JP2002195685A - Dual heat-sources heat pump apparatus - Google Patents

Dual heat-sources heat pump apparatus

Info

Publication number
JP2002195685A
JP2002195685A JP2000396522A JP2000396522A JP2002195685A JP 2002195685 A JP2002195685 A JP 2002195685A JP 2000396522 A JP2000396522 A JP 2000396522A JP 2000396522 A JP2000396522 A JP 2000396522A JP 2002195685 A JP2002195685 A JP 2002195685A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
liquid
load
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000396522A
Other languages
Japanese (ja)
Inventor
Yasuo Uchikawa
靖夫 内川
Masafumi Inoue
雅史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000396522A priority Critical patent/JP2002195685A/en
Publication of JP2002195685A publication Critical patent/JP2002195685A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively reduce the cost of a dual heat sources heat pump, while maintaining high functions. SOLUTION: A refrigerant circuit is adapted, such that there are selectively executed a load refrigerant circulation operation, where a refrigerant R is circulated, in the order of a compressor 1 counter a to-load heat exchanger 4 to an expansion valve mechanism 7 to an against air heat exchanger 2 to a counter fluid heat exchanger 3 to the compressor 1, and a defrosting refrigerant circulation operation where the refrigerant R is circulated, in the order of the compressor 1 air heat exchanger 2 to expansion valve mechanism 7 to counter-load heat exchanger 4 to-fluid heat exchanger 3 to compressor 1, with the aid of changeover of a refrigerant passage by one four-way valve mechanism Vx. Mode changeover means 10 is provided, in which selective changeover of first to sixth modes is executed, in response to a command with the aid of changeover of the four-way valve mechanism Vx, and start and stop of an air feed machine 2a for the to-air heat exchanger 2, a fluid feed machine P1 for the to-fluid heat exchanger 3, and a load side feed machine P2 for the to-load heat exchanger 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気と液(代表的に
は水)を採熱源として温熱発生する2熱源ヒートポンプ
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-source heat pump apparatus that generates heat using air and a liquid (typically, water) as heat sources.

【0002】[0002]

【従来の技術】この種の2熱源ヒートポンプ装置として
は、図8に示す如く、3個の四方弁V1〜V3と1個の
開閉弁SVとによる冷媒経路の切り換えで、次の(イ)
〜(ヘ)の6つの運転モードの選択実施を可能にしたも
のがある。
2. Description of the Related Art As shown in FIG. 8, this type of two-heat-source heat pump apparatus switches the refrigerant path by three four-way valves V1 to V3 and a single on-off valve SV.
There is one that allows the selection and execution of the six operation modes (f) to (f).

【0003】(イ)単独液熱源―負荷対応運転:対空気
熱交換器2に対する冷媒供給を停止した状態で、対負荷
熱交換器4を凝縮器として機能させるとともに、対液熱
交換器3を蒸発器として機能させ、これにより、熱源液
Lからのみ採熱して対負荷熱交換器4に温熱発生させ
る。 (ロ)2熱源―負荷対応運転:対負荷熱交換器4を凝縮
器として機能させるとともに、対液熱交換器3及び対空
気熱交換器2を蒸発器として機能させ、これにより、熱
源液Lと熱源空気Aとの両方から採熱して対負荷熱交換
器4に温熱発生させる。 (ハ)単独空気熱源―負荷対応運転:対液熱交換器3に
対する冷媒供給を停止した状態で、対負荷熱交換器4を
凝縮器として機能させるとともに、対空気熱交換器2を
蒸発器として機能させ、これにより、熱源空気Aからの
み採熱して対負荷熱交換器4に温熱発生させる。 (ニ)単独液熱源―除霜運転:対負荷熱交換器4に対す
る冷媒供給を停止した状態で、対空気熱交換器2を凝縮
器として機能させるとともに、対液熱交換器3を蒸発器
として機能させ、これにより、熱源液Lからのみ採熱し
て対空気熱交換器2に温熱発生させる形態で、対空気熱
交換器2の除霜を行なう。 (ホ)2熱源―除霜運転:対空気熱交換器2を凝縮器と
して機能させるとともに、対液熱交換器3及び対負荷熱
交換器4を蒸発器として機能させ、これにより、熱源液
L及び負荷側(すなわち、対負荷熱交換器4で冷媒と熱
交換させる負荷側熱媒M)から採熱して対空気熱交換器
2に温熱発生させる形態で、対空気熱交換器2の除霜を
行なう。 (ヘ)単独負荷側熱源―除霜運転:対液熱交換器3に対
する冷媒供給を停止した状態で、対空気熱交換器2を凝
縮器として機能させるとともに、対負荷熱交換器4を蒸
発器として機能させ、これにより、負荷側からのみ採熱
して対空気熱交換器2に温熱発生させる形態で、対空気
熱交換器2の除霜を行なう。
(A) Single liquid heat source-load operation: With the refrigerant supply to the air heat exchanger 2 stopped, the load heat exchanger 4 functions as a condenser and the liquid heat exchanger 3 is operated. By functioning as an evaporator, heat is taken only from the heat source liquid L and heat is generated in the heat exchanger 4 for load. (B) 2 heat source-load operation: the heat exchanger for load 4 functions as a condenser, and the heat exchanger for liquid 3 and the heat exchanger for air 2 function as an evaporator. And heat from the heat source air A to generate heat in the load heat exchanger 4. (C) Single air heat source-load operation: With the refrigerant supply to the liquid heat exchanger 3 stopped, the load heat exchanger 4 functions as a condenser, and the air heat exchanger 2 functions as an evaporator. The heat is taken only from the heat source air A to generate heat in the heat exchanger 4 for load. (D) Single liquid heat source-defrosting operation: With the refrigerant supply to the load heat exchanger 4 stopped, the air heat exchanger 2 functions as a condenser, and the liquid heat exchanger 3 functions as an evaporator. The defrosting of the air heat exchanger 2 is performed in such a manner that heat is taken only from the heat source liquid L to generate heat in the air heat exchanger 2. (E) 2 heat sources—defrosting operation: the air heat exchanger 2 functions as a condenser, and the liquid heat exchanger 3 and the load heat exchanger 4 function as an evaporator. And defrosting the air heat exchanger 2 by collecting heat from the load side (that is, the load side heat medium M for exchanging heat with the refrigerant in the load heat exchanger 4) and generating heat in the air heat exchanger 2. Perform (F) Single load side heat source-defrosting operation: With the refrigerant supply to the liquid heat exchanger 3 stopped, the air heat exchanger 2 functions as a condenser, and the load heat exchanger 4 functions as an evaporator. As a result, the air-to-air heat exchanger 2 is defrosted in such a manner that heat is collected only from the load side and heat is generated in the air-to-air heat exchanger 2.

【0004】なお、図8において、1は圧縮機、evは
膨張弁、5はレシーバ、6は逆止弁をブリッジ回路状に
組み合わせた冷媒案内回路である。
In FIG. 8, reference numeral 1 denotes a compressor, ev denotes an expansion valve, 5 denotes a receiver, and 6 denotes a refrigerant guide circuit in which a check valve is combined in a bridge circuit.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の2熱源
ヒートポンプ装置では、高価な四方弁V1〜V3の必要
数が多い為、また、それに伴い弁に対する制御構成も複
雑になる為、装置コストが高くつき、この点、高い機能
性を備えながらも一層の低コスト化が要求される近年の
状況に即する上で、未だ改善の余地があった。
However, in the above-mentioned two-heat-source heat pump device, the required number of expensive four-way valves V1 to V3 is large, and the control structure for the valves is complicated. In this regard, there is still room for improvement in this regard, in view of the recent situation in which further cost reduction is required while having high functionality.

【0006】この実情に鑑み、本発明の主たる課題は、
合理的な装置構成を採ることにより、高い機能性を確保
しながら装置コストの効果的な低減を可能にし、また、
極力高い運転効率を確保できるようにする点にある。
In view of this situation, the main problems of the present invention are:
By adopting a rational device configuration, it is possible to effectively reduce device costs while ensuring high functionality.
The point is to ensure the highest possible operating efficiency.

【0007】[0007]

【課題を解決するための手段】〔1〕請求項1に係る発
明の特徴は、空気送給機により送給される熱源空気を冷
媒と熱交換させる対空気熱交換器と、液送給機により送
給される熱源液を冷媒と熱交換させる対液熱交換器と、
負荷側送給機により送給される負荷側熱媒を冷媒と熱交
換させる対負荷熱交換器とを設け、1つの四方弁機構に
よる冷媒経路の切り換えで、冷媒を圧縮機―対負荷熱交
換器―膨張弁機構―対空気熱交換器―対液熱交換器―圧
縮機の順に循環させる負荷用冷媒循環運転と、冷媒を圧
縮機―対空気熱交換器―膨張弁機構―対負荷熱交換器―
対液熱交換器―圧縮機の順に循環させる除霜用冷媒循環
運転とを択一的に実施する冷媒回路構成にし、指令に応
じて次の第1〜第6モードの択一的な切り換え、つま
り、四方弁機構を負荷用冷媒循環運転の側に切り換え、
かつ、空気送給機を停止した状態で、液送給機及び負荷
側送給機を運転する第1モードと、四方弁機構を負荷用
冷媒循環運転の側に切り換えた状態で、空気送給機、液
送給機及び負荷側送給機を運転する第2モードと、四方
弁機構を負荷用冷媒循環運転の側に切り換え、かつ、液
送給機を停止した状態で、空気送給機及び負荷側送給機
を運転する第3モードと、四方弁機構を除霜用冷媒循環
運転の側に切り換え、かつ、負荷側送給機を停止した状
態で、液送給機を運転する第4モードと、四方弁機構を
除霜用冷媒循環運転の側に切り換えた状態で、負荷側送
給機及び液送給機を運転する第5モードと、四方弁機構
を除霜用冷媒循環運転の側に切り換え、かつ、液送給機
を停止した状態で、負荷側送給機を運転する第6モード
との択一的な切り換えを行なうモード切換手段を設けて
ある点にある。
Means for Solving the Problems [1] A feature of the invention according to claim 1 is that an air heat exchanger for exchanging heat source air supplied by an air supply device with a refrigerant, and a liquid supply device A liquid heat exchanger that exchanges heat with the refrigerant for the heat source liquid sent by the
A load heat exchanger for exchanging heat between the load-side heat medium supplied by the load-side feeder and the refrigerant is provided. By switching the refrigerant path by one four-way valve mechanism, the refrigerant is exchanged between the compressor and the load. -Expansion valve mechanism -Air heat exchanger -Liquid heat exchanger -Load refrigerant circulation operation to circulate in the order of compressor and refrigerant to compressor -Air heat exchanger -Expansion valve mechanism -Load heat exchange vessel-
The liquid circuit heat exchanger-a refrigerant circuit configuration for selectively performing a defrosting refrigerant circulation operation of circulating in the order of the compressor, and selectively switching the following first to sixth modes according to a command, That is, the four-way valve mechanism is switched to the load refrigerant circulation operation side,
In the first mode in which the liquid feeder and the load side feeder are operated with the air feeder stopped, and in the state in which the four-way valve mechanism is switched to the load refrigerant circulation operation side, the air supply is performed. Mode, in which the compressor, the liquid feeder and the load side feeder are operated, and the four-way valve mechanism is switched to the load refrigerant circulation operation, and the air feeder is stopped in a state where the liquid feeder is stopped. And a third mode for operating the load-side feeder, and a third mode for operating the liquid feeder with the four-way valve mechanism switched to the side of the defrosting refrigerant circulation operation and the load-side feeder stopped. Fourth mode, a fifth mode in which the load side feeder and the liquid feeder are operated with the four-way valve mechanism switched to the side of the defrosting refrigerant circulation operation, and a fourth mode in which the four-way valve mechanism operates the defrosting refrigerant circulation operation And the sixth mode of operating the load side feeder while the liquid feeder is stopped. Lies in is provided with mode switching means for example.

【0008】つまり、この構成によれば、上記第1〜第
6モードの択一的な切り換えにより次の如き運転を選択
的に実施することができる。
That is, according to this configuration, the following operation can be selectively performed by selectively switching the first to sixth modes.

【0009】第1モードでは、冷媒を圧縮機―対負荷熱
交換器―膨張弁機構―対空気熱交換器―対液熱交換器―
圧縮機の順に循環させる負荷用冷媒循環運転の下で、対
空気熱交換器について空気送給機の停止により熱源空気
の送給を停止することで、熱源空気からの採熱(気化熱
奪取)による対空気熱交換器での冷媒蒸発を不能にし、
これにより、低圧側(膨張弁機構の下流側)に位置する
対空気熱交換器の蒸発器として機能を実質的に休止させ
る。
In the first mode, the refrigerant is supplied to the compressor, the load heat exchanger, the expansion valve mechanism, the air heat exchanger, and the liquid heat exchanger.
Under the load refrigerant circulation operation in which the compressor is circulated in order, the heat source air is stopped by stopping the air feeder for the air heat exchanger, thereby collecting heat from the heat source air (capturing vaporized heat). Disabling refrigerant evaporation in the air heat exchanger,
Thereby, the function as the evaporator of the air heat exchanger located on the low pressure side (downstream of the expansion valve mechanism) is substantially stopped.

【0010】一方、対液熱交換器については、低圧側に
位置する対液熱交換器に対し液送給機の運転により熱源
液を送給することで、その熱源液からの採熱による対液
熱交換器での冷媒蒸発を許すようにし、これにより、対
液熱交換器を蒸発器として機能させる。
On the other hand, with respect to the liquid heat exchanger, the heat source liquid is supplied to the liquid heat exchanger located on the low pressure side by operating the liquid feeder, so that the heat from the heat source liquid is collected. Evaporation of the refrigerant in the liquid heat exchanger is allowed, whereby the liquid heat exchanger functions as an evaporator.

【0011】また、高圧側(膨張弁機構の上流側)に位
置する対負荷熱交換器については、負荷側送給機の運転
により負荷側熱媒を送給することで、その負荷側熱媒へ
の放熱(すなわち、負荷側熱媒の加熱)による対負荷熱
交換器での冷媒凝縮を許すようにし、これにより、対負
荷熱交換器を凝縮器として機能させる。
[0011] In addition, for the heat exchanger for load located on the high pressure side (upstream of the expansion valve mechanism), the heat medium on the load side is fed by the operation of the load-side feeder, so that the heat medium on the load side is loaded. The refrigerant condensed in the heat exchanger against load due to heat release to the heat exchanger (that is, the heating of the heat medium on the load side) is allowed to function as a condenser.

【0012】すなわち、第1モードでは、このように対
空気熱交換器の蒸発器としての機能を休止させた状態
で、対液熱交換器を蒸発器として機能させながら、対負
荷熱交換器を凝縮器として機能させることにより、熱源
液からのみ採熱して対負荷熱交換器に温熱発生させる運
転状態(すなわち、先述(イ)の単独液熱源―負荷対応
運転に相当する運転状態)を得る。
In other words, in the first mode, while the function of the air heat exchanger as an evaporator is stopped, the liquid heat exchanger functions as an evaporator while the load heat exchanger is operated. By functioning as a condenser, an operation state in which heat is taken only from the heat source liquid and heat is generated in the load heat exchanger (that is, an operation state corresponding to the single liquid heat source-load correspondence operation described in (a) above) is obtained.

【0013】第2モードでは、冷媒を圧縮機―対負荷熱
交換器―膨張弁機構―対空気熱交換器―対液熱交換器―
圧縮機の順に循環させる負荷用冷媒循環運転の下で、低
圧側に位置する対空気熱交換器及び対液熱交換器の各々
に対し空気送給機及び液送給機の運転により熱源空気及
び熱源液を送給することで、その熱源空気からの採熱に
よる対空気熱交換器での冷媒蒸発、及び、その熱源液か
らの採熱による対液熱交換器での冷媒蒸発を許すように
し、これにより、対空気熱交換器及び対液熱交換器を蒸
発器として機能させる。
In the second mode, the refrigerant is supplied to the compressor, the load heat exchanger, the expansion valve mechanism, the air heat exchanger, and the liquid heat exchanger.
Under the load refrigerant circulation operation of circulating in the order of the compressor, the heat source air and the liquid feeder are operated by operating the air feeder and the liquid feeder for each of the air heat exchanger and the liquid heat exchanger located on the low pressure side. By supplying the heat source liquid, the evaporation of the refrigerant in the air heat exchanger by collecting heat from the heat source air and the refrigerant evaporation in the liquid heat exchanger by collecting heat from the heat source liquid are allowed. Thereby, the air heat exchanger and the liquid heat exchanger function as an evaporator.

【0014】また、高圧側に位置する対負荷熱交換器に
ついては、第1モードと同様、負荷側送給機の運転によ
り負荷側熱媒を送給することで、その負荷側熱媒への放
熱による対負荷熱交換器での冷媒凝縮を許すようにし、
これにより、対負荷熱交換器を凝縮器として機能させ
る。
As for the load heat exchanger located on the high pressure side, the load side heat medium is fed by the operation of the load side feeder as in the first mode, so that the load side heat medium is supplied to the load side heat medium. To allow refrigerant condensation in the heat exchanger against load due to heat release,
This allows the heat exchanger for load to function as a condenser.

【0015】すなわち、第2モードでは、このように対
空気熱交換器及び対液熱交換器を蒸発器として機能させ
ながら、対負荷熱交換器を凝縮器として機能させること
により、熱源空気と熱源液との両方から採熱して対負荷
熱交換器に温熱発生させる運転状態(すなわち、先述
(ロ)の2熱源―負荷対応運転に相当する運転状態)を
得る。
That is, in the second mode, the heat source air and the heat source are caused by causing the heat exchanger for load to function as a condenser while the heat exchanger for air and the liquid heat exchanger function as an evaporator. An operation state in which heat is taken from both the liquid and the heat generated by the heat exchanger for load (that is, an operation state corresponding to the operation corresponding to the two heat sources and the load described in (b) above) is obtained.

【0016】第3モードでは、冷媒を圧縮機―対負荷熱
交換器―膨張弁機構―対空気熱交換器―対液熱交換器―
圧縮機の順に循環させる負荷用冷媒循環運転の下で、対
液熱交換器について液送給機の停止により熱源液の送給
を停止することで、熱源液からの採熱による対液熱交換
器での冷媒蒸発を不能にし、これにより、低圧側に位置
する対液熱交換器の蒸発器として機能を実質的に休止さ
せる。
In the third mode, the refrigerant is supplied to the compressor, the load heat exchanger, the expansion valve mechanism, the air heat exchanger, and the liquid heat exchanger.
Under the load refrigerant circulation operation in which the compressor is circulated in order, the liquid heat exchanger is stopped to stop the supply of the heat source liquid by stopping the liquid feeder, so that the liquid heat exchange by the heat collection from the heat source liquid is stopped. The vaporization of the refrigerant in the heat exchanger is disabled, thereby substantially stopping the function as the evaporator of the liquid heat exchanger located on the low pressure side.

【0017】一方、対空気熱交換器については、低圧側
に位置する対空気熱交換器に対し空気送給機の運転によ
り熱源空気を送給することで、その熱源空気からの採熱
による対空気熱交換器での冷媒蒸発を許すようにし、こ
れにより、対空気熱交換器を蒸発器として機能させる。
On the other hand, as for the air heat exchanger, the heat source air is supplied to the air heat exchanger located on the low pressure side by operating the air feeder, so that the heat from the heat source air is collected. The refrigerant is allowed to evaporate in the air heat exchanger, whereby the air heat exchanger functions as an evaporator.

【0018】また、高圧側に位置する対負荷熱交換器に
ついては、第1,第2モードと同様、負荷側送給機の運
転により負荷側熱媒を送給することで、その負荷側熱媒
への放熱による対負荷熱交換器での冷媒凝縮を許すよう
にし、これにより、対負荷熱交換器を凝縮器として機能
させる。
As for the load heat exchanger located on the high pressure side, the load side heat medium is fed by the operation of the load side feeder as in the first and second modes, so that the load side heat exchanger is operated. The refrigerant is allowed to condense in the heat exchanger against load due to heat release to the medium, whereby the heat exchanger against load functions as a condenser.

【0019】すなわち、第3モードでは、このように対
液熱交換器の蒸発器としての機能を休止させた状態で、
対空気熱交換器を蒸発器として機能させながら、対負荷
熱交換器を凝縮器として機能させることにより、熱源空
気からのみ採熱して対負荷熱交換器に温熱発生させる運
転状態(すなわち、先述(ハ)の単独空気熱源―負荷対
応運転に相当する運転状態)を得る。
That is, in the third mode, while the function of the liquid heat exchanger as the evaporator is stopped,
By operating the anti-load heat exchanger as a condenser while operating the anti-air heat exchanger as an evaporator, an operation state in which heat is taken only from the heat source air and heat is generated in the anti-load heat exchanger (that is, C) Single air heat source-operating state equivalent to load-compatible operation).

【0020】第4モードでは、冷媒を圧縮機―対空気熱
交換器―膨張弁機構―対負荷熱交換器―対液熱交換器―
圧縮機の順に循環させる除霜用冷媒循環運転の下で、対
負荷熱交換器について負荷側送給機の停止により負荷側
熱媒の送給を停止することで、負荷側熱媒からの採熱に
よる対負荷熱交換器での冷媒蒸発を不能にし、これによ
り、低圧側に位置する対負荷熱交換器の蒸発器として機
能を実質的に休止させる。
In the fourth mode, the refrigerant is supplied to the compressor-air heat exchanger-expansion valve mechanism-load heat exchanger-liquid heat exchanger-
Under the defrosting refrigerant circulating operation of circulating in the order of the compressor, the supply of the load-side heat medium is stopped by stopping the load-side feeder for the heat exchanger to load, thereby collecting the load-side heat medium. Disabling the refrigerant from evaporating in the heat-to-load heat exchanger due to heat, thereby substantially halting the function as the evaporator of the heat-to-load heat exchanger located on the low pressure side.

【0021】一方、対液熱交換器については、低圧側に
位置する対液熱交換器に対し液送給機の運転により熱源
液を送給することで、その熱源液からの採熱による対液
熱交換器での冷媒蒸発を許すようにし、これにより、対
液熱交換器を蒸発器として機能させる。
On the other hand, with respect to the liquid heat exchanger, the heat source liquid is supplied to the liquid heat exchanger located on the low pressure side by operating the liquid feeder, so that the heat from the heat source liquid is collected. Evaporation of the refrigerant in the liquid heat exchanger is allowed, whereby the liquid heat exchanger functions as an evaporator.

【0022】また、高圧側に位置する対空気熱交換器に
ついては、対空気熱交換器が霜付き状態にあることに対
し、その霜への放熱を主として対空気熱交換器で冷媒凝
縮させる形態で、対空気熱交換器を凝縮器として機能さ
せる。
In the air heat exchanger located on the high pressure side, while the air heat exchanger is in a frosted state, heat is radiated to the frost mainly by condensing the refrigerant in the air heat exchanger. Thus, the air heat exchanger functions as a condenser.

【0023】すなわち、第4モードでは、このように対
負荷熱交換器の蒸発器としての機能を休止させた状態
で、対液熱交換器を蒸発器として機能させながら、対空
気熱交換器を凝縮器として機能させることにより、熱源
液からのみ採熱して対空気熱交換器に温熱発生させる形
態での除霜運転状態(すなわち、先述(ニ)の単独液熱
源―除霜運転に相当する運転状態)を得る。
That is, in the fourth mode, the air-to-air heat exchanger is operated while the liquid-to-liquid heat exchanger functions as an evaporator while the function of the anti-load heat exchanger as the evaporator is stopped. By functioning as a condenser, a defrosting operation state in which heat is taken only from the heat source liquid and heat is generated in the air heat exchanger (that is, an operation corresponding to the single liquid heat source-defrosting operation described in (d) above) State).

【0024】第5モードでは、冷媒を圧縮機―対空気熱
交換器―膨張弁機構―対負荷熱交換器―対液熱交換器―
圧縮機の順に循環させる除霜用冷媒循環運転の下で、低
圧側に位置する対負荷熱交換器及び対液熱交換器の各々
に対し負荷側送給機及び液送給機の運転により負荷側熱
媒及び熱源液を送給することで、その負荷側熱媒からの
採熱による対負荷熱交換器での冷媒蒸発、及び、その熱
源液からの採熱による対液熱交換器での冷媒蒸発を許す
ようにし、これにより、対負荷熱交換器及び対液熱交換
器を蒸発器として機能させる。
In the fifth mode, the refrigerant is supplied to the compressor-air heat exchanger-expansion valve mechanism-load heat exchanger-liquid heat exchanger-
Under the defrosting refrigerant circulation operation in which the compressor is circulated in order, the load-side heat exchanger and the liquid heat exchanger located on the low-pressure side are loaded by the operation of the load-side feeder and the liquid feeder, respectively. By supplying the side heat medium and the heat source liquid, the refrigerant evaporates in the heat exchanger against load by collecting heat from the heat medium on the load side, and in the liquid heat exchanger by collecting heat from the heat source liquid. The refrigerant is allowed to evaporate, so that the load heat exchanger and the liquid heat exchanger function as evaporators.

【0025】また、高圧側に位置する対空気熱交換器に
ついては、第4モードと同様、対空気熱交換器が霜付き
状態にあることに対し、その霜への放熱を主として対空
気熱交換器で冷媒凝縮させる形態で、対空気熱交換器を
凝縮器として機能させる。
As for the air heat exchanger located on the high pressure side, similar to the fourth mode, the heat release to the frost is mainly performed when the air heat exchanger is in a frosted state. The air-to-air heat exchanger is made to function as a condenser by condensing the refrigerant in the condenser.

【0026】すなわち、第5モードでは、このように対
負荷熱交換器及び対液熱交換器を蒸発器として機能させ
ながら、対空気熱交換器を凝縮器として機能させること
により、負荷側熱媒と熱源液との両方から採熱して対空
気熱交換器に温熱発生させる形態での除霜運転状態(す
なわち、先述(ホ)の2熱源―除霜運転に相当する運転
状態)を得る。
That is, in the fifth mode, the load-side heat medium is caused to function as a condenser while the heat-to-load heat exchanger and the liquid-to-liquid heat exchanger function as an evaporator. A defrosting operation state in which heat is taken from both the heat source liquid and the heat source liquid to generate heat in the air heat exchanger (that is, an operation state corresponding to the two heat source-defrosting operation described in (e) above) is obtained.

【0027】第6モードでは、冷媒を圧縮機―対空気熱
交換器―膨張弁機構―対負荷熱交換器―対液熱交換器―
圧縮機の順に循環させる除霜用冷媒循環運転の下で、対
液熱交換器について液送給機の停止により熱源液の送給
を停止することで、熱源液からの採熱による対液熱交換
器での冷媒蒸発を不能にし、これにより、低圧側に位置
する対液熱交換器の蒸発器として機能を実質的に休止さ
せる。
In the sixth mode, the refrigerant is supplied to the compressor-air heat exchanger-expansion valve mechanism-load heat exchanger-liquid heat exchanger-
Under the defrosting refrigerant circulation operation of circulating in the order of the compressor, by stopping the supply of the heat source liquid by stopping the liquid feeder for the liquid heat exchanger, the liquid heat by the heat collection from the heat source liquid is stopped. Refrigerant evaporation in the exchanger is disabled, thereby substantially halting the function as the evaporator of the liquid heat exchanger located on the low pressure side.

【0028】一方、対負荷熱交換器については、低圧側
に位置する対負荷熱交換器に対し負荷側送給機の運転に
より負荷側熱媒を送給することで、その負荷側熱媒から
の採熱による対負荷熱交換器での冷媒蒸発を許すように
し、これにより、対負荷熱交換器を蒸発器として機能さ
せる。
On the other hand, with respect to the load heat exchanger, the load-side heat medium is fed to the low-pressure side heat-exchanger by operating the load-side feeder, so that the load-side heat medium is removed from the load-side heat exchanger. Thus, refrigerant evaporation in the heat exchanger against load due to heat collection is allowed, and thereby the heat exchanger against load functions as an evaporator.

【0029】また、高圧側に位置する対空気熱交換器に
ついては、第4,第5モードと同様、対空気熱交換器が
霜付き状態にあることに対し、その霜への放熱を主とし
て対空気熱交換器で冷媒凝縮させる形態で、対空気熱交
換器を凝縮器として機能させる。
As for the air heat exchanger located on the high pressure side, similar to the fourth and fifth modes, the air heat exchanger is mainly in the form of a frost while the heat release to the frost is mainly performed. The air heat exchanger is made to function as a condenser by condensing the refrigerant with the air heat exchanger.

【0030】すなわち、第6モードでは、このように対
液熱交換器の蒸発器としての機能を休止させた状態で、
対負荷熱交換器を蒸発器として機能させながら、対空気
熱交換器を凝縮器として機能させることにより、負荷側
熱媒からのみ採熱して対空気熱交換器に温熱発生させる
形態での除霜運転状態(すなわち、先述(ヘ)の単独負
荷側熱源―除霜運転に相当する運転状態)を得る。
That is, in the sixth mode, while the function of the liquid heat exchanger as the evaporator is stopped,
Defrosting in the form of collecting heat only from the load-side heat medium and generating heat in the air heat exchanger by making the air heat exchanger function as a condenser while the anti-load heat exchanger functions as an evaporator An operating state (that is, an operating state corresponding to the single load side heat source-defrosting operation described in (f) above) is obtained.

【0031】そして、以上の如く先述(イ)〜(ヘ)の
各運転と同等の運転状態を選択的に得ることができなが
らも、上記構成であれば、冷媒経路の切り換えを行なう
主要弁装置を1つの四方弁機構だけで済ませることがで
き、また、それに伴い弁に対する制御構成も簡素化する
ことができ、このことから、先述の図8に示す2熱源ヒ
ートポンプ装置に比べ、高い機能性を確保しながら装置
コストの大幅な低減が可能になる。
As described above, the main valve device for switching the refrigerant path can be selectively operated in the same manner as the above-mentioned operations (a) to (f), but with the above configuration. Can be completed with only one four-way valve mechanism, and the control structure for the valve can be simplified accordingly. Therefore, higher functionality can be achieved as compared with the two heat source heat pump apparatus shown in FIG. It is possible to significantly reduce the cost of the apparatus while securing the same.

【0032】また、一般に対空気熱交換器のK値(熱通
過率)は対液熱交換器に比べかなり小さくなるが、上記
構成では、対空気熱交換器及び対液熱交換器の両方を蒸
発器として機能させる第2モードにおいて、冷媒を対空
気熱交換器から対液熱交換器の順に直列に通過させる形
態(すなわち、対液熱交換器よりも未だ未蒸発分の多い
冷媒を対空気熱交換器に通過させる形態)を採ることに
より、その第2モードで、対空気熱交換器における冷媒
側伝熱面の濡れ度を高くして対空気熱交換器のK値を高
くすることでき、これにより、装置の平均的な運転効率
も効果的に高めることができて、ランニングコストの低
減や装置の小型化も可能になり、これらのことが相俟っ
て、高機能性、低コスト化、省エネ化といった近年の要
求に応えるのに極めて好適な装置となる。
In general, the K value (heat transmission rate) of the air heat exchanger is considerably smaller than that of the liquid heat exchanger, but in the above configuration, both the air heat exchanger and the liquid heat exchanger are used. In the second mode in which the refrigerant functions as an evaporator, the refrigerant is passed in series in the order from the air heat exchanger to the liquid heat exchanger (that is, the refrigerant having more unevaporated air than the liquid heat exchanger is discharged to the air). In the second mode, the wettability of the refrigerant-side heat transfer surface in the air heat exchanger can be increased to increase the K value of the air heat exchanger in the second mode. As a result, the average operation efficiency of the device can be effectively increased, the running cost can be reduced, and the device can be reduced in size. To meet the recent demands for energy saving and energy saving. A suitable device Te.

【0033】なお、請求項1に係る発明の実施におい
て、上記の如き負荷用の冷媒循環運転と除霜用の冷媒循
環運転との択一的な切り換えを行なう1つの四方弁機構
は、1個の四方弁であってもよく、また、三方弁や開閉
弁を組み合わせて構成するものであってもよい。
In the embodiment of the present invention, one four-way valve mechanism for selectively switching between the refrigerant circulation operation for the load and the refrigerant circulation operation for the defrost as described above is provided by one. Or a three-way valve or an on-off valve in combination.

【0034】また、第4〜第6モードの夫々では、対空
気熱交換器での発生温熱(冷媒凝縮熱)が熱源空気中に
放散するのを抑止して除霜効率を高める上で、空気送給
機は停止して対空気熱交換器に対する熱源空気の送給を
停止する方が好ましいが、例えば、除霜運転の終盤にお
いて霜の融解水を空気通風により除去する等の目的で、
場合によっては、空気送給機を運転するようにしてもよ
い。
In each of the fourth to sixth modes, the heat generated in the air heat exchanger (refrigerant condensation heat) is prevented from being radiated into the heat source air to increase the defrosting efficiency. It is preferable that the feeder is stopped to stop the supply of the heat source air to the air heat exchanger, for example, for the purpose of removing molten frost water by air ventilation at the end of the defrosting operation,
In some cases, the air feeder may be operated.

【0035】〔2〕請求項2に係る発明は、請求項1に
係る発明を実施するのに好適な実施形態を特定するもの
であり、その特徴は、前記対液熱交換器を、伝熱管内に
熱源液を通過させ、かつ、伝熱管外に冷媒を通過させる
満液式熱交換器にしてある点にある。
[2] A second aspect of the present invention specifies a preferred embodiment for carrying out the first aspect of the present invention. The point is that a liquid-filled heat exchanger that allows a heat source liquid to pass through the tube and a refrigerant to pass outside the heat transfer tube is provided.

【0036】つまり、負荷用及び除霜用の冷媒循環運転
のいずれにしても低圧側に位置する対液熱交換器は、前
記第1〜第6モードのいずれにおいても未蒸発冷媒の溜
まりが生じ易い傾向になるが(特に熱源液の温度が低い
場合)、上記の如く、この対液熱交換器として所謂乾式
に比べ冷媒通過抵抗が小さい満液式の熱交換器(すなわ
ち、対液熱交換器が低圧側に位置するものであることか
ら言えば満液式の蒸発器)を採用すれば、その対液熱交
換器に未蒸発冷媒が溜まるとしても、また、前述の如く
蒸発器ないし凝縮器として実質的に機能させない熱交換
器も含めて常に3つの熱交換器に冷媒を直列に通過させ
る形態を採りながらも、さらにまた、対空気熱交換器に
冷媒通過抵抗の大きなフィンチューブコイルを用いると
しても、循環冷媒の全体圧力損失(圧縮機の吐出口から
吸入口に至るまでの圧力損失)を効果的に低減すること
ができ、これにより、装置の運転効率を一層効果的に高
めることができて、ランニングコストの低減や装置の小
型化を一層効果的に達成できる。
That is, in any of the load circulation mode and the defrosting refrigerant circulation mode, the liquid heat exchanger located on the low pressure side causes accumulation of unevaporated refrigerant in any of the first to sixth modes. Although it tends to be easy (especially when the temperature of the heat source liquid is low), as described above, this liquid heat exchanger is a full liquid type heat exchanger having a smaller refrigerant passage resistance than a so-called dry type heat exchanger (ie, liquid heat exchange). If a liquid-filled evaporator is used because the heat exchanger is located on the low pressure side, even if unevaporated refrigerant accumulates in the liquid heat exchanger, the evaporator or the Although the heat exchanger does not substantially function as a heat exchanger, the refrigerant always passes in series through the three heat exchangers, and further, a fin tube coil having a large refrigerant passage resistance is provided to the air heat exchanger. Even if used, circulating refrigerant The overall pressure loss (pressure loss from the discharge port to the suction port of the compressor) can be effectively reduced, and thereby the operation efficiency of the apparatus can be more effectively increased, and the running cost can be reduced. Reduction and downsizing of the device can be achieved more effectively.

【0037】〔3〕請求項3に係る発明は、請求項2に
係る発明を実施するのに好適な実施形態を特定するもの
であり、その特徴は、満液式熱交換器を用いた前記対液
熱交換器における液相冷媒の液位を検出して、その検出
液位に基づき前記膨張弁機構の開度を調整する膨張弁制
御手段を設けてある点にある。
[3] The third aspect of the present invention specifies a preferred embodiment for carrying out the second aspect of the present invention. An expansion valve control means for detecting the liquid level of the liquid refrigerant in the liquid heat exchanger and adjusting the opening of the expansion valve mechanism based on the detected liquid level is provided.

【0038】つまり、負荷用及び除霜用の冷媒循環運転
のいずれにしても(換言すれば、前記第1〜第6モード
のいずれにおいても)前記3つの熱交換器のうち常に低
圧側で冷媒経路の最下流位置に位置する対液熱交換器を
前述の如く満液式の熱交換器にした場合、その満液式の
対液熱交換器に未蒸発状態で溜まる液相冷媒の液位は、
そのときの装置全体としての採熱能力と採熱源状況との
関係(すなわち、冷媒循環流量と採熱源側の熱付与能力
とのバランス関係)によって変化するものとなり、した
がって、その液位を見れば、そのときの採熱源状況に対
して膨張弁機構の現状の開度が適切か否かを判定するこ
とができる。
That is, in any of the refrigerant circulation operation for load and defrosting (in other words, in any of the first to sixth modes), the refrigerant is always kept on the low pressure side among the three heat exchangers. When the liquid heat exchanger located at the most downstream position of the path is a liquid-filled heat exchanger as described above, the liquid level of the liquid-phase refrigerant accumulated in the unevaporated state in the liquid-filled heat exchanger Is
At that time, it changes depending on the relationship between the heat collecting capacity of the entire apparatus and the state of the heat collecting source (that is, the balance relation between the refrigerant circulation flow rate and the heat applying capacity on the heat collecting source side). It can be determined whether or not the current opening degree of the expansion valve mechanism is appropriate for the state of the heat source at that time.

【0039】このことを利用して、上記の如く、満液式
の対液熱交換器における液相冷媒の検出液位に基づき膨
張弁機構の開度を調整するようにすれば、液位検出とい
う単純な検出方式を用いながらも、膨張弁機構の開度を
そのときの採熱源状況に適合した開度に適切に調整する
ことができ、これにより、いわゆる低圧異常や液バック
といったトラブルを確実に回避しながら、また、高い運
転効率を保って、装置を安定的に運転することができ
る。
By taking advantage of this fact, as described above, if the opening of the expansion valve mechanism is adjusted based on the detected liquid level of the liquid-phase refrigerant in the liquid-filled liquid-to-liquid heat exchanger, the liquid level can be detected. Despite the simple detection method, the opening of the expansion valve mechanism can be adjusted appropriately to the opening that matches the situation of the heat source at that time. In addition, the device can be stably operated while maintaining high operation efficiency.

【0040】[0040]

【発明の実施の形態】図1は2熱源ヒートポンプ装置を
用いた融雪装置を示し、Ngは地中Gに縦姿勢で埋設し
たU字管状の地中熱交換器、Nyは路面等の融雪対象箇
所に設置した融雪用熱交換器、HPはケーシングに冷媒
回路側及び熱媒側夫々の主要構成品を収容したパッケー
ジ型の2熱源ヒートポンプ装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a snow melting apparatus using a two heat source heat pump apparatus, where Ng is a U-shaped tubular underground heat exchanger buried vertically in the ground G, and Ny is a snow melting object such as a road surface. The heat exchanger for snow melting installed at the location, HP is a package-type two-heat-source heat pump device in which main components on the refrigerant circuit side and the heat medium side are housed in a casing.

【0041】2熱源ヒートポンプ装置HPは、冷媒回路
側の主要構成品として、圧縮機1、外気A(大気空気)
と冷媒Rを熱交換させる対空気熱交換器2、熱源側の熱
媒液Lと冷媒Rを熱交換させる対液熱交換器3、負荷側
の熱媒液Mと冷媒Rを熱交換させる対負荷熱交換器4、
レシーバ5、四個の逆止弁6a〜6dをブリッジ回路状
に組み合わせた冷媒案内回路6、膨張弁機構7、四方弁
Vxを備えている。
The two heat source heat pump device HP includes a compressor 1, an outside air A (atmospheric air) as main components on the refrigerant circuit side.
A heat exchanger 2 for exchanging heat with the refrigerant R, a heat exchanger 3 for exchanging heat between the heat medium liquid L on the heat source side and the refrigerant R, and a pair for exchanging heat between the heat medium M and refrigerant R on the load side. Load heat exchanger 4,
A receiver 5, a refrigerant guide circuit 6, in which four check valves 6a to 6d are combined in a bridge circuit, an expansion valve mechanism 7, and a four-way valve Vx are provided.

【0042】また、この2熱源ヒートポンプ装置HP
は、熱媒側の主要構成品として、対空気熱交換器2に外
気Aを通風するファン2a、熱源側循環路8を通じて対
液熱交換器3と地中熱交換器Ngとの間で熱源側熱媒液
Lを循環させる熱源側熱媒ポンプP1、負荷側循環路9
を通じて対負荷熱交換器4と融雪用熱交換器Nyとの間
で負荷側熱媒液Mを循環させる負荷側熱媒ポンプP2を
備えている。
Further, the two heat source heat pump device HP
Is a main component on the heat medium side, a fan 2a that ventilates outside air A to the air heat exchanger 2, and a heat source between the liquid heat exchanger 3 and the underground heat exchanger Ng through the heat source side circulation path 8. Heat source side heat medium pump P1 for circulating side heat medium liquid L, load side circulation path 9
And a load-side heat medium pump P2 that circulates the load-side heat medium liquid M between the load heat exchanger 4 and the snow melting heat exchanger Ny.

【0043】すなわち、本実施形態では、ファン2aを
熱源空気用の空気送給機として、対空気熱交換器2に対
し熱源空気として外気Aを送給し、また、熱源側熱媒ポ
ンプP1を熱源液用の液送給機として、対液熱交換器3
に対し熱源液として地中熱交換器Ngとの間での循環熱
媒液Lを送給し、そしてまた、負荷側熱媒ポンプP2を
負荷側熱媒用の負荷側送給機として、対負荷熱交換器4
に対し負荷側熱媒として融雪用熱交換器Nyとの間での
循環熱媒液Mを送給する。
That is, in this embodiment, the fan 2a is used as an air feeder for heat source air, the outside air A is sent to the air heat exchanger 2 as heat source air, and the heat source side heat medium pump P1 is Liquid heat exchanger 3 as a liquid feeder for heat source liquid
To the underground heat exchanger Ng as a heat source liquid, and the load side heat medium pump P2 as a load side feeder for the load side heat medium. Load heat exchanger 4
The circulating heat medium M between the heat exchanger Ny for snow melting is supplied as a load-side heat medium.

【0044】対空気熱交換器2には、冷媒Rを伝熱管内
に通過させるのに対し外気Aを伝熱管外に通過させるフ
ィンチューブコイル型の乾式熱交換器を用い、また、対
負荷熱交換器4にも、冷媒Rを伝熱管内に通過させるの
に対し負荷側の熱媒液Mを伝熱管外に通過させる乾式熱
交換器を用いてあり、一方、対液熱交換器3には、熱源
側の熱媒液Lを伝熱管内に通過させるのに対し冷媒Rを
伝熱管外に通過させる満液式の熱交換器を用いてある。
熱源側の熱媒液Lや負荷側の熱媒液Mには、夫々、ブラ
インや水を用いる。
As the air heat exchanger 2, a fin tube coil type dry heat exchanger that allows the refrigerant R to pass through the heat transfer tube while allowing the outside air A to pass outside the heat transfer tube is used. The exchanger 4 also employs a dry heat exchanger that allows the refrigerant R to pass through the heat transfer tube while allowing the heat medium liquid M on the load side to pass outside the heat transfer tube. Uses a liquid-filled heat exchanger that allows the heat medium liquid L on the heat source side to pass through the heat transfer tube while allowing the refrigerant R to pass outside the heat transfer tube.
Brine and water are used for the heat medium liquid L on the heat source side and the heat medium liquid M on the load side, respectively.

【0045】2熱源ヒートポンプ装置HPの冷媒回路
は、前記四方弁Vxによる冷媒経路の切り換えで負荷用
の冷媒循環運転と除霜用の冷媒循環運転との択一的切り
換えを行なう回路構成にしてあり、負荷用の冷媒循環運
転では、図2に示す如く、冷媒Rを圧縮機1―四方弁V
x―対負荷熱交換器4―冷媒案内回路6―レシーバ5―
膨張弁機構7―冷媒案内回路6―対空気熱交換器2―四
方弁Vx―対液熱交換器3―圧縮機1の順に循環させ
る。
The refrigerant circuit of the two-heat-source heat pump device HP has a circuit configuration for selectively switching between the refrigerant circulation operation for load and the refrigerant circulation operation for defrosting by switching the refrigerant path by the four-way valve Vx. In the refrigerant circulation operation for the load, as shown in FIG.
x-load heat exchanger 4-refrigerant guide circuit 6-receiver 5-
The refrigerant is circulated in the order of the expansion valve mechanism 7, the refrigerant guide circuit 6, the air heat exchanger 2, the four-way valve Vx, the liquid heat exchanger 3, and the compressor 1.

【0046】また、除霜用の冷媒循環運転では、図5に
示す如く、冷媒Rを圧縮機1―四方弁Vx―対空気熱交
換器2―冷媒案内回路6―レシーバ5―膨張弁機構7―
冷媒案内回路6―対負荷熱交換器4―四方弁Vx―対液
熱交換器3―圧縮機1の順に循環させる。
In the defrosting refrigerant circulation operation, as shown in FIG. 5, the refrigerant R is supplied to the compressor 1, the four-way valve Vx, the air heat exchanger 2, the refrigerant guide circuit 6, the receiver 5, and the expansion valve mechanism 7. ―
The refrigerant is circulated in the order of the refrigerant guide circuit 6-heat exchanger for load 4-four-way valve Vx-heat exchanger for liquid 3-compressor 1.

【0047】10は2熱源ヒートポンプ装置HPの運転
制御を司る制御器であり、この制御器10は、モード切
換手段として、付与されるモード切換指令に応じ四方弁
Vxの切り換え操作、並びに、ファン2a、熱源側熱媒
ポンプP1、負荷側熱媒ポンプP2夫々の発停操作によ
り、次の第1〜第6モードの択一的な切り換えを行な
う。
Reference numeral 10 denotes a controller for controlling the operation of the two-heat-source heat pump device HP. The controller 10 serves as a mode switching means for switching the four-way valve Vx in accordance with a given mode switching command and for controlling the fan 2a. The following first to sixth modes are selectively switched by starting and stopping the heat source side heat medium pump P1 and the load side heat medium pump P2.

【0048】(第1モード)図2に示す如く、四方弁V
xを負荷用冷媒循環運転の側に切り換えて、冷媒Rを圧
縮機1―四方弁Vx―対負荷熱交換器4―冷媒案内回路
6―レシーバ5―膨張弁機構7―冷媒案内回路6―対空
気熱交換器2―四方弁Vx―対液熱交換器3―圧縮機1
の順に循環させ、これに対し、ファン2aの運転を停止
した状態で、熱源側熱媒ポンプP1及び負荷側熱媒ポン
プP2を運転する。
(First Mode) As shown in FIG. 2, the four-way valve V
x is switched to the load refrigerant circulation operation side, and the refrigerant R is supplied to the compressor 1-the four-way valve Vx-the load heat exchanger 4-the refrigerant guide circuit 6-the receiver 5-the expansion valve mechanism 7-the refrigerant guide circuit 6-the pair. Air heat exchanger 2-4-way valve Vx-Liquid heat exchanger 3-Compressor 1
The heat source side heat medium pump P1 and the load side heat medium pump P2 are operated while the operation of the fan 2a is stopped.

【0049】つまり、この第1モードでは、ファン2a
の停止による外気通風の停止により低圧側の対空気熱交
換器2の蒸発器としての機能を実質的に休止させた状態
で、対液熱交換器3を蒸発器Eとして機能させながら、
対負荷熱交換器4を凝縮器Cとして機能させ、これによ
り、熱源側熱媒液Lからのみ採熱して対負荷熱交換器4
に温熱発生させる単独液熱源の負荷対応運転状態、すな
わち、融雪装置としては、地中熱交換器Ngによる地中
Gからの熱採取だけを行い、その採取熱をヒートポンプ
装置HPにより昇温した上で融雪用熱交換器Nyから放
熱させて融雪対象箇所の融雪を行なう運転状態を得る。
That is, in the first mode, the fan 2a
While the function of the low-pressure side air heat exchanger 2 as an evaporator is substantially stopped by stopping the outside air ventilation due to the stop, the liquid heat exchanger 3 functions as the evaporator E,
The load heat exchanger 4 is caused to function as a condenser C, thereby collecting heat only from the heat source side heat transfer fluid L and causing the load heat exchanger 4 to function.
Operating state corresponding to the load of the single liquid heat source for generating heat, that is, as a snow melting device, only heat is taken from the underground G by the underground heat exchanger Ng, and the collected heat is raised by the heat pump device HP. Then, an operation state is obtained in which the heat is radiated from the snow-melting heat exchanger Ny to melt the snow at the snow-melting target portion.

【0050】(第2モード)図3に示す如く、四方弁V
xを第1モードと同様、負荷用冷媒循環運転の側に切り
換えて、冷媒Rを圧縮機1―四方弁Vx―対負荷熱交換
器4―冷媒案内回路6―レシーバ5―膨張弁機構7―冷
媒案内回路6―対空気熱交換器2―四方弁Vx―対液熱
交換器3―圧縮機1の順に循環させ、これに対し、ファ
ン2a、熱源側熱媒ポンプP1、負荷側熱媒ポンプP2
の夫々を運転する。
(Second mode) As shown in FIG.
As in the first mode, x is switched to the load refrigerant circulation operation side, and the refrigerant R is supplied to the compressor 1-the four-way valve Vx-the load heat exchanger 4-the refrigerant guide circuit 6-the receiver 5-the expansion valve mechanism 7- The refrigerant is circulated in the order of the refrigerant guide circuit 6-air heat exchanger 2-four-way valve Vx-liquid heat exchanger 3-compressor 1. On the other hand, fan 2a, heat source side heat medium pump P1, load side heat medium pump P2
Drive each of.

【0051】つまり、この第2モードでは、対空気熱交
換器2及び対液熱交換器3を蒸発器Eとして機能させな
がら、対負荷熱交換器4を凝縮器Cとして機能させ、こ
れにより、外気Aと熱源側熱媒液Lとの両方から採熱し
て対負荷熱交換器4に温熱発生させる2熱源の負荷対応
運転状態、すなわち、融雪装置としては、地中熱交換器
Ngによる地中Gからの熱採取と、空気熱交換器3によ
る外気Aからの熱採取との両方を行ない、それら採取熱
をヒートポンプ装置HPにより昇温した上で融雪用熱交
換器Nyから放熱させて融雪対象箇所の融雪を行なう運
転状態を得る。
That is, in the second mode, while the air heat exchanger 2 and the liquid heat exchanger 3 function as the evaporator E, the load heat exchanger 4 functions as the condenser C. A load-compatible operation state of the two heat sources that collects heat from both the outside air A and the heat source side heat transfer fluid L to generate heat in the load heat exchanger 4, that is, as a snow melting device, an underground heat exchanger Ng using an underground heat exchanger Ng Both the heat sampling from G and the heat sampling from the outside air A by the air heat exchanger 3 are performed, and the collected heat is heated by the heat pump device HP and then radiated from the snow melting heat exchanger Ny to be subjected to snow melting. The operating condition of melting snow at a location is obtained.

【0052】(第3モード)図4に示す如く、四方弁V
xを第1,第2モードと同様、負荷用冷媒循環運転の側
に切り換えて、冷媒Rを圧縮機1―四方弁Vx―対負荷
熱交換器4―冷媒案内回路6―レシーバ5―膨張弁機構
7―冷媒案内回路6―対空気熱交換器2―四方弁Vx―
対液熱交換器3―圧縮機1の順に循環させ、これに対
し、熱源側熱媒ポンプP1の運転を停止した状態で、フ
ァン2a及び負荷側熱媒ポンプP2を運転する。
(Third Mode) As shown in FIG.
As in the first and second modes, x is switched to the side of the load refrigerant circulation operation, and the refrigerant R is supplied to the compressor 1-the four-way valve Vx-the load heat exchanger 4-the refrigerant guide circuit 6-the receiver 5-the expansion valve. Mechanism 7-Refrigerant guide circuit 6-Air heat exchanger 2-Four-way valve Vx-
The fan 2a and the load-side heat medium pump P2 are operated while the operation of the heat source-side heat medium pump P1 is stopped.

【0053】つまり、この第3モードでは、熱源側熱媒
ポンプP1の停止による熱源側熱媒液Lの供給停止によ
り低圧側の対液熱交換器3の蒸発器としての機能を実質
的に休止させた状態で、対空気熱交換器2を蒸発器Eと
して機能させながら、対負荷熱交換器4を凝縮器Cとし
て機能させ、これにより、外気Aからのみ採熱して対負
荷熱交換器4に温熱発生させる単独空気熱源の負荷対応
運転状態、すなわち、融雪装置としては、空気熱交換器
2による外気Aからの熱採取だけを行ない、その採取熱
をヒートポンプ装置HPにより昇温した上で融雪用熱交
換器Nyから放熱させて融雪対象箇所の融雪を行なう運
転状態を得る。
That is, in the third mode, the function of the low-pressure side liquid heat exchanger 3 as an evaporator is substantially stopped by stopping the supply of the heat source side heat transfer fluid L by stopping the heat source side heat transfer pump P1. In this state, the heat exchanger against air 2 functions as the condenser C while the heat exchanger against air 2 functions as the evaporator E. Thereby, heat is collected only from the outside air A and the heat exchanger against load 4 is removed. Operating state corresponding to the load of the single air heat source that generates heat, that is, as a snow melting device, only heat is collected from the outside air A by the air heat exchanger 2, and the collected heat is heated by the heat pump device HP, and then the snow is melted. An operating state in which the heat is radiated from the heat exchanger Ny to melt the snow at the snow melting target location is obtained.

【0054】(第4モード)図5に示す如く、四方弁V
xを除霜用冷媒循環運転の側に切り換えて、冷媒Rを圧
縮機1―四方弁Vx―対空気熱交換器2―冷媒案内回路
6―レシーバ5―膨張弁機構7―冷媒案内回路6―対負
荷熱交換器4―四方弁Vx―対液熱交換器3―圧縮機1
の順に循環させ、これに対し、負荷側熱媒ポンプP2及
びファン2aの運転を停止した状態で、熱源側熱媒ポン
プP1を運転する。
(Fourth mode) As shown in FIG.
x is switched to the side of the defrosting refrigerant circulation operation, and the refrigerant R is supplied to the compressor 1-the four-way valve Vx-the air heat exchanger 2-the refrigerant guide circuit 6-the receiver 5-the expansion valve mechanism 7-the refrigerant guide circuit 6- Heat exchanger for load 4-Four-way valve Vx-Heat exchanger for liquid 3-Compressor 1
The heat source side heat medium pump P1 is operated while the operation of the load side heat medium pump P2 and the fan 2a is stopped.

【0055】つまり、この第4モードでは、負荷側熱媒
ポンプP2の停止による負荷側熱媒液Mの供給停止によ
り低圧側の対負荷熱交換器4の蒸発器としての機能を実
質的に休止させた状態で、対液熱交換器3を蒸発器Eと
して機能させながら、対空気熱交換器2を凝縮器Cとし
て機能させ、これにより、熱源側熱媒液Lからのみ採熱
して対空気熱交換器2に温熱発生させる単独液熱源の除
霜運転状態、すなわち、融雪装置としては、融雪用熱交
換器Nyからの放熱を休止した状態で、地中熱交換器N
gによる地中Gからの熱採取だけを行ない、その採取熱
をヒートポンプ装置HPにより昇温した上で対空気熱交
換器2から放熱させて対空気熱交換器2の除霜を行なう
運転状態を得る。
In other words, in the fourth mode, the function of the low-pressure side heat exchanger 4 as an evaporator is substantially stopped by stopping the supply of the load-side heat medium liquid M by stopping the load-side heat medium pump P2. In this state, while the liquid heat exchanger 3 functions as the evaporator E, the air heat exchanger 2 functions as the condenser C. Thereby, heat is collected only from the heat source side heat transfer medium L and air is discharged. In the defrosting operation state of the single liquid heat source that generates heat in the heat exchanger 2, that is, as the snow melting device, the heat from the snow melting heat exchanger Ny is stopped, and the underground heat exchanger N
g, only the heat collection from the underground G is performed, and the collected heat is heated by the heat pump device HP, and then radiated from the air heat exchanger 2 to perform defrosting of the air heat exchanger 2. obtain.

【0056】(第5モード)図6に示す如く、四方弁V
xを第4モードと同様、除霜用冷媒循環運転の側に切り
換えて、冷媒Rを圧縮機1―四方弁Vx―対空気熱交換
器2―冷媒案内回路6―レシーバ5―膨張弁機構7―冷
媒案内回路6―対負荷熱交換器4―四方弁Vx―対液熱
交換器3―圧縮機1の順に循環させ、これに対し、ファ
ン2aの運転を停止した状態で、熱源側熱媒ポンプP1
及び負荷側熱媒ポンプP2を運転する。つまり、この第
5モードでは、対負荷熱交換器4及び対液熱交換器3を
蒸発器Eとして機能させながら、対空気熱交換器2を凝
縮器Cとして機能させ、これにより、負荷側熱媒液Mと
熱源側熱媒液Lとの両方から採熱して対空気熱交換器2
に温熱発生させる2熱源の除霜運転状態、すなわち、融
雪装置としては、融雪用熱交換器Nyからの放熱を休止
した状態で、地中熱交換器Ngによる地中Gからの熱採
取と、温熱を保有する負荷側熱媒液Mからの熱採取との
両方を行ない、それら採取熱をヒートポンプ装置HPに
より昇温した上で対空気熱交換器2から放熱させて対空
気熱交換器2の除霜を行なう運転状態を得る。
(Fifth mode) As shown in FIG.
x is switched to the side of the defrosting refrigerant circulation operation as in the fourth mode, and the refrigerant R is supplied to the compressor 1-the four-way valve Vx-the air heat exchanger 2-the refrigerant guide circuit 6-the receiver 5-the expansion valve mechanism 7 The refrigerant is circulated in the order of the refrigerant guide circuit 6, the heat exchanger for the load 4, the four-way valve Vx, the heat exchanger for the liquid 3, and the compressor 1, while the operation of the fan 2 a is stopped. Pump P1
And the load side heat medium pump P2 is operated. That is, in the fifth mode, the heat exchanger for air 4 and the heat exchanger for air 2 function as the condenser C while the heat exchanger for load 4 and the heat exchanger for liquid 3 function as the evaporator E. Heat is taken from both the medium M and the heat source side heat medium L, and the air heat exchanger 2
In the defrosting operation state of the two heat sources that generate heat, i.e., as a snow melting device, with the heat radiation from the snow melting heat exchanger Ny suspended, heat extraction from the underground G by the underground heat exchanger Ng; Both heat collection and heat collection from the load side heat transfer medium M that retains heat are performed, and the collected heat is heated by the heat pump device HP, and then radiated from the air heat exchanger 2 so as to release the heat from the air heat exchanger 2. Obtain the operating state for defrosting.

【0057】(第6モード)図7に示す如く、四方弁V
xを第4,第5モードと同様、除霜用冷媒循環運転の側
に切り換えて、冷媒Rを圧縮機1―四方弁Vx―対空気
熱交換器2―冷媒案内回路6―レシーバ5―膨張弁機構
7―冷媒案内回路6―対負荷熱交換器4―四方弁Vx―
対液熱交換器3―圧縮機1の順に循環させ、これに対
し、熱源側熱媒ポンプP1及びファン2aの運転を停止
した状態で、負荷側熱媒ポンプP2を運転する。
(Sixth mode) As shown in FIG.
As in the fourth and fifth modes, x is switched to the side of the defrosting refrigerant circulation operation, and the refrigerant R is supplied to the compressor 1-the four-way valve Vx-the air heat exchanger 2-the refrigerant guide circuit 6-the receiver 5-expansion. Valve mechanism 7-Refrigerant guide circuit 6-Load heat exchanger 4-Four-way valve Vx-
The heat exchanger is circulated in the order of the liquid heat exchanger 3 and the compressor 1, and the load side heat medium pump P2 is operated while the heat source side heat medium pump P1 and the fan 2a are stopped.

【0058】つまり、第6モードでは、熱源側熱媒ポン
プP1の停止による熱源側熱媒液Lの供給停止により低
圧側の対液熱交換器3の蒸発器としての機能を実質的に
休止させた状態で、対負荷熱交換器4を蒸発器Eとして
機能させながら、対空気熱交換器2を凝縮器Cとして機
能させ、これにより、負荷側熱媒液Mからのみ採熱して
対空気熱交換器2に温熱発生させる単独負荷側熱源の除
霜運転状態、すなわち、融雪装置としては、融雪用熱交
換器Nyからの放熱を休止した状態で、負荷側熱媒液M
からの熱採取だけを行ない、その採取熱をヒートポンプ
装置HPにより昇温した上で対空気熱交換器2から放熱
させて対空気熱交換器2の除霜を行なう運転状態を得
る。
That is, in the sixth mode, the function of the low-pressure liquid heat exchanger 3 as an evaporator is substantially stopped by stopping the supply of the heat source side heat medium liquid L by stopping the heat source side heat medium pump P1. In this state, the heat exchanger for air 4 is made to function as a condenser C while the heat exchanger for load 4 is made to function as an evaporator E. In the defrosting operation state of the single load-side heat source that generates heat in the exchanger 2, that is, as a snow melting device, the heat dissipation from the snow melting heat exchanger Ny is stopped, and the load-side heat medium M
From the air heat exchanger 2, the collected heat is heated by the heat pump device HP, and then radiated from the air heat exchanger 2 to obtain an operation state in which the air heat exchanger 2 is defrosted.

【0059】なお、このモード切り換えにおいて制御器
10に付与するモード切換指令は、管理者がスイッチ操
作などの人為操作により付与する指令、あるいは、採熱
源状況の検出情報や対空気熱交換器2における着霜状態
の検出情報などに基づいて自動的に発令する指令のいず
れであってもよい。
In this mode switching, the mode switching command given to the controller 10 may be a command given by a manual operation such as a switch operation by a manager, or information on detection of the status of a heat source or the air heat exchanger 2. Any command may be automatically issued based on the detection information of the frost formation state.

【0060】膨張弁機構7は、互いの口径が異なる第1
〜第3のニードル弁ea〜ecに対し第1〜第3の電磁
開閉弁va〜vcを各別に直列接続して形成した3つの
直列接続回路7a〜7cを並列接続して構成してあり、
膨張弁として機能させる各ニードル弁ea〜ecの開度
を予め固定的に調整した状態において、第1〜第3電磁
開閉弁va〜vcを選択的に開弁することにより、膨張
弁機構7の全体としての膨張弁開度を変更するものにし
てある。
The expansion valve mechanism 7 has a first
The first to third solenoid on-off valves va to vc are respectively connected in series to the third needle valves ea to ec, and three series connection circuits 7a to 7c are formed in parallel, and are configured in parallel.
By selectively opening the first to third solenoid on-off valves va to vc in a state where the opening degrees of the needle valves ea to ec functioning as expansion valves are fixedly adjusted in advance, the expansion valve mechanism 7 is opened. The opening degree of the expansion valve as a whole is changed.

【0061】一方、冷媒回路において負荷用及び除霜用
の冷媒循環運転のいずれにしても3つの熱交換器2,
3,4のうち常に低圧側で冷媒経路の最下流位置に位置
する満液式の対液熱交換器3(低圧側に位置するもので
あることから言えば満液式の蒸発器)には、未蒸発で器
内に溜まる液相冷媒Rの液位を検出する液位センサ11
を装備してあり、これに対し、制御器10は、膨張弁制
御手段として、その液位センサ11による検出液位に基
づき、膨張弁機構7における第1〜第3電磁開閉弁va
〜vcのうち開弁状態とするものを自動的に変更する構
成にしてある。
On the other hand, regardless of the refrigerant circulation operation for load and defrost in the refrigerant circuit, the three heat exchangers 2,
The liquid-filled liquid heat exchanger 3 (the liquid-filled evaporator, which is located on the low-pressure side), which is always located at the lowermost position of the refrigerant path on the low-pressure side among the liquid-pressure evaporators 3 and 4, , A liquid level sensor 11 for detecting the liquid level of the liquid refrigerant R remaining in the vessel before evaporation
On the other hand, the controller 10 functions as expansion valve control means based on the liquid level detected by the liquid level sensor 11 of the first to third electromagnetic on-off valves va in the expansion valve mechanism 7.
To vc are automatically changed.

【0062】つまり、このように満液式の対液熱交換器
3における液相冷媒Rの検出液位に基づいて膨張弁機構
7全体としての膨張弁開度を自動調整することで、その
膨張弁開度をそのときの採熱源状況に適合した開度に適
切に調整するようにしてあり、これにより、低圧異常や
液バックといったトラブルを確実に回避し、また、高い
運転効率を保ちながらの安定的な装置運転を可能にす
る。
That is, the expansion valve opening of the expansion valve mechanism 7 as a whole is automatically adjusted on the basis of the detected liquid level of the liquid-phase refrigerant R in the liquid-filled liquid-to-liquid heat exchanger 3 as described above. The valve opening is appropriately adjusted to the opening that matches the situation of the heat source at that time, thereby reliably avoiding problems such as abnormal low pressure and liquid back, while maintaining high operating efficiency. Enables stable device operation.

【0063】〔別実施形態〕次に別実施形態を列記す
る。
[Another Embodiment] Next, another embodiment will be described.

【0064】満液式の対液熱交換器3における液相冷媒
の検出液位に基づいて膨張弁機構の開度を調整する場
合、前述の実施形態の如き電磁開閉弁とニードル弁との
直列接続回路7a〜7cを複数並列接続した膨張弁機構
7を用いるに代えて、例えば、電磁比例弁や電動弁を膨
張弁機構として、それら電磁比例弁や電動弁の開度を検
出液位に基づいて自動調整するようにしてもよい。
In the case where the opening degree of the expansion valve mechanism is adjusted based on the detected liquid level of the liquid-phase refrigerant in the liquid-filled heat exchanger 3, a series connection of the solenoid on-off valve and the needle valve as in the above-described embodiment. Instead of using the expansion valve mechanism 7 in which a plurality of connection circuits 7a to 7c are connected in parallel, for example, using an electromagnetic proportional valve or an electric valve as an expansion valve mechanism, the opening of the electromagnetic proportional valve or the electric valve is determined based on the detected liquid level. May be adjusted automatically.

【0065】また、請求項1,2に係る発明の実施にお
いては、このように満液式の対液熱交換器3における液
相冷媒の検出液位に基づいて膨張弁機構の開度を調整す
る形式に限らず、一般に用いられる電子制御式や温度自
動式の膨張弁、あるいは、キャピラリチューブを膨張弁
機構として使用してもよい。
In the first and second embodiments of the present invention, the opening of the expansion valve mechanism is adjusted based on the detected liquid level of the liquid-phase refrigerant in the liquid-filled liquid-to-liquid heat exchanger 3 as described above. The expansion valve of a generally used electronic control type or automatic temperature type, or a capillary tube may be used as the expansion valve mechanism.

【0066】対液熱交換器3で冷媒Rと熱交換させる熱
源液は、地中熱交換器Ngとの間で循環させる熱媒液L
に限られるものではなく、下水の保有熱や他機器からの
排熱を回収する熱回収装置との間で循環させる熱媒液、
あるいは、湧水、井水、河川水、湖沼水、海水などの自
然水など、熱採取が可能な液体であれば種々の液体を熱
源液として採用できる。
The heat source liquid to be exchanged with the refrigerant R in the liquid heat exchanger 3 is the heat medium liquid L circulated between the underground heat exchanger Ng.
Not limited to, heat medium liquid circulated between a heat recovery device that recovers retained heat of sewage and exhaust heat from other equipment,
Alternatively, various liquids can be used as the heat source liquid as long as heat can be collected, such as natural water such as spring water, well water, river water, lake water, seawater, and the like.

【0067】また、対液熱交換器3に対して熱源液を送
給する液送給機にも、採用の熱源液に応じて種々の形式
のポンプを使用できる。
Also, various types of pumps can be used for the liquid feeder for feeding the heat source liquid to the liquid heat exchanger 3 according to the heat source liquid employed.

【0068】対負荷熱交換器4で冷媒Rと熱交換させる
負荷側熱媒は、融雪用熱交換器Nyとの間で循環させる
熱媒液Mに限られるものではなく、暖房用、加熱用、凍
結防止用などの熱交換器との間で循環させる熱媒液、あ
るいはまた、対負荷熱交換器4において加熱した上で暖
房対象域や加熱対象域などに供給する空気等の気体であ
ってもよい。
The load-side heat medium that exchanges heat with the refrigerant R in the anti-load heat exchanger 4 is not limited to the heat medium liquid M circulated between the heat exchanger Ny for snow melting and is used for heating and heating. A heat medium liquid circulating between the heat exchanger for preventing freezing and the like, or a gas such as air which is heated in the anti-load heat exchanger 4 and then supplied to the heating target area or the heating target area. You may.

【0069】また、対負荷熱交換器4に対して負荷側熱
媒を送給する負荷側送給機にも、採用の負荷側熱媒に応
じて種々の形式のポンプやファンを使用できる。
Also, various types of pumps and fans can be used for the load-side feeder for feeding the load-side heat medium to the heat exchanger 4 for load, depending on the load-side heat medium employed.

【0070】対空気熱交換器2で冷媒Rと熱交換させる
熱源空気は、必ずしも外気Aに限定されるものではな
く、他施設から排出される温熱保有空気などであっても
よく、また、対空気熱交換器2に対して熱源空気を送給
する空気送給機にも、種々の形式のファンを使用でき
る。
The heat source air to be heat-exchanged with the refrigerant R in the air heat exchanger 2 is not necessarily limited to the outside air A, but may be heated air discharged from another facility. Various types of fans can also be used for the air supply device that supplies heat source air to the air heat exchanger 2.

【0071】前述の実施形態では、対空気熱交換器2及
び対負荷熱交換器4の夫々を、伝熱管内に冷媒Rを通過
させるのに対し伝熱管外に熱源空気や負荷側熱媒を通過
させる乾式の熱交換器にしたが、場合によっては、対空
気熱交換器2や対負荷熱交換器4に満液式の熱交換器を
使用するようにしてもよい。
In the above-described embodiment, each of the heat exchanger for air 2 and the heat exchanger for load 4 allows the refrigerant R to pass through the heat transfer tube, whereas the heat source air and the load side heat medium are supplied outside the heat transfer tube. Although a dry heat exchanger is used for the passage, a liquid-filled heat exchanger may be used for the air heat exchanger 2 and the load heat exchanger 4 in some cases.

【0072】また、全体圧力損失を低減する上で対液熱
交換器3には満液式の熱交換器を使用するのが好ましい
が、請求項1に係る発明の実施にあたり、場合によって
は、対液熱交換器3に乾式の熱交換器を使用するように
してもよい。
In order to reduce the total pressure loss, it is preferable to use a liquid-filled heat exchanger as the liquid heat exchanger 3. However, in implementing the invention according to claim 1, depending on the case, A dry heat exchanger may be used as the liquid heat exchanger 3.

【0073】負荷用の冷媒循環運転と除霜用の冷媒循環
運転との切り換えを行う1つの四方弁機構は、前述の実
施形態の如く一個の四方弁Vxにより構成したもの、あ
るいは、三方弁や開閉弁の組み合わせにより構成したも
ののいずれであってもよく、また、冷媒回路の細部構造
についても前述の実施形態で示した構造に限らず、種々
の構成変更が可能である。
One four-way valve mechanism for switching between the refrigerant circulation operation for load and the refrigerant circulation operation for defrosting is constituted by one four-way valve Vx as in the above-described embodiment, or a three-way valve. Any of those configured by a combination of on-off valves may be used, and the detailed structure of the refrigerant circuit is not limited to the structure shown in the above-described embodiment, and various configuration changes are possible.

【0074】指令に応じて前記第1〜第6モードの択一
的な切り換えを行なうモード切換手段は、人為操作によ
る付与指令に応じてモード切り換えを行なうもの、ある
いは、採熱源状況の検出情報や着霜状態の検出情報など
に基づき自動的に発令される指令に応じてモード切り換
えを行なうもののいずれであってもよく、また、その指
令授受のための具体的装置構成もどのようなものであっ
てもよい。
The mode switching means for selectively switching the first to sixth modes in response to a command is a means for switching the mode in response to a command given by a manual operation, or information for detecting the state of a heat source. The mode may be switched in accordance with a command automatically issued based on detection information of the frosting state or the like, and the specific device configuration for giving and receiving the command is not limited. You may.

【0075】本発明に係る2熱源ヒートポンプ装置は、
融雪に限らず、温熱を要する各種分野に適用できる。
The two heat source heat pump device according to the present invention
It can be applied not only to snow melting but also to various fields requiring heat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】融雪装置の装置構成を示す回路図FIG. 1 is a circuit diagram showing a device configuration of a snow melting device.

【図2】第1モードの冷媒流れを示す回路図FIG. 2 is a circuit diagram showing a refrigerant flow in a first mode.

【図3】第2モードの冷媒流れを示す回路図FIG. 3 is a circuit diagram showing a refrigerant flow in a second mode.

【図4】第3モードの冷媒流れを示す回路図FIG. 4 is a circuit diagram showing a refrigerant flow in a third mode.

【図5】第4モードの冷媒流れを示す回路図FIG. 5 is a circuit diagram showing a refrigerant flow in a fourth mode.

【図6】第5モードの冷媒流れを示す回路図FIG. 6 is a circuit diagram showing a refrigerant flow in a fifth mode.

【図7】第6モードの冷媒流れを示す回路図FIG. 7 is a circuit diagram showing a refrigerant flow in a sixth mode.

【図8】従来装置の装置構成を示す回路図FIG. 8 is a circuit diagram showing a device configuration of a conventional device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 対空気熱交換器 2a 空気送給機 3 対液熱交換器 4 対負荷熱交換器 7 膨張弁機構 10 モード切換手段,膨張弁制御手段 A 熱源空気 L 熱源液 M 負荷側熱媒 P1 液送給機 P2 負荷側送給機 R 冷媒 Vx 四方弁機構 DESCRIPTION OF SYMBOLS 1 Compressor 2 Air heat exchanger 2a Air feeder 3 Liquid heat exchanger 4 Load heat exchanger 7 Expansion valve mechanism 10 Mode switching means, expansion valve control means A Heat source air L Heat source liquid M Load side heat medium P1 Liquid feeder P2 Load side feeder R Refrigerant Vx Four-way valve mechanism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気送給機により送給される熱源空気を
冷媒と熱交換させる対空気熱交換器と、液送給機により
送給される熱源液を冷媒と熱交換させる対液熱交換器
と、負荷側送給機により送給される負荷側熱媒を冷媒と
熱交換させる対負荷熱交換器とを設け、 1つの四方弁機構による冷媒経路の切り換えで、 冷媒を圧縮機―対負荷熱交換器―膨張弁機構―対空気熱
交換器―対液熱交換器―圧縮機の順に循環させる負荷用
冷媒循環運転と、 冷媒を圧縮機―対空気熱交換器―膨張弁機構―対負荷熱
交換器―対液熱交換器―圧縮機の順に循環させる除霜用
冷媒循環運転とを択一的に実施する冷媒回路構成にし、 指令に応じて次の第1〜第6モードの択一的な切り換
え、つまり、 四方弁機構を負荷用冷媒循環運転の側に切り換え、か
つ、空気送給機を停止した状態で、液送給機及び負荷側
送給機を運転する第1モードと、 四方弁機構を負荷用冷媒循環運転の側に切り換えた状態
で、空気送給機、液送給機及び負荷側送給機を運転する
第2モードと、 四方弁機構を負荷用冷媒循環運転の側に切り換え、か
つ、液送給機を停止した状態で、空気送給機及び負荷側
送給機を運転する第3モードと、 四方弁機構を除霜用冷媒循環運転の側に切り換え、か
つ、負荷側送給機を停止した状態で、液送給機を運転す
る第4モードと、 四方弁機構を除霜用冷媒循環運転の側に切り換えた状態
で、負荷側送給機及び液送給機を運転する第5モード
と、 四方弁機構を除霜用冷媒循環運転の側に切り換え、か
つ、液送給機を停止した状態で、負荷側送給機を運転す
る第6モードとの択一的な切り換えを行なうモード切換
手段を設けてある2熱源ヒートポンプ装置。
1. An air heat exchanger for exchanging heat of a heat source air supplied by an air feeder with a refrigerant, and a liquid heat exchange for exchanging heat of a heat source liquid supplied by a liquid feeder with a refrigerant. And a load heat exchanger for exchanging heat between the load-side heat medium supplied by the load-side feeder and the refrigerant. The refrigerant path is switched by one four-way valve mechanism, and the refrigerant is supplied to the compressor-to-compressor. Load heat exchanger-expansion valve mechanism-air heat exchanger-liquid heat exchanger-compressor circulating load refrigerant circulation, and refrigerant in compressor-air heat exchanger-expansion valve mechanism-pair Refrigerant circuit configuration to selectively perform the defrosting refrigerant circulation operation in which the load heat exchanger, the liquid heat exchanger, and the compressor are circulated in this order, and select the following first to sixth modes according to the command. One-way switching, that is, switching the four-way valve mechanism to the load refrigerant circulation operation side and A first mode in which the liquid feeder and the load-side feeder are operated in a state in which the liquid supply device is stopped, and an air feeder and a liquid feeder in a state in which the four-way valve mechanism is switched to the load refrigerant circulation operation side. And a second mode in which the load-side feeder is operated, and the air feeder and the load-side feeder in a state in which the four-way valve mechanism is switched to the load refrigerant circulation operation side and the liquid feeder is stopped. A fourth mode of operating the liquid feeder with the four-way valve mechanism switched to the side of the defrosting refrigerant circulation operation and stopping the load-side feeder; and a four-way valve. A fifth mode in which the load-side feeder and the liquid feeder are operated in a state where the mechanism is switched to the side of the defrosting refrigerant circulation operation, and a four-way valve mechanism is switched to the side of the defrosting refrigerant circulation operation, and In the state in which the liquid feeder is stopped, an alternative switching to the sixth mode in which the load side feeder is operated is performed. A two-source heat pump device provided with a mode switching means.
【請求項2】 前記対液熱交換器を、伝熱管内に熱源液
を通過させ、かつ、伝熱管外に冷媒を通過させる満液式
熱交換器にしてある請求項1記載の2熱源ヒートポンプ
装置。
2. The heat pump according to claim 1, wherein the liquid heat exchanger is a liquid-fill type heat exchanger that allows a heat source liquid to pass through the heat transfer tube and a refrigerant to pass outside the heat transfer tube. apparatus.
【請求項3】 満液式熱交換器を用いた前記対液熱交換
器における液相冷媒の液位を検出して、その検出液位に
基づき前記膨張弁機構の開度を調整する膨張弁制御手段
を設けてある請求項2記載の2熱源ヒートポンプ装置。
3. An expansion valve for detecting a liquid level of a liquid-phase refrigerant in the liquid-to-liquid heat exchanger using a liquid-filled heat exchanger, and adjusting an opening of the expansion valve mechanism based on the detected liquid level. 3. The two-heat-source heat pump device according to claim 2, further comprising control means.
JP2000396522A 2000-12-27 2000-12-27 Dual heat-sources heat pump apparatus Withdrawn JP2002195685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396522A JP2002195685A (en) 2000-12-27 2000-12-27 Dual heat-sources heat pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396522A JP2002195685A (en) 2000-12-27 2000-12-27 Dual heat-sources heat pump apparatus

Publications (1)

Publication Number Publication Date
JP2002195685A true JP2002195685A (en) 2002-07-10

Family

ID=18861798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396522A Withdrawn JP2002195685A (en) 2000-12-27 2000-12-27 Dual heat-sources heat pump apparatus

Country Status (1)

Country Link
JP (1) JP2002195685A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002695A (en) * 2006-06-20 2008-01-10 Daikin Ind Ltd Heat pump device
CN111520935A (en) * 2019-02-04 2020-08-11 开利公司 Heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002695A (en) * 2006-06-20 2008-01-10 Daikin Ind Ltd Heat pump device
CN111520935A (en) * 2019-02-04 2020-08-11 开利公司 Heat exchanger
CN111520935B (en) * 2019-02-04 2023-11-24 开利公司 heat exchanger

Similar Documents

Publication Publication Date Title
JP5868498B2 (en) Heat pump equipment
JP2001289465A (en) Air conditioner
JP2010181104A (en) Heat pump type hot water-supply/air-conditioning device
JP2008111589A (en) Heat-source unit of refrigeration apparatus and refrigeration apparatus
JP2010203673A (en) Air conditioner
JP5145026B2 (en) Air conditioner
KR20120083139A (en) Heat pump type speed heating apparatus
JP2006017427A (en) Cooling system
JP2008190789A (en) Air conditioner
JP4549205B2 (en) Engine driven heat pump
JP6888280B2 (en) Refrigerator
JP2002195685A (en) Dual heat-sources heat pump apparatus
JP2001235237A (en) Refrigerating system
JP2001165526A (en) Double heat source type heat pump device
JP4360183B2 (en) Air conditioner
JP2011127778A (en) Fluid utilization system and operation control method of the same
JP2003207225A (en) Heat pump device
JP4380293B2 (en) Air conditioner
JP2002195686A (en) Duel heat-source heat pump apparatus
JP3164079B2 (en) Refrigeration equipment
JP4372247B2 (en) Air conditioner
JPH03164668A (en) Heat pump device
JP2000074524A (en) Engine driven heat pump system
JP3448897B2 (en) Heat pump type heating and cooling water heater
KR101155471B1 (en) Heat pump type speed heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080124