニオブに対
して上記酸化ホウ素を添加した。次に、上記正極活物質
と、導電剤としてのアセチレンブラックと、結着剤とし
てのフッ素樹脂とを、質量比で90:5:5の割合で混
合したものを円板状に加圧成形することにより、正極を
作製した。
(Preparation of Positive Electrode) First, firing at 1000 ° C.
Niobium oxide (NbTwo0Five) With boron oxide (BTwoO Five)
Is mixed and then calcined at 375 ° C. for 1 hour,
A positive electrode active material was produced. At this time, boron to niobium
Has an atomic ratio of 0.20 (hereinafter referred to as B / Nb ratio)
(The amount ratio is 5 wt%) with respect to the niobium oxide.
Then, the above boron oxide was added. Next, the positive electrode active material
And acetylene black as a conductive agent, and as a binder
Mixed with all fluororesins at a mass ratio of 90: 5: 5.
The positive electrode is pressed by forming the combined
Produced.

【0015】(負極の作製)所定の厚みを有する金属リ
チウムの圧延板を円板状に打ち抜いて負極を作製した。
(Preparation of Negative Electrode) A rolled sheet of metallic lithium having a predetermined thickness was punched into a disk to prepare a negative electrode.

【0016】(非水電解液の調製)プロピレンカーボネ
ート(PC)と1,2−ジメトキシエタン(DME)と
の等体積混合溶媒に、LiN(CF3 SO2 2 を1M
(モル/リットル)の割合で溶かして非水電解液を調製
した。
(Preparation of Non-Aqueous Electrolyte Solution) LiN (CF 3 SO 2 ) 2 was mixed with 1 M of LiN (CF 3 SO 2 ) 2 in an equal volume mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME).
(Mol / liter) to prepare a non-aqueous electrolyte.

【0017】(電池の作製)以上の正負両極及び非水電
解液を用いて扁平型の本発明電池を作製した(電池寸
法:直径4.0mm、厚さ1.4mm)。なお、セパレ
ータとしては、ポリフェニレンサルファイド製の不織布
を使用し、これに先の非水電解液を含浸させた。
(Preparation of Battery) A flat type battery of the present invention was prepared using the above positive and negative electrodes and a non-aqueous electrolyte (battery dimensions: diameter 4.0 mm, thickness 1.4 mm). As the separator, a non-woven fabric made of polyphenylene sulfide was used, which was impregnated with the above-mentioned non-aqueous electrolyte.

【0018】図1は、作製した本発明電池を模式的に示
す断面図であり、同図に示す本発明電池は、正極1、負
極2、これら両電極1,2を互いに離間するセパレータ
3、正極缶4、負極缶5、及びポリフェニレンサルファ
イド製の絶縁パッキング6から成る。
FIG. 1 is a cross-sectional view schematically showing a manufactured battery of the present invention. The battery of the present invention shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, a separator 3 for separating these electrodes 1 and 2 from each other, It comprises a positive electrode can 4, a negative electrode can 5, and an insulating packing 6 made of polyphenylene sulfide.

【0019】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極缶
4に、また負極2は負極缶5に接続され、電池内部に生
じた化学エネルギーを正極缶4及び負極缶5の両端子か
ら電気エネルギーとして外部へ取り出し得るようになっ
ている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed with positive and negative bipolar cans 4 and 5 facing each other via a separator 3 impregnated with a non-aqueous electrolyte. The negative electrode 2 is connected to a negative electrode can 5 so that chemical energy generated inside the battery can be taken out from both terminals of the positive electrode can 4 and the negative electrode can 5 as electric energy.

【0020】ここで、絶縁パッキングとしては、上記ポ
リフェニレンサルファイドに限定するものではなく、ポ
リエーテルエーテルケトン、ポリエーテルケトン等の主
鎖に芳香族エーテル或いは芳香族スルフィド又は芳香族
エステル構造を有する高分子材料であれば良い。
Here, the insulating packing is not limited to the above-mentioned polyphenylene sulfide, but a polymer having an aromatic ether or aromatic sulfide or aromatic ester structure in the main chain such as polyetheretherketone or polyetherketone. Any material is acceptable.

【0021】また、本発明における負極としては、上記
リチウム合金の他に、金属リチウム、及び、リチウムイ
オンを吸蔵、放出し得る合金又は炭素材料を電極材料と
して用いたものが例示される。更に、電解液の溶媒とし
ては上記のものに限らず、エチレンカーボネート、ビニ
レンカーボネート、γ−ブチロラクトン、スルホラン、
3−メチルスルホラン等の高沸点有機溶媒や、これらと
ジエチルカーボネート、ジメチルカーボネート、メチル
エチルカーボネート、テトラヒドロフラン、1,2−ジ
メトキシエタン、エトキシメトキシエタン等の低粘度低
沸点有機溶媒ととの混合溶媒や、高沸点有機溶媒を2種
以上混合した混合溶媒を用いることができる。また、電
解液の電解質としては、上記LiN(CF3 SO2 2
の他、LiPF6 、LiAsF6 、LiClO4 、Li
BF4 、LiCF3 SO3 、LiN(C2 5 SO2
2 等を用いることができる。
Examples of the negative electrode in the present invention include, in addition to the above-mentioned lithium alloy, those using metal lithium and an alloy or a carbon material capable of occluding and releasing lithium ions as an electrode material. Further, the solvent of the electrolytic solution is not limited to the above, ethylene carbonate, vinylene carbonate, γ-butyrolactone, sulfolane,
A high-boiling organic solvent such as 3-methylsulfolane or a mixed solvent thereof with a low-viscosity low-boiling organic solvent such as diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-dimethoxyethane, or ethoxymethoxyethane; A mixed solvent obtained by mixing two or more kinds of high-boiling organic solvents can be used. Further, as the electrolyte of the electrolytic solution, the above-mentioned LiN (CF 3 SO 2 ) 2
, LiPF 6 , LiAsF 6 , LiClO 4 , Li
BF 4 , LiCF 3 SO 3 , LiN (C 2 F 5 SO 2 )
2 etc. can be used.

【0022】加えて、本発明はコイン型の非水系電解液
電池に限定するものではなく、その他の非水系電解液電
池にも適用しうることは勿論である。
In addition, the present invention is not limited to a coin-type non-aqueous electrolyte battery, but can be applied to other non-aqueous electrolyte batteries.

【0023】[0023]

【実施例】(実施例1)実施例としては、上記発明の実
施の形態に示す方法で作製した電池を用いた。このよう
にして作製した電池を、以下、本発明電池A1と称す
る。
EXAMPLES (Example 1) As an example, a battery manufactured by the method described in the above embodiment of the present invention was used. The battery fabricated in this manner is hereinafter referred to as Battery A1 of the invention.

【0024】(実施例2〜6)B/Nb比を、それぞ
れ、0.04(質量比では1wt%)、0.12(質量
比では3wt%)、0.29(質量比では7wt%)、
0.38(質量比では9wt%)、0.47(質量比で
は11wt%)として正極活物質を作製する以外は、実
施例1と同様にして電池を作製した。このようにして作
製した電池を、以下それぞれ、本発明電池A2〜A6と
称する。
(Examples 2 to 6) The B / Nb ratio was set to 0.04 (1 wt% in mass ratio), 0.12 (3 wt% in mass ratio), and 0.29 (7 wt% in mass ratio), respectively. ,
A battery was fabricated in the same manner as in Example 1, except that the positive electrode active material was fabricated at 0.38 (9 wt% in mass ratio) and 0.47 (11 wt% in mass ratio). The batteries fabricated in this manner are hereinafter referred to as Batteries A2 to A6 of the invention, respectively.

【0025】(比較例)正極活物質作製の際、酸化ホウ
素を添加しない以外は、実施例1と同様にして電池を作
製した。このようにして作製した電池を、以下、比較電
池Xと称する。
(Comparative Example) A battery was manufactured in the same manner as in Example 1 except that boron oxide was not added at the time of manufacturing the positive electrode active material. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X.

【0026】(実験)上記本発明電池A1〜A6及び比
較電池Xにおける放電容量と内部抵抗とを測定したの
で、その結果を表1及び図2に示す。また、これら電池
の二酸化炭素ガス発生量(CO2 発生量)を測定したの
で、その結果を表1に併せて示す(表1では、比較電池
XのCO2 発生量を100としたときの相対値で、本発
明電池A1〜A6のCO2 発生量を表している)。尚、
放電容量は、電流密度9A/m2 の定電流放電により測
定し、内部抵抗は、交流法(1kHz)で測定し、CO
2 発生量は、正極活物質とプロピレンカーボネートとを
235℃で加熱し、発生したガスをガスクロマトグラフ
ィーにより測定した。
(Experiment) The discharge capacity and internal resistance of the batteries A1 to A6 of the present invention and the comparative battery X were measured. The results are shown in Table 1 and FIG. In addition, since the amount of generated carbon dioxide gas (the amount of generated CO 2 ) of these batteries was measured, the results are also shown in Table 1 (in Table 1, the relative amount when the amount of generated CO 2 of Comparative Battery X was 100). Values represent the amount of CO 2 generated in the batteries A1 to A6 of the present invention). still,
The discharge capacity was measured by constant current discharge at a current density of 9 A / m 2 , and the internal resistance was measured by the AC method (1 kHz).
(2) The amount of generated gas was measured by heating the positive electrode active material and propylene carbonate at 235 ° C., and measuring the generated gas by gas chromatography.

【0027】[0027]

【表1】 [Table 1]

【0028】表1及び図2から明らかなように、本発明
電池A1〜A6は比較電池Xに比べて内部抵抗が減少し
ており、特に、B/Nb比が0.12以上の本発明電池
A1、A3〜A6では格段に内部抵抗が減少しているこ
とが認められる。したがって、内部抵抗を減少させると
いう点では、酸化ニオブと酸化ホウ素とを混合して焼成
した正極活物質を用いることが望ましく、特にB/Nb
比が0.12以上となるように酸化ニオブと酸化ホウ素
とを混合して焼成した正極活物質を用いることが望まし
いことが分かる。また、表1及び図2から明らかなよう
に、B/Nb比が0.38以下の本発明電池A1〜A5
は比較電池Xに比べて放電容量の減少量は少ないが、B
/Nb比が0.47の本発明電池A6は比較電池Xに比
べて放電容量の減少量が多くなっていることが認められ
る。したがって、放電容量の減少を抑制するという点で
は、B/Nb比が0.38以下となるように酸化ニオブ
と酸化ホウ素とを混合して焼成した正極活物質を用いる
ことが望ましいことが分かる。更に、表1から明らかな
ように、本発明電池A1〜A6は比較電池Xに比べて、
CO2 発生量が格段に減少していることが認められる。
したがって、CO2 発生量を減少させるという点では、
酸化ニオブと酸化ホウ素とを混合して焼成した正極活物
質を用いることが望ましいことが分かる。
As is clear from Table 1 and FIG. 2, the batteries A1 to A6 of the present invention have a lower internal resistance than the comparative battery X, and in particular, the batteries of the present invention having a B / Nb ratio of 0.12 or more. In A1, A3 to A6, it is recognized that the internal resistance is significantly reduced. Therefore, from the viewpoint of reducing the internal resistance, it is desirable to use a positive electrode active material obtained by mixing niobium oxide and boron oxide and firing the mixture. In particular, B / Nb
It can be seen that it is desirable to use a positive electrode active material obtained by mixing and firing niobium oxide and boron oxide so that the ratio becomes 0.12 or more. In addition, as is clear from Table 1 and FIG. 2, the batteries A1 to A5 of the present invention having a B / Nb ratio of 0.38 or less.
Is smaller than the comparative battery X in the discharge capacity, but B
It can be seen that the battery A6 of the present invention having the / Nb ratio of 0.47 had a larger decrease in the discharge capacity than the comparative battery X. Therefore, from the viewpoint of suppressing a decrease in the discharge capacity, it is understood that it is desirable to use a positive electrode active material obtained by mixing and firing niobium oxide and boron oxide so that the B / Nb ratio becomes 0.38 or less. Furthermore, as is clear from Table 1, the batteries A1 to A6 of the present invention were compared with the comparative battery X,
It is recognized that the amount of generated CO 2 has been significantly reduced.
Therefore, in terms of reducing the amount of CO 2 generated,
It can be seen that it is desirable to use a positive electrode active material obtained by mixing and firing niobium oxide and boron oxide.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
電池の内部抵抗が高くなるのを抑制し、且つ電池が高温
にさらされた場合であっても、酸化ニオブと電解液とが
反応するのを抑制して、二酸化炭素ガスの発生に起因す
る漏液等を防止することができるといった優れた効果を
奏する。
As described above, according to the present invention,
It suppresses the internal resistance of the battery from becoming high and suppresses the reaction between the niobium oxide and the electrolyte even when the battery is exposed to a high temperature, thereby preventing leakage caused by the generation of carbon dioxide gas. It has an excellent effect of preventing liquid and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の半断面図である。FIG. 1 is a half sectional view of a battery of the present invention.

【図2】B/Nb比と放電容量及び内部抵抗との関係を
示すグラフである。
FIG. 2 is a graph showing a relationship between a B / Nb ratio and a discharge capacity and an internal resistance.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶(外装缶) 5 負極缶(封口蓋) 6 絶縁パッキング Reference Signs List 1 positive electrode 2 negative electrode 3 separator 4 positive electrode can (exterior can) 5 negative electrode can (sealing lid) 6 insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西口 信博 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 稲嶺 正一 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 喜田 勝之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 南田 善隆 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 今西 雅弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H011 AA17 GG02 HH02 5H029 AJ06 AJ07 AJ15 AK02 AK18 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ02 CJ08 DJ03 EJ12 HJ02 5H050 AA12 AA13 AA20 BA16 BA17 CA02 CA29 CB07 CB12 FA02 GA02 GA10 HA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Nobuhiro Nishiguchi 2-5-1-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Shoichi Inamine 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd. (72) Katsuyuki Kida 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Yoshitaka Minamida Yoshitaka Minamida Keihanhondori, Moriguchi, Osaka 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Masahiro Imanishi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term (reference) 5H011 AA17 GG02 HH02 5H029 AJ06 AJ07 AJ15 AK02 AK18 AM03 AM04 AM05 AM07 BJ03 BJ12 CJ02 CJ08 DJ03 EJ12 HJ02 5H050 AA12 AA13 AA20 BA16 BA17 CA02 CA29 CB07 CB12 FA02 GA02 GA10 HA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを挿入離脱可能な化合物を正極
活物質とする正極と、リチウムを挿入離脱可能な材料を
負極活物質とする負極と、非水電解液と、を有する非水
系電解液電池において、 上記正極活物質として、酸化ニオブと酸化ホウ素とが含
有されたものを用いることを特徴とする非水系電解液電
池。
1. A non-aqueous electrolyte battery comprising: a positive electrode using a compound capable of inserting and removing lithium as a positive electrode active material; a negative electrode using a material capable of inserting and removing lithium as a negative electrode active material; and a non-aqueous electrolyte 3. The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode active material contains niobium oxide and boron oxide.
【請求項2】 上記正極活物質は、上記酸化ホウ素が溶
解して上記酸化ニオブ表面に付着している、請求項1記
載の非水系電解液電池。
2. The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode active material dissolves the boron oxide and adheres to the surface of the niobium oxide.
【請求項3】 ニオブに対するホウ素の原子比が0.0
4以上0.38以下(特に0.12以上0.38以下)
となるように、上記酸化ニオブに対する上記酸化ホウ素
の添加割合が規制される、請求項1又は2記載の非水系
電解液電池。
3. An atomic ratio of boron to niobium of 0.0
4 or more and 0.38 or less (especially 0.12 or more and 0.38 or less)
3. The nonaqueous electrolyte battery according to claim 1, wherein the addition ratio of the boron oxide to the niobium oxide is regulated such that
【請求項4】 上記電池は、正負極及び非水電解液の他
に、外装缶、封口蓋、及びこれら外装缶と封口蓋との間
に介装されて電池を密閉する絶縁ガスケットを有し、こ
の絶縁ガスケットが主鎖に芳香族エーテル或いは芳香族
スルフィド又は芳香族エステル構造を有する高分子材料
から成る、請求項1〜3記載の非水系電解液電池。
4. The battery has an outer can, a sealing lid, and an insulating gasket interposed between the outer can and the sealing lid to seal the battery in addition to the positive and negative electrodes and the non-aqueous electrolyte. 4. The non-aqueous electrolyte battery according to claim 1, wherein said insulating gasket is made of a polymer material having an aromatic ether, aromatic sulfide, or aromatic ester structure in a main chain.
【請求項5】 ホウ素化合物と酸化ニオブとを混合した
状態で焼成することにより正極活物質を作製するステッ
プを備えていることを特徴とする非水系電解液電池の製
造方法。
5. A method for producing a non-aqueous electrolyte battery, comprising a step of producing a positive electrode active material by firing a mixture of a boron compound and niobium oxide.
【請求項6】 上記ホウ素化合物は、酸化ホウ素又はホ
ウ酸である、請求項5記載の非水系電解液電池の製造方
法。
6. The method for producing a non-aqueous electrolyte battery according to claim 5, wherein the boron compound is boron oxide or boric acid.
JP2000398683A 2000-12-27 2000-12-27 Non-aqueous electrolytic solution battery and its manufacturing method Pending JP2002203545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398683A JP2002203545A (en) 2000-12-27 2000-12-27 Non-aqueous electrolytic solution battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398683A JP2002203545A (en) 2000-12-27 2000-12-27 Non-aqueous electrolytic solution battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002203545A true JP2002203545A (en) 2002-07-19

Family

ID=18863600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398683A Pending JP2002203545A (en) 2000-12-27 2000-12-27 Non-aqueous electrolytic solution battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002203545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603678B2 (en) 2007-03-05 2013-12-10 Sanyo Electric Co., Ltd. Active material containing niobium compound for use in nonaqueous electrolyte battery and nonaqueous electrolyte battery with positive electrode containing the active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603678B2 (en) 2007-03-05 2013-12-10 Sanyo Electric Co., Ltd. Active material containing niobium compound for use in nonaqueous electrolyte battery and nonaqueous electrolyte battery with positive electrode containing the active material

Similar Documents

Publication Publication Date Title
JP4625733B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP4056346B2 (en) Nonaqueous electrolyte secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
JP2009021134A (en) Nonaqueous electrolyte battery and battery pack
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JPH09171813A (en) Nonaqueous electrolyte battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2004030991A (en) Nonaqueous electrolyte secondary battery
JP2000251932A (en) Nonaqueous electrolyte battery
JP4739780B2 (en) Non-aqueous electrolyte battery
JP2001250543A (en) Lithium secondary battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP3419119B2 (en) Non-aqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP2008243659A (en) Nonaqueous electrolyte battery
US8603678B2 (en) Active material containing niobium compound for use in nonaqueous electrolyte battery and nonaqueous electrolyte battery with positive electrode containing the active material
WO2005027254A1 (en) Nonaqueous electrolyte containing capacity enhancing additive of lithium ion cell and lithium ion cell employing it
JP2001357838A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4836479B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP5036204B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2007220455A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714