JP2003207225A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JP2003207225A
JP2003207225A JP2002004292A JP2002004292A JP2003207225A JP 2003207225 A JP2003207225 A JP 2003207225A JP 2002004292 A JP2002004292 A JP 2002004292A JP 2002004292 A JP2002004292 A JP 2002004292A JP 2003207225 A JP2003207225 A JP 2003207225A
Authority
JP
Japan
Prior art keywords
heat
heat source
load
medium
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002004292A
Other languages
Japanese (ja)
Inventor
Yasuo Uchikawa
靖夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002004292A priority Critical patent/JP2003207225A/en
Publication of JP2003207225A publication Critical patent/JP2003207225A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To properly switch a load-corresponded operation by two heat sources, the load-corresponded operation only by a first heat source, and the load- corresponded operation only by a second heat source to secure high efficiency of the device. <P>SOLUTION: The load-corresponded operation by two heat sources are executed only under a condition that the difference Δt between a temperature t1 of the first heat source heat medium A and a temperature t2 of a second heat source heat medium L is less than a set temperature difference Z1 (or Z2), under a condition that the temperature t1 of the first heat source heating medium A is more than a first set threshold temperature X, and the temperature t2 of the second heat source heat medium L is more than a second threshold temperature Y, and the load-corresponded operation only by the first heat source, or the load-corresponded operation only by the second heat source is executed when the difference Δt is more than the set temperature difference Z1 (or Z2). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はヒートポンプ装置に
関し、詳しくは、冷媒を負荷熱媒と熱交換させる負荷熱
交換器と、冷媒を第1熱源熱媒と熱交換させる第1熱源
熱交換器と、冷媒を第2熱源熱媒と熱交換させる第2熱
源熱交換器を設け、第1及び第2熱源熱交換器に冷媒を
直列に通過させる状態でそれら第1及び第2熱源熱交換
器を蒸発器として機能させて第1及び第2熱源熱媒の両
方から採熱しながら、負荷熱交換器を凝縮器として機能
させて負荷熱媒を加熱する2熱源併用の負荷対応運転
と、第2熱源熱交換器を機能停止させた状態で、第1熱
源熱交換器を蒸発器として機能させて第1熱源熱媒から
採熱しながら、負荷熱交換器を凝縮器として機能させて
負荷熱媒を加熱する第1熱源単独の負荷対応運転と、第
1熱源熱交換器を機能停止させた状態で、第2熱源熱交
換器を蒸発器として機能させて第2熱源熱媒から採熱し
ながら、負荷熱交換器を凝縮器として機能させて負荷熱
媒を加熱する第2熱源単独の負荷対応運転との切り換え
実施が可能な構成にし、これら2熱源併用の負荷対応運
転と第1熱源単独の負荷対応運転と第2熱源単独の負荷
対応運転との切り換えを第1及び第2熱源熱媒夫々の温
度に応じて自動的に行う制御手段を設けてあるヒートポ
ンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device, and more specifically, a load heat exchanger for exchanging heat between a refrigerant and a load heat medium, and a first heat source heat exchanger for exchanging heat between a refrigerant and a first heat source heat medium. , A second heat source heat exchanger for exchanging heat between the refrigerant and the second heat source heat medium is provided, and the first and second heat source heat exchangers are connected to the first and second heat source heat exchangers in a state of passing the refrigerant in series. A load-compatible operation in which two heat sources are used in combination, where the load heat exchanger functions as a condenser to heat the load heat medium while functioning as an evaporator and collecting heat from both the first and second heat source heat media, and a second heat source With the heat exchanger stopped, the first heat source heat exchanger functions as an evaporator to collect heat from the first heat source heat medium, while the load heat exchanger functions as a condenser to heat the load heat medium. Load-only operation of the first heat source and the first heat source heat exchanger In the stopped state, the second heat source heat exchanger alone functions as an evaporator to collect heat from the second heat source heat medium, while the load heat exchanger functions as a condenser to heat the load heat medium alone. Of the first heat source and the second heat source, and the load corresponding operation of the first heat source alone and the load compatible operation of the second heat source alone are switched. The present invention relates to a heat pump device provided with a control means that automatically performs the heating medium in accordance with the temperature of each heat medium.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ装置では、
第1熱源熱交換器を単独に蒸発器として機能させている
状況でその第1熱源熱交換器において第1熱源熱媒から
所定下限量の熱を採取できるときの第1熱源熱媒の温度
を第1設定閾温度にし、また同様に、第2熱源熱交換器
を単独に蒸発器として機能させている状況でその第2熱
源熱交換器において第2熱源熱媒から所定下限量の熱を
採取できるときの第2熱源熱媒の温度を第2設定閾温度
にし、そして、制御手段を単純に、次の(A)〜(C)
の各条件に対して、 t1≧Xかつt2≧Y ………(A) t1≧Xかつt2<Y ………(B) t1<Xかつt2≧Y ………(C) 但し、t1:第1熱源熱媒の温度 t2:第2熱源熱媒の温度 X:第1設定閾温度 Y:第2設定閾温度 第1及び第2熱源熱媒が(A)の条件にあるとき2熱源
併用の負荷対応運転を実施し、第1及び第2熱源熱媒が
(B)の条件にあるとき第1熱源単独の負荷対応運転を
実施し、第1及び第2熱源熱媒が(C)の条件にあると
き第2熱源単独の負荷対応運転を実施する構成にしてい
た。
2. Description of the Related Art Conventionally, in this type of heat pump device,
The temperature of the first heat source heat medium when a predetermined lower limit amount of heat can be extracted from the first heat source heat medium in the first heat source heat exchanger in the situation where the first heat source heat exchanger is independently functioning as an evaporator The first set threshold temperature is set, and similarly, in the second heat source heat exchanger, a predetermined lower limit amount of heat is extracted from the second heat source heat medium in the situation where the second heat source heat exchanger is independently functioning as an evaporator. The temperature of the second heat source heat medium when possible is set to the second set threshold temperature, and the control means is simply set to the following (A) to (C).
For each condition of t1 ≧ X and t2 ≧ Y (A) t1 ≧ X and t2 <Y (B) t1 <X and t2 ≧ Y (C) where t1: First heat source heat medium temperature t2: Second heat source heat medium temperature X: First set threshold temperature Y: Second set threshold temperature When the first and second heat source heat mediums are in the condition (A), both heat sources are used together When the first and second heat source heat mediums are in the condition (B), the load corresponding operation of the first heat source alone is performed, and the first and second heat source heat mediums are (C). When the conditions are met, the load corresponding operation of the second heat source alone is performed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
のヒートポンプ装置では、第1熱源熱媒の温度t1が第
1設定閾温度X以上で、かつ、第2熱源熱媒の温度t2
も第2設定閾温度Y以上である上記(A)の条件下にあ
るにもかかわらず、その条件下で実施する2熱源併用の
負荷対応運転において装置効率(装置全体としての必要
動力に対する採熱量の比値)が、同等の熱源条件下で第
1熱源単独の負荷対応運転や第2熱源単独の負荷対応運
転を実施した場合よりも低くなることがあり、これが原
因で期間平均の装置効率が低く制限されて、その分、省
エネ効果が低くなる問題があった。
However, in the above-described conventional heat pump device, the temperature t1 of the first heat source heat medium is equal to or higher than the first set threshold temperature X and the temperature t2 of the second heat source heat medium.
Even under the condition of (A) above that the second set threshold temperature Y or more, the device efficiency (the amount of heat taken for the required power of the entire device in the load-corresponding operation in which two heat sources are used is performed under the condition). Ratio value of) may be lower than that when the load-corresponding operation of the first heat source alone or the load-corresponding operation of the second heat source alone is carried out under the same heat source condition. There was a problem that the energy saving effect was reduced by that much because it was limited to a low level.

【0004】この実情に鑑み、本発明の主たる課題は、
研究結果に基づた合理的な切換制御形態を採ることによ
り上記問題を効果的に解消する点にある。
In view of this situation, the main problem of the present invention is to
The above problem is effectively solved by adopting a rational switching control mode based on the research results.

【0005】[0005]

【課題を解決するための手段】〔1〕請求項1に係る発
明はヒートポンプ装置に係り、その特徴は、冷媒を負荷
熱媒と熱交換させる負荷熱交換器と、冷媒を第1熱源熱
媒と熱交換させる第1熱源熱交換器と、冷媒を第2熱源
熱媒と熱交換させる第2熱源熱交換器を設け、第1及び
第2熱源熱交換器に冷媒を直列に通過させる状態でそれ
ら第1及び第2熱源熱交換器を蒸発器として機能させて
第1及び第2熱源熱媒の両方から採熱しながら、負荷熱
交換器を凝縮器として機能させて負荷熱媒を加熱する2
熱源併用の負荷対応運転と、第2熱源熱交換器を機能停
止させた状態で、第1熱源熱交換器を蒸発器として機能
させて第1熱源熱媒から採熱しながら、負荷熱交換器を
凝縮器として機能させて負荷熱媒を加熱する第1熱源単
独の負荷対応運転と、第1熱源熱交換器を機能停止させ
た状態で、第2熱源熱交換器を蒸発器として機能させて
第2熱源熱媒から採熱しながら、負荷熱交換器を凝縮器
として機能させて負荷熱媒を加熱する第2熱源単独の負
荷対応運転との切り換え実施が可能な構成にし、これら
2熱源併用の負荷対応運転と第1熱源単独の負荷対応運
転と第2熱源単独の負荷対応運転との切り換えを第1及
び第2熱源熱媒夫々の温度に応じて自動的に行う制御手
段を設ける構成において、前記制御手段を、次の(イ)
〜(ヘ)の各条件に対して、 t1≧Xかつt2≧Yかつt1≧t2かつΔt<Z1 ………(イ) t1≧Xかつt2≧Yかつt1≦t2かつΔt<Z2 ………(ロ) t1≧Xかつt2≧Yかつt1>t2かつΔt≧Z1 ………(ハ) t1≧Xかつt2≧Yかつt1<t2かつΔt≧Z2 ………(ニ) t1≧Xかつt2<Y ………(ホ) t1<Xかつt2≧Y ………(ヘ) 但し、t1:第1熱源熱媒の温度 t2:第2熱源熱媒の温度 Δt:第1熱源熱媒と第2熱源熱媒との温度差 X:第1設定閾温度 Y:第2設定閾温度 Z1:第1設定温度差 Z2:第2設定温度差 第1及び第2熱源熱媒が(イ)又は(ロ)の条件にある
とき2熱源併用の負荷対応運転を実施し、第1及び第2
熱源熱媒が(ハ)又は(ホ)の条件にあるとき第1熱源
単独の負荷対応運転を実施し、第1及び第2熱源熱媒が
(ニ)又は(ヘ)の条件にあるとき第2熱源単独の負荷
対応運転を実施する構成にしてある点にある。
[1] The invention according to claim 1 relates to a heat pump device, which is characterized by a load heat exchanger for exchanging heat between a refrigerant and a load heat medium, and a refrigerant as a first heat source heat medium. A first heat source heat exchanger for exchanging heat with the second heat source heat exchanger for exchanging heat with the second heat source heat medium, and a refrigerant passing through the first and second heat source heat exchangers in series. While making the first and second heat source heat exchangers function as an evaporator and collecting heat from both the first and second heat source heat medium, the load heat exchanger functions as a condenser to heat the load heat medium 2
With the load-compatible operation using a heat source and the second heat source heat exchanger stopped functioning, the first heat source heat exchanger is caused to function as an evaporator and heat is taken from the first heat source heat medium while the load heat exchanger is operated. The load-corresponding operation of the first heat source alone, which functions as a condenser to heat the load heat medium, and the second heat source heat exchanger, which functions as an evaporator, with the first heat source heat exchanger stopped 2 Heat source While collecting heat from the heat medium, the load heat exchanger functions as a condenser to heat the load heat medium. In a configuration in which a control means is provided for automatically switching between the corresponding operation and the load-compatible operation of the first heat source alone and the load-compatible operation of the second heat source alone according to the temperature of each of the first and second heat source heat mediums, The control means is
For each condition of (f): t1 ≧ X and t2 ≧ Y and t1 ≧ t2 and Δt <Z1 ... (A) t1 ≧ X and t2 ≧ Y and t1 ≦ t2 and Δt <Z2 ... (B) t1 ≧ X and t2 ≧ Y and t1> t2 and Δt ≧ Z1 ... (C) t1 ≧ X and t2 ≧ Y and t1 <t2 and Δt ≧ Z2 ... (D) t1 ≧ X and t2 <Y ... (E) t1 <X and t2 ≧ Y ... (F) where, t1: temperature of first heat source heat medium t2: temperature of second heat source heat medium Δt: first heat source heat medium and first 2 Temperature difference from heat source heat medium X: First set threshold temperature Y: Second set threshold temperature Z1: First set temperature difference Z2: Second set temperature difference The first and second heat source heat mediums are (a) or ( When the condition of (b) is met, the load-corresponding operation using two heat sources together is carried out, and the first and second
When the heat source heat medium is in the condition of (c) or (e), the load corresponding operation of the first heat source alone is performed, and when the first and second heat source heat medium is in the condition of (d) or (f), The point is that the configuration is such that load-only operation of the two heat sources is performed.

【0006】つまり、上記構成において、第1設定閾温
度Xは従来装置と同様、第1熱源熱交換器を単独に蒸発
器として機能させている状況でその第1熱源熱交換器に
おいて第1熱源熱媒から所定下限量の熱を採取できると
きの第1熱源熱媒の温度とし、また、第2設定閾温度Y
も従来装置と同様、第2熱源熱交換器を単独に蒸発器と
して機能させている状況でその第2熱源熱交換器におい
て第2熱源熱媒から所定下限量の熱を採取できるときの
第2熱源熱媒の温度とするが、種々の実験の結果、第1
及び第2熱源熱交換器に冷媒を直列に通過させてそれら
第1及び第2熱源熱交換器を蒸発器として機能させる場
合(すなわち、2熱源併用の負荷対応運転)では、第1
熱源熱媒の温度t1が第1設定閾温度X以上(t1≧
X)で、かつ、第2熱源熱媒の温度t2も第2設定閾温
度Y以上(t2≧Y)であるとしても、それら第1熱源
熱媒の温度t1と第2熱源熱媒の温度t2との差Δtが
ある値以上に大きいと、熱源熱媒の温度が高い方の熱源
熱交換器でのみ冷媒の蒸発が進む状態になって、その影
響で、熱源熱媒の温度が低い方の熱源熱交換器では冷媒
の蒸発(換言すれば、熱源熱媒からの採熱)がほとんど
行なわれなくなることが判明した。
That is, in the above-mentioned structure, the first set threshold temperature X is the same as in the conventional apparatus, and in the situation where the first heat source heat exchanger alone functions as an evaporator, the first heat source heat exchanger has the first heat source. The temperature of the first heat source heat medium when a predetermined lower limit amount of heat can be collected from the heat medium, and the second set threshold temperature Y
Similarly to the conventional device, in the second heat source heat exchanger in the situation where the second heat source heat exchanger is independently functioning as the evaporator, the second lower limit amount of heat can be extracted from the second heat source heat medium. Although the temperature of the heat source heat medium is used, as a result of various experiments, the first
In the case where the refrigerant is allowed to pass through the first and second heat source heat exchangers in series to cause the first and second heat source heat exchangers to function as an evaporator (that is, load compatible operation using two heat sources together),
The temperature t1 of the heat source heat medium is equal to or higher than the first set threshold temperature X (t1 ≧
X), and even if the temperature t2 of the second heat source heat medium is equal to or higher than the second set threshold temperature Y (t2 ≧ Y), the temperature t1 of the first heat source heat medium and the temperature t2 of the second heat source heat medium. When the difference Δt between the heat source heat medium and the heat source heat medium is larger than a certain value, the refrigerant evaporates only in the heat source heat exchanger having the higher temperature, and the influence of the temperature of the heat source heat medium is lower. It has been found that the heat source heat exchanger hardly vaporizes the refrigerant (in other words, takes heat from the heat source heat medium).

【0007】そして、このことが原因で、第1熱源熱媒
の温度t1が第1設定閾温度X以上で、かつ、第2熱源
熱媒の温度t2も第2設定閾温度Y以上の条件下にある
にもかかわらず、第1熱源熱媒が第2熱源熱媒よりも高
温の場合には第1熱源単独の負荷対応運転を実施した方
が、また、第2熱源熱媒が第1熱源熱媒よりも高温の場
合には第2熱源単独の負荷対応運転を実施した方が、同
等の熱源条件下において2熱源併用の負荷対応運転を実
施するよりも、一方の熱源熱交換器の機能停止による必
要動力の低減分だけ装置効率が高くなるといったこと
(すなわち、従来装置における先述の如き問題)が生じ
る。
Due to this, the temperature t1 of the first heat source heat medium is equal to or higher than the first set threshold temperature X, and the temperature t2 of the second heat source heat medium is also equal to or higher than the second set threshold temperature Y. Despite the above, if the first heat source heat medium is higher in temperature than the second heat source heat medium, it is better to carry out the load-corresponding operation of the first heat source alone, or the second heat source heat medium is the first heat source. When the temperature is higher than that of the heating medium, performing the load-corresponding operation of the second heat source alone is more effective than performing the load-corresponding operation of the two heat sources under the same heat source condition. There is a problem that the efficiency of the device is increased by the reduction of the required power due to the stop (that is, the above-mentioned problem in the conventional device).

【0008】このことに対し、上記構成によれば、第1
熱源熱媒の温度t1が第1設定閾温度X以上で、かつ、
第2熱源熱媒の温度t2が第2閾温度Y以上の条件下に
おいても、第1熱源熱媒の温度t1と第2熱源熱媒の温
度t2との差Δtが設定温度差Z1,Z2よりも小さい
(イ)又は(ロ)の条件下でのみ2熱源併用の負荷対応
運転を実施し、その差Δtが設定温度差Z1,Z2以上
の(ハ)又は(ニ)の条件下では、(ホ)又は(ヘ)の
条件下にある場合と同じく第1熱源単独の負荷対応運転
や第2熱源単独の負荷対応運転を実施するから、先述の
従来装置に比べ、2熱源併用の負荷対応運転と第1熱源
単独の負荷対応運転と第2熱源単独の負荷対応運転との
切り換えを極力高い装置効率を確保する上で一層的確な
ものにすることができ、これにより、期間平均の装置効
率を効果的に高めることができて、その分、省エネ効果
を効果的に高めることができる。
On the other hand, according to the above configuration, the first
The temperature t1 of the heat source heat medium is equal to or higher than the first set threshold temperature X, and
Even under the condition that the temperature t2 of the second heat source heat medium is equal to or higher than the second threshold temperature Y, the difference Δt between the temperature t1 of the first heat source heat medium and the temperature t2 of the second heat source heat medium is smaller than the set temperature differences Z1 and Z2. The load-corresponding operation using the two heat sources together is carried out only under the condition of (a) or (b), and the difference Δt is (c) or (d) above the set temperature difference Z1, Z2. As in the case of (e) or (f), the load-corresponding operation of the first heat source alone and the load-corresponding operation of the second heat source alone are carried out. It is possible to make the switching between the load-supporting operation of the first heat source alone and the load-supporting operation of the second heat source more accurate in order to ensure the device efficiency as high as possible. It is possible to effectively increase the energy saving effect. You can

【0009】なお、請求項1に係る発明の実施において
は、第1熱源熱交換器での冷媒蒸発温度と第2熱源熱交
換器での冷媒蒸発温度との差を考慮した補正の意味で、
上記(イ)〜(ヘ)の各条件においてt1,t2に次の
補正値を採用するようにしてもよい。 補正値t1:第1熱源熱媒の温度と第1熱源熱交換器に
おける冷媒蒸発温度との差 補正値t2:第2熱源熱媒の温度と第2熱源熱交換器に
おける冷媒蒸発温度との差 (なお、この場合においてもΔtは第1熱源熱媒と第2
熱源熱媒との温度差)
In the practice of the invention according to claim 1, in the sense of correction in consideration of the difference between the refrigerant evaporation temperature in the first heat source heat exchanger and the refrigerant evaporation temperature in the second heat source heat exchanger,
The following correction values may be adopted for t1 and t2 under the above conditions (a) to (f). Correction value t1: Difference between temperature of first heat source heat medium and refrigerant evaporation temperature in first heat source heat exchanger Correction value t2: Difference between temperature of second heat source heat medium and refrigerant evaporation temperature in second heat source heat exchanger (In this case also, Δt is equal to the first heat source heat medium and the second heat source heat medium.
Temperature difference with heat source heat medium)

【0010】〔2〕請求項2に係る発明は、請求項1に
係る発明の実施に好適な実施形態を特定するものであ
り、その特徴は、第1熱源熱媒が大気空気であることに
対し、前記した各負荷対応運転の切り換え実施に加え
て、負荷熱交換器を機能停止させた状態で、第2熱源熱
交換器を蒸発器として機能させて第2熱源熱媒から採熱
しながら、第1熱源熱交換器を凝縮器として機能させて
放熱させる第2熱源除霜運転と、第2熱源熱交換器を機
能停止させた状態で、負荷熱交換器を蒸発器として機能
させて負荷熱媒から採熱しながら、第1熱源熱交換器を
凝縮器として機能させて放熱させる負荷熱源除霜運転と
の切り換え実施が可能な構成にし、前記制御手段を、第
1熱源熱交換器の除霜必要時に各負荷対応運転に優先し
て除霜運転を実施する際、第2熱源熱媒の温度t2が除
霜用の設定閾温度Y′以上のときには第2熱源除霜運転
を実施し、第2熱源熱媒の温度t2が除霜用の設定閾温
度Y′未満のときには負荷熱源除霜運転を実施する構成
にしてある点にある。
[2] The invention according to claim 2 specifies the preferred embodiment for carrying out the invention according to claim 1, and is characterized in that the first heat source heat medium is atmospheric air. On the other hand, in addition to the switching operation of each load corresponding operation described above, while the load heat exchanger is stopped, the second heat source heat exchanger functions as an evaporator to collect heat from the second heat source heat medium, The second heat source defrosting operation in which the first heat source heat exchanger functions as a condenser to radiate heat, and the load heat exchanger functions as an evaporator in a state in which the second heat source heat exchanger is deactivated. While taking heat from the medium, the first heat source heat exchanger is configured to be switchable to a load heat source defrosting operation in which the first heat source heat exchanger functions as a condenser to radiate heat, and the control means is configured to defrost the first heat source heat exchanger. Perform defrosting operation prior to each load operation when necessary When the temperature t2 of the second heat source heat medium is equal to or higher than the set threshold temperature Y'for defrosting, the second heat source defrosting operation is performed, and the temperature t2 of the second heat source heat medium is the set threshold temperature Y'for defrosting. When it is less than the above, the configuration is such that the load heat source defrosting operation is performed.

【0011】つまり、この構成では、2熱源併用の負荷
対応運転又は第1熱源単独の負荷対応運転において第1
熱源熱交換器に生じた付着霜(第1熱源熱媒としての大
気空気に含まれる水分により生じた付着霜)を除去する
除霜運転として上記の第2熱源除霜運転と負荷熱源除霜
運転との選択実施を可能にし、第2熱源除霜運転では負
荷熱媒からの採熱は行なわずに第2熱源熱媒からの採取
熱のみにより第1熱源熱交換器の除霜を行ない、負荷熱
源除霜運転では逆に第2熱源熱媒からの採取熱のみによ
り第1熱源熱交換器の除霜を行なう。
In other words, in this configuration, the first heat source is used in the load handling operation in which two heat sources are used in combination or the first heat source is used in the load handling operation.
The second heat source defrosting operation and the load heat source defrosting operation as the defrosting operation for removing the adhered frost generated in the heat source heat exchanger (adhered frost generated by the moisture contained in the atmospheric air as the first heat source heat medium) In the second heat source defrosting operation, the heat of the load heat medium is not collected, and only the heat of the second heat source heat medium is collected to defrost the first heat source heat exchanger. On the contrary, in the heat source defrosting operation, the first heat source heat exchanger is defrosted only by the heat collected from the second heat source heat medium.

【0012】そして、これら2つの除霜運転を選択的に
実施するのに、前記の第2設定閾温度Yと同様、第2熱
源熱交換器を単独に蒸発器として機能させている状況で
その第2熱源熱交換器において第2熱源熱媒から除霜用
の所定下限量の熱を採取できるときの第2熱源熱媒の温
度を除霜用の設定閾温度Y′(代表例としては第2設定
閾温度Yに等しい温度)にした状態で、上記の如く第2
熱源熱媒の温度t2が除霜用の設定閾温度Y′以上のと
きには第2熱源除霜運転を選択実施するようにして、負
荷熱源除霜運転よりも第2熱源除霜運転を優先的に実施
する選択形態を採ることにより、負荷熱媒からの採熱に
よる負荷対応性の低下を極力回避することができて、高
い負荷対応性を得ることができる。
In order to selectively carry out these two defrosting operations, as in the case of the second set threshold temperature Y, the second heat source heat exchanger is operated independently as an evaporator. The temperature of the second heat source heat medium when the predetermined lower limit amount of heat for defrosting can be collected from the second heat source heat medium in the second heat source heat exchanger is set to the defrosting set threshold temperature Y ′ (typically, 2 set threshold temperature Y) and the second as described above.
When the temperature t2 of the heat source heat medium is equal to or higher than the set threshold temperature Y'for defrosting, the second heat source defrosting operation is selectively executed, and the second heat source defrosting operation is prioritized over the load heat source defrosting operation. By adopting the selected form to be implemented, it is possible to avoid a decrease in load adaptability due to heat collection from the load heat medium as much as possible, and it is possible to obtain high load adaptability.

【0013】また、第2熱源熱媒の温度t2が除霜用の
設定閾温度Y′未満のときには負荷熱源除霜運転を実施
する構成にしてあることで、第2熱源熱媒が採熱源とし
て不十分な状況下でも第1熱源熱交換器の除霜を行なう
ことができて、その除霜後に2熱源併用の負荷対応運転
や第1熱源単独の負荷対応運転に復帰することができ、
この点からも負荷対応性に優れた装置になる。
Further, the load heat source defrosting operation is performed when the temperature t2 of the second heat source heat medium is lower than the set threshold temperature Y'for defrosting, so that the second heat source heat medium serves as a heat collecting source. It is possible to perform defrosting of the first heat source heat exchanger even in an insufficient condition, and after the defrosting, it is possible to return to load compatible operation using both two heat sources or load compatible operation of the first heat source alone,
From this point as well, the device has excellent load adaptability.

【0014】[0014]

【発明の実施の形態】図1は2熱源ヒートポンプ装置を
用いた融雪装置を示し、Ngは地中Gに縦姿勢で埋設し
たU字管状の地中熱交換器、Nyは路面等の融雪対象箇
所に設置した融雪用熱交換器、HPはケーシングに冷媒
回路側及び熱媒側夫々の主要構成品を収容したパッケー
ジ型の2熱源ヒートポンプ装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a snow melting device using a two-source heat pump device, where Ng is a U-shaped underground heat exchanger buried vertically in the ground G, and Ny is a snow melting target such as a road surface. A heat exchanger for snow melting, HP, which is installed at a location, is a package-type two-heat-source heat pump device in which main components of the refrigerant circuit side and the heat medium side are housed in a casing.

【0015】2熱源ヒートポンプ装置HPは、冷媒回路
側の主要構成品として、圧縮機1、冷媒Rを第1熱源熱
媒としての外気A(大気空気)と熱交換させる第1熱源
熱交換2、冷媒Rを第2熱源熱媒としての熱源側熱媒液
Lと熱交換させる第2熱源熱交換器3、冷媒Rを負荷熱
媒としての負荷側熱媒液Mと熱交換させる負荷熱交換器
4、レシーバ5、四個の逆止弁6a〜6dをブリッジ回
路状に組み合わせた冷媒案内回路6、膨張弁機構7、四
方弁Vxを備えている。
The two heat source heat pump device HP is a main component on the refrigerant circuit side. The compressor 1 is a first heat source heat exchange 2 for exchanging heat between the refrigerant R and the outside air A (atmosphere air) as the first heat source heat medium. The second heat source heat exchanger 3 for exchanging heat between the refrigerant R and the heat source side heat medium liquid L as the second heat source heat medium, and the load heat exchanger for exchanging heat between the refrigerant R and the load side heat medium liquid M as the load heat medium. 4, a receiver 5, a refrigerant guide circuit 6 in which four check valves 6a to 6d are combined in a bridge circuit shape, an expansion valve mechanism 7, and a four-way valve Vx.

【0016】また、この2熱源ヒートポンプ装置HP
は、熱媒側の主要構成品として、第1熱源熱交換器2に
外気Aを通風するファン2a、熱源側循環路8を通じて
第2熱源熱交換器3と地中熱交換器Ngとの間で熱源側
熱媒液Lを循環させる熱源側熱媒ポンプP1、負荷側循
環路9を通じて負荷熱交換器4と融雪用熱交換器Nyと
の間で負荷側熱媒液Mを循環させる負荷側熱媒ポンプP
2を備えている。
Also, this two-source heat pump device HP
Between the second heat source heat exchanger 3 and the underground heat exchanger Ng through the heat source side circulation passage 8 as a fan 2a that ventilates the outside air A to the first heat source heat exchanger 2 as main components on the heat medium side. The heat source side heat medium pump P1 for circulating the heat source side heat medium liquid L, and the load side for circulating the load side heat medium liquid M between the load heat exchanger 4 and the snow melting heat exchanger Ny through the load side circulation path 9 Heat medium pump P
Equipped with 2.

【0017】第1熱源熱交換器2には、冷媒Rを伝熱管
内に通過させるのに対し外気Aを伝熱管外に通過させる
フィンチューブコイル型の乾式熱交換器を用い、また、
負荷熱交換器4にも、冷媒Rを伝熱管内に通過させるの
に対し負荷側熱媒液Mを伝熱管外に通過させる乾式熱交
換器を用いてあり、一方、第2熱源熱交換器3には、熱
源側熱媒液Lを伝熱管内に通過させるのに対し冷媒Rを
伝熱管外に通過させる満液式の熱交換器を用いてある。
熱源側熱媒液Lや負荷側熱媒液Mには、夫々、ブライン
や水を用いる。
The first heat source heat exchanger 2 is a fin tube coil type dry heat exchanger that allows the refrigerant R to pass through the heat transfer tube while allowing the outside air A to pass outside the heat transfer tube.
The load heat exchanger 4 also uses a dry heat exchanger that allows the refrigerant R to pass through the heat transfer tube while allowing the load-side heat transfer medium M to pass outside the heat transfer tube, while the second heat source heat exchanger is used. 3 is a liquid-filled heat exchanger that allows the heat source side heat transfer liquid L to pass through inside the heat transfer tube while allowing the refrigerant R to pass outside the heat transfer tube.
Brine and water are used for the heat source side heat transfer medium L and the load side heat transfer medium M, respectively.

【0018】2熱源ヒートポンプ装置HPの冷媒回路
は、前記四方弁Vxにより冷媒循環形態を負荷対応運転
用の冷媒循環形態と除霜運転用の冷媒循環形態とに切り
換える回路構成にしてあり、負荷対応運転用の冷媒循環
形態では、図2に示す如く、冷媒Rを圧縮機1―四方弁
Vx―負荷熱交換器4―冷媒案内回路6―レシーバ5―
膨張弁機構7―冷媒案内回路6―第1熱源熱交換器2―
四方弁Vx―第2熱源熱交換器3―圧縮機1の順に循環
させる。
The refrigerant circuit of the two-heat-source heat pump device HP has a circuit structure in which the four-way valve Vx switches the refrigerant circulation mode between the refrigerant circulation mode for load-corresponding operation and the refrigerant circulation mode for defrosting operation. In the refrigerant circulation mode for operation, as shown in FIG. 2, the refrigerant R is supplied to the compressor 1-the four-way valve Vx-the load heat exchanger 4-the refrigerant guide circuit 6-the receiver 5-.
Expansion valve mechanism 7-Refrigerant guide circuit 6-First heat source heat exchanger 2-
The four-way valve Vx, the second heat source heat exchanger 3, and the compressor 1 are circulated in this order.

【0019】また、除霜運転用の冷媒循環形態では、図
5に示す如く、冷媒Rを圧縮機1―四方弁Vx―第1熱
源熱交換器2―冷媒案内回路6―レシーバ5―膨張弁機
構7―冷媒案内回路6―負荷熱交換器4―四方弁Vx―
第2熱源熱交換器3―圧縮機1の順に循環させる。
Further, in the refrigerant circulation mode for the defrosting operation, as shown in FIG. 5, the refrigerant R is supplied to the compressor 1-four-way valve Vx-first heat source heat exchanger 2-refrigerant guide circuit 6-receiver 5-expansion valve. Mechanism 7-Refrigerant guide circuit 6-Load heat exchanger 4-Four way valve Vx-
The second heat source heat exchanger 3 and the compressor 1 are circulated in this order.

【0020】S1は外気Aの温度t1を検出する外気温
センサ、S2は熱源側熱媒液Lの温度t2を検出する液
温センサ、S3は第1熱源熱交換器2の着霜状態を検出
する着霜センサ、10は2熱源ヒートポンプ装置HPの
運転制御を司る制御器であり、この制御器10は、各セ
ンサS1〜S3の検出情報に基づいて四方弁Vxの切り
換え操作、及び、ファン2a、熱源側熱媒ポンプP1、
負荷側熱媒ポンプP2夫々の発停操作により次の5つの
運転の択一的な切り換えを行なう。
S1 is an outside air temperature sensor for detecting the temperature t1 of the outside air A, S2 is a liquid temperature sensor for detecting the temperature t2 of the heat source side heat transfer medium L, and S3 is a frosted state of the first heat source heat exchanger 2. The frost sensor 10 is a controller that controls the operation of the two-source heat pump device HP. The controller 10 switches the four-way valve Vx based on the detection information of the sensors S1 to S3, and the fan 2a. , The heat source side heat medium pump P1,
Each of the following five operations is selectively switched by starting / stopping each of the load-side heat medium pumps P2.

【0021】(2熱源併用の負荷対応運転)図2に示す
如く、負荷対応運転用の冷媒循環形態とする側に四方弁
Vxを切り換えて、冷媒Rを圧縮機1―四方弁Vx―負
荷熱交換器4―冷媒案内回路6―レシーバ5―膨張弁機
構7―冷媒案内回路6―第1熱源熱交換器2―四方弁V
x―第2熱源熱交換器3―圧縮機1の順に循環させ、こ
れに対し、ファン2a、熱源側熱媒ポンプP1、負荷側
熱媒ポンプP2の夫々を運転する。
(Load Corresponding Operation Using Two Heat Sources Together) As shown in FIG. 2, the four-way valve Vx is switched to the side in which the refrigerant circulation mode for load-corresponding operation is set, and the refrigerant R is compressed by the compressor 1-four-way valve Vx-load heat. Exchanger 4-Refrigerant guide circuit 6-Receiver 5-Expansion valve mechanism 7-Refrigerant guide circuit 6-First heat source heat exchanger 2-Four-way valve V
The x-second heat source heat exchanger 3-compressor 1 is circulated in this order, while the fan 2a, the heat source side heat medium pump P1, and the load side heat medium pump P2 are operated.

【0022】つまり、この2熱源併用の負荷対応運転で
は、第1熱源熱交換器2及び第2熱源熱交換器3に冷媒
Rを直列に通過させる状態で、それら第1及び第2熱源
熱交換器2,3を蒸発器Eとして機能させて外気Aと熱
源側熱媒液Lとの両方から採熱しながら、負荷熱交換器
4を凝縮器Cとして機能させて負荷側熱媒液Mを加熱
(負荷側熱媒液Mへの放熱)する。
That is, in the load-corresponding operation using the two heat sources in combination, the refrigerant R is passed through the first heat source heat exchanger 2 and the second heat source heat exchanger 3 in series, and the first and second heat source heat exchangers are exchanged. The load heat exchanger 4 is caused to function as a condenser C while the load side heat transfer medium M is heated while the devices 2 and 3 function as the evaporator E to collect heat from both the outside air A and the heat source side heat transfer liquid L. (The heat is dissipated to the heating medium liquid M on the load side).

【0023】そして、この2熱源併用の負荷対応運転に
より、融雪装置としては、地中熱交換器Ngによる地中
Gからの熱採取と、第1熱源熱交換器3による外気Aか
らの熱採取との両方を行ない、それら採取熱をヒートポ
ンプ装置HPにより昇温した上で融雪用熱交換器Nyか
ら放熱させて融雪対象箇所の融雪を行なう。
By the load-corresponding operation using both of the two heat sources, the snow melting device can collect heat from the underground G by the underground heat exchanger Ng and heat from the outside air A by the first heat source heat exchanger 3. And heat the collected heat by the heat pump device HP and then dissipate the heat from the snow-melting heat exchanger Ny to melt the snow-melting target portion.

【0024】(第1熱源単独の負荷対応運転)図3に示
す如く、負荷対応運転用の冷媒循環形態とする側に四方
弁Vxを切り換えて、冷媒Rを圧縮機1―四方弁Vx―
負荷熱交換器4―冷媒案内回路6―レシーバ5―膨張弁
機構7―冷媒案内回路6―第1熱源熱交換器2―四方弁
Vx―第2熱源熱交換器3―圧縮機1の順に循環させ、
これに対し、熱源側熱媒ポンプP1の運転を停止した状
態でファン2a及び負荷側熱媒ポンプP2を運転する。
(Load-only operation of the first heat source alone) As shown in FIG. 3, the four-way valve Vx is switched to the side in which the refrigerant circulation mode for the load-compatible operation is set, so that the refrigerant R is compressed by the compressor 1-four-way valve Vx-.
The load heat exchanger 4-refrigerant guide circuit 6-receiver 5-expansion valve mechanism 7-refrigerant guide circuit 6-first heat source heat exchanger 2-four-way valve Vx-second heat source heat exchanger 3-compressor 1 Let
On the other hand, the fan 2a and the load side heat medium pump P2 are operated in a state where the heat source side heat medium pump P1 is stopped.

【0025】つまり、この第1熱源単独の負荷対応運転
では、熱源側熱媒ポンプP1の停止による熱源側熱媒液
Lの供給停止により第2熱源熱交換器3を実質的に機能
停止させた状態で、第1熱源熱交換器2を蒸発器Eとし
て機能させて外気Aから採熱しながら、負荷熱交換器4
を凝縮器Cとして機能させて負荷側熱媒液Mを加熱す
る。
That is, in the load-only operation of the first heat source alone, the second heat source heat exchanger 3 is substantially stopped by stopping the supply of the heat source side heat medium liquid L by stopping the heat source side heat medium pump P1. In this state, while allowing the first heat source heat exchanger 2 to function as the evaporator E and collecting heat from the outside air A, the load heat exchanger 4
To function as a condenser C to heat the load-side heat transfer medium M.

【0026】そして、この第1熱源単独の負荷対応運転
により、融雪装置としては、第1熱源熱交換器2による
外気Aからの熱採取だけを行ない、その採取熱をヒート
ポンプ装置HPにより昇温した上で融雪用熱交換器Ny
から放熱させて融雪対象箇所の融雪を行なう。
By the load-corresponding operation of the first heat source alone, the snow melting device only collects heat from the outside air A by the first heat source heat exchanger 2, and the collected heat is raised by the heat pump device HP. Heat exchanger for snow melting Ny
The heat is radiated from and the snow is melted in the target area.

【0027】(第2熱源単独の負荷対応運転)図4に示
す如く、負荷対応運転用の冷媒循環形態とする側に四方
弁Vxを切り換えて、冷媒Rを圧縮機1―四方弁Vx―
負荷熱交換器4―冷媒案内回路6―レシーバ5―膨張弁
機構7―冷媒案内回路6―第1熱源熱交換器2―四方弁
Vx―第2熱源熱交換器3―圧縮機1の順に循環させ、
これに対し、ファン2aの運転を停止した状態で熱源側
熱媒ポンプP1及び負荷側熱媒ポンプP2を運転する。
(Load Corresponding Operation of Second Heat Source Alone) As shown in FIG. 4, the four-way valve Vx is switched to the side in which the refrigerant circulation mode for load-corresponding operation is established, so that the refrigerant R is compressed by the compressor 1-four-way valve Vx-.
The load heat exchanger 4-refrigerant guide circuit 6-receiver 5-expansion valve mechanism 7-refrigerant guide circuit 6-first heat source heat exchanger 2-four-way valve Vx-second heat source heat exchanger 3-compressor 1 Let
On the other hand, the heat source side heat medium pump P1 and the load side heat medium pump P2 are operated in a state where the operation of the fan 2a is stopped.

【0028】つまり、この第2熱源単独の負荷対応運転
では、ファン2aの停止による外気通風の停止により第
1熱源熱交換器2を実質的に機能停止させた状態で、第
2熱源熱交換器3を蒸発器Eとして機能させて熱源側熱
媒液Lから採熱しながら、負荷熱交換器4を凝縮器Cと
して機能させて負荷側熱媒Mを加熱する。
That is, in the load-corresponding operation of the second heat source alone, the second heat source heat exchanger 2 is substantially stopped by stopping the ventilation of the outside air by stopping the fan 2a. The load heat exchanger 4 is made to function as the condenser C and the load side heat medium M is heated while the heat exchanger 3 is made to collect heat from the heat source side heat medium liquid L while functioning as the evaporator E.

【0029】そして、この第2熱源単独の負荷対応運転
により、融雪装置としては、地中熱交換器Ngによる地
中Gからの熱採取だけを行い、その採取熱をヒートポン
プ装置HPにより昇温した上で融雪用熱交換器Nyから
放熱させて融雪対象箇所の融雪を行なう。
By the load-corresponding operation of the second heat source alone, the snow melting device only collects heat from the underground G by the underground heat exchanger Ng, and the collected heat is raised by the heat pump device HP. Heat is radiated from the snow-melting heat exchanger Ny to melt the snow-melting target portion.

【0030】(第2熱源除霜運転)図5に示す如く、除
霜運転用の冷媒循環形態とする側に四方弁Vxを切り換
えて、冷媒Rを圧縮機1―四方弁Vx―第1熱源熱交換
器2―冷媒案内回路6―レシーバ5―膨張弁機構7―冷
媒案内回路6―負荷熱交換器4―四方弁Vx―第2熱源
熱交換器3―圧縮機1の順に循環させ、これに対し、負
荷側熱媒ポンプP2及びファン2aの運転を停止した状
態で熱源側熱媒ポンプP1を運転する。
(Second heat source defrosting operation) As shown in FIG. 5, the four-way valve Vx is switched to the side of the refrigerant circulation mode for the defrosting operation, and the refrigerant R is compressed by the compressor 1-four-way valve Vx-first heat source. The heat exchanger 2-refrigerant guide circuit 6-receiver 5-expansion valve mechanism 7-refrigerant guide circuit 6-load heat exchanger 4-four-way valve Vx-second heat source heat exchanger 3-compressor 1 are circulated in this order, and On the other hand, the heat source side heat medium pump P1 is operated while the load side heat medium pump P2 and the fan 2a are stopped.

【0031】つまり、この第2熱源除霜運転では、負荷
側熱媒ポンプP2の停止による負荷側熱媒液Mの供給停
止により負荷熱交換器4を実質的に機能停止させた状態
で、第2熱源熱交換器3を蒸発器Eとして機能させて熱
源側熱媒液Lから採熱しながら、第1熱源熱交換器2を
凝縮器Cとして機能させて放熱させる。
In other words, in the second heat source defrosting operation, the load heat exchanger 4 is substantially stopped by stopping the supply of the load side heat transfer medium liquid M by stopping the load side heat transfer medium pump P2. While allowing the second heat source heat exchanger 3 to function as the evaporator E and collecting heat from the heat source side heat transfer medium L, the first heat source heat exchanger 2 functions as the condenser C to radiate heat.

【0032】そして、この第2熱源除霜運転により、融
雪装置としては、融雪用熱交換器Nyからの放熱を休止
した状態で、地中熱交換器Ngによる地中Gからの熱採
取だけを行ない、その採取熱をヒートポンプ装置HPに
より昇温した上で第1熱源熱交換器2から放熱させて第
1熱源熱交換器2の除霜を行なう。
By this second heat source defrosting operation, the snow melting device only collects heat from the underground G by the underground heat exchanger Ng in a state where the heat radiation from the snow melting heat exchanger Ny is stopped. The collected heat is heated by the heat pump device HP and then radiated from the first heat source heat exchanger 2 to defrost the first heat source heat exchanger 2.

【0033】(負荷熱源除霜運転)図6に示す如く、除
霜運転用の冷媒循環形態とする側に四方弁Vxを切り換
えて、冷媒Rを圧縮機1―四方弁Vx―第1熱源熱交換
器2―冷媒案内回路6―レシーバ5―膨張弁機構7―冷
媒案内回路6―負荷熱交換器4―四方弁Vx―第2熱源
熱交換器3―圧縮機1の順に循環させ、これに対し、熱
源側熱媒ポンプP1及びファン2aの運転を停止した状
態で負荷側熱媒ポンプP2を運転する。
(Load heat source defrosting operation) As shown in FIG. 6, the four-way valve Vx is switched to the side of the refrigerant circulation mode for the defrosting operation, and the refrigerant R is transferred to the compressor 1-four-way valve Vx-first heat source heat source. The exchanger 2 -refrigerant guide circuit 6 -receiver 5 -expansion valve mechanism 7 -refrigerant guide circuit 6 -load heat exchanger 4-four-way valve Vx -second heat source heat exchanger 3 -compressor 1 is circulated in this order, and On the other hand, the load side heat medium pump P2 is operated in a state where the heat source side heat medium pump P1 and the fan 2a are stopped.

【0034】つまり、この負荷熱源除霜運転では、熱源
側熱媒ポンプP1の停止による熱源側熱媒液Lの供給停
止により第2熱源熱交換器3を実質的に機能停止させた
状態で、負荷熱交換器4を蒸発器Eとして機能させて負
荷側熱媒液Mから採熱しながら、第1熱源熱交換器2を
凝縮器Cとして機能させて放熱させる。
That is, in the load heat source defrosting operation, the second heat source heat exchanger 3 is substantially stopped by stopping the supply of the heat source side heat medium liquid L by stopping the heat source side heat medium pump P1. While making the load heat exchanger 4 function as the evaporator E and collecting heat from the load side heat transfer medium M, the first heat source heat exchanger 2 functions as the condenser C to radiate heat.

【0035】そして、この負荷熱源除霜運転により、融
雪装置としては、融雪用熱交換器Nyからの放熱を休止
した状態で、負荷側熱媒液Mからの熱採取だけを行な
い、その採取熱をヒートポンプ装置HPにより昇温した
上で第1熱源熱交換器2から放熱させて第1熱源熱交換
器2の除霜を行なう。
By this load heat source defrosting operation, the snow melting device performs only heat extraction from the load side heat transfer medium M in a state where heat radiation from the snow melting heat exchanger Ny is stopped, and the collected heat is collected. Is heated by the heat pump device HP and then radiated from the first heat source heat exchanger 2 to defrost the first heat source heat exchanger 2.

【0036】以上の5つの運転の切り換えを各センサS
1〜S3の検出情報に基づいて自動的に行なうのに、制
御器10は、次の(イ)〜(ヘ)の各条件に対して、 t1≧Xかつt2≧Yかつt1≧t2かつΔt<Z1 ………(イ) t1≧Xかつt2≧Yかつt1≦t2かつΔt<Z2 ………(ロ) t1≧Xかつt2≧Yかつt1>t2かつΔt≧Z1 ………(ハ) t1≧Xかつt2≧Yかつt1<t2かつΔt≧Z2 ………(ニ) t1≧Xかつt2<Y ………(ホ) t1<Xかつt2≧Y ………(ヘ) 但し、t1:外気温センサS1により検出される外気A
の温度 t2:液温センサS2により検出される熱源側熱媒液L
の温度 Δt:t1とt2との差 X:第1設定閾温度 Y:第2設定閾温度 Z1:第1設定温度差 Z2:第2設定温度差 外気A及び熱源側熱媒液Lが(イ)又は(ロ)の条件に
あるときには2熱源併用の負荷対応運転を実施し、
(ハ)又は(ホ)の条件にあるときには第1熱源単独の
負荷対応運転を実施し、(ニ)又は(ヘ)の条件にある
ときには第2熱源単独の負荷対応運転を実施する構成に
してある。
The above five operations are switched by each sensor S.
Although automatically performed based on the detection information of 1 to S3, the controller 10 sets t1 ≧ X and t2 ≧ Y and t1 ≧ t2 and Δt for each of the following conditions (a) to (f). <Z1 ... (A) t1 ≧ X and t2 ≧ Y and t1 ≦ t2 and Δt <Z2 ... (B) t1 ≧ X and t2 ≧ Y and t1> t2 and Δt ≧ Z1 ... (C) t1 ≧ X and t2 ≧ Y and t1 <t2 and Δt ≧ Z2 ... (D) t1 ≧ X and t2 <Y ... (E) t1 <X and t2 ≧ Y ... (F) However, t1 : Outside air A detected by outside air temperature sensor S1
Temperature t2: heat source side heat transfer liquid L detected by the liquid temperature sensor S2
Temperature difference Δt: difference between t1 and t2: first set threshold temperature Y: second set threshold temperature Z1: first set temperature difference Z2: second set temperature difference outside air A and heat source side heat transfer liquid L ) Or (b) under the condition, perform load compatible operation using two heat sources together,
When the condition (c) or (e) is satisfied, the load-corresponding operation of the first heat source alone is executed, and when the condition (d) or (f) is satisfied, the load-corresponding operation of the second heat source alone is executed. is there.

【0037】また、着霜センサS3の検出情報に基づき
除霜運転の要否を判定して、除霜運転が必要になったと
きには各負荷対応運転に優先して除霜運転を所定時間だ
け(又は着霜センサS3により除霜の完了が検出される
まで)実施し、その際、液温センサS2により検出され
る熱源側熱媒液Lの温度t2が除霜用の設定閾温度Y′
以上のときには第2熱源除霜運転を実施し、一方、液温
センサS2により検出される熱源側熱媒液Lの温度t2
が除霜用の設定閾温度Y′未満のときには負荷熱源除霜
運転を実施する構成にしてある。
Further, whether or not the defrosting operation is necessary is determined based on the detection information of the frost sensor S3, and when the defrosting operation is required, the defrosting operation is given priority over each load corresponding operation for a predetermined time ( Or until the completion of defrosting is detected by the frost sensor S3), and at that time, the temperature t2 of the heat source side heat transfer medium L detected by the liquid temperature sensor S2 is the set threshold temperature Y'for defrosting.
In the above case, the second heat source defrosting operation is performed, while the temperature t2 of the heat source side heat transfer medium L detected by the liquid temperature sensor S2.
Is less than the set threshold temperature Y'for defrosting, the load heat source defrosting operation is performed.

【0038】なお、上記(イ)〜(ヘ)の各条件におい
て、第1設定閾温度Xは、第1熱源熱交換器2を単独に
蒸発器Eとして機能させている状況でその第1熱源熱交
換器2において通風外気Aから所定下限量の熱を採取で
きるときの外気Aの温度(例えば、第1熱源熱交換器2
での冷媒蒸発温度よりも1℃程度高い温度)であり、同
様に第2設定閾温度Yは、第2熱源熱交換器3を単独に
蒸発器Eとして機能させている状況でその第2熱源熱交
換器3において熱源側熱媒液Lから所定下限量の熱を採
取できるときの熱源側熱媒液Lの温度(例えば、第2熱
源熱交換器3での冷媒蒸発温度よりも1℃程度高い温
度)である。
Under each of the above conditions (a) to (f), the first set threshold temperature X is the first heat source when the first heat source heat exchanger 2 is solely functioning as the evaporator E. The temperature of the outside air A when the heat exchanger 2 can extract a predetermined lower limit amount of heat from the ventilation outside air A (for example, the first heat source heat exchanger 2
The temperature is about 1 ° C. higher than the refrigerant evaporation temperature in the second heat source, and the second set threshold temperature Y is similarly set to the second heat source in the situation where the second heat source heat exchanger 3 is independently functioning as the evaporator E. The temperature of the heat-source-side heat-transfer liquid L when the heat of the heat-source-side heat-transfer liquid L can be extracted from the heat-source-side heat-transfer liquid L (for example, about 1 ° C. higher than the refrigerant evaporation temperature in the second heat-source heat exchanger 3). High temperature).

【0039】また、第1及び第2設定温度差Z1,Z2
の一例としては5℃〜10℃の温度差を挙げることがで
きる。
Further, the first and second set temperature differences Z1, Z2
As an example, a temperature difference of 5 ° C to 10 ° C can be mentioned.

【0040】そしてまた、除霜用の設定閾温度Y′は、
第2設定閾温度Yと同様、第2熱源熱交換器3を単独に
蒸発器Eとして機能させている状況でその第2熱源熱交
換器3において熱源側熱媒液Lから除霜用の所定下限量
の熱を採取できるときの熱源側熱媒液Lの温度であり、
代表例としては第2設定閾温度Yと等しい温度を挙げる
ことができる。
Further, the set threshold temperature Y'for defrosting is
Similar to the second set threshold temperature Y, in the second heat source heat exchanger 3 in the situation where the second heat source heat exchanger 3 is independently functioning as the evaporator E, a predetermined defrosting is performed from the heat source side heat transfer liquid L. Is the temperature of the heat source side heat transfer liquid L when the lower limit amount of heat can be collected,
A typical example is a temperature equal to the second set threshold temperature Y.

【0041】上記した3つの負荷対応運転どうしの間で
運転の切り換えを行なうのに、上記の(イ)〜(ヘ)の
条件には厳密には、2つの負荷対応運転どうしの間で発
信的な切り換えが繰り返されるのを防止するためのヒス
テリシスを与えてある。
In order to switch the operation between the above-mentioned three load-corresponding operations, strictly speaking, the above conditions (a) to (f) are strictly transmitted between the two load-corresponding operations. Hysteresis is provided to prevent repeated switching.

【0042】また、上記の2熱源ヒートポンプ装置HP
では、熱源側熱媒ポンプP1や負荷側熱媒ポンプP2の
停止時に圧縮機1の運転を停止して冷媒循環運転を停止
するポンプインターロックを備えさせてあるが、第1熱
源単独の負荷対応運転、第2熱源除霜運転、負荷熱源除
霜運転の夫々において熱源側熱媒ポンプP1や負荷側熱
媒ポンプP2を停止する際には、その停止ポンプについ
てポンプインターロックを解除するようにしてある。
Further, the above two heat source heat pump device HP
Then, although the heat source side heat transfer medium pump P1 and the load side heat transfer medium pump P2 are stopped, a pump interlock for stopping the operation of the compressor 1 and stopping the refrigerant circulation operation is provided. When the heat source side heat medium pump P1 or the load side heat medium pump P2 is stopped in each of the operation, the second heat source defrosting operation, and the load heat source defrosting operation, the pump interlock for the stopped pump is released. is there.

【0043】熱源側熱媒ポンプP1の運転を停止する第
1熱源単独の負荷対応運転や負荷熱源除霜運転の実施中
における熱源側熱媒Lの温度検出は、一定時間ごとに所
定時間だけ熱源側熱媒ポンプP1を運転して行なうなど
の検出方式を採る。
The temperature of the heat medium L on the heat source side is detected for a predetermined time at regular intervals during the load-corresponding operation of the first heat source alone for stopping the operation of the heat medium pump P1 on the heat source side and the defrosting operation of the load heat source. A detection method such as operating the side heat medium pump P1 is used.

【0044】膨張弁機構7は、互いの口径が異なる第1
〜第3のニードル弁ea〜ecに対し第1〜第3の電磁
開閉弁va〜vcを各別に直列接続して形成した3つの
直列接続回路7a〜7cを並列接続して構成してあり、
膨張弁として機能させる各ニードル弁ea〜ecの開度
を予め固定的に調整した状態において、第1〜第3電磁
開閉弁va〜vcを選択的に開弁することにより、膨張
弁機構7の全体としての膨張弁開度を変更するものにし
てある。
The expansion valve mechanism 7 has a first diameter different from the first diameter.
-Third series connection circuits 7a-7c formed by connecting the first to third electromagnetic on-off valves va-vc separately in series to the third needle valves ea-ec are connected in parallel,
By selectively opening the first to third electromagnetic on-off valves va to vc in a state where the opening degrees of the needle valves ea to ec functioning as expansion valves are fixedly adjusted in advance, the expansion valve mechanism 7 can be operated. The expansion valve opening as a whole is changed.

【0045】一方、冷媒回路において負荷対応運転用及
び除霜運転用の冷媒循環形態のいずれにしても3つの熱
交換器2,3,4のうち常に低圧側で冷媒経路の最下流
位置に位置する満液式の第2熱源熱交換器3には、未蒸
発で器内に溜まる液相冷媒Rの液位を検出する液位セン
サ11を装備してあり、これに対し、制御器10は、膨
張弁制御手段として、その液位センサ11による検出液
位に基づき、膨張弁機構7における第1〜第3電磁開閉
弁va〜vcのうち開弁状態とするものを自動的に変更
する構成にしてある。
On the other hand, in any of the refrigerant circulation modes for the load-corresponding operation and the defrosting operation in the refrigerant circuit, the low pressure side of the three heat exchangers 2, 3 and 4 is always located at the most downstream position of the refrigerant path. The liquid-filled second heat source heat exchanger 3 is equipped with a liquid level sensor 11 that detects the liquid level of the liquid-phase refrigerant R that has not evaporated and remains in the container, whereas the controller 10 The expansion valve control means is configured to automatically change one of the first to third electromagnetic on-off valves va to vc in the expansion valve mechanism 7 that is in an open state, based on the liquid level detected by the liquid level sensor 11. I am doing it.

【0046】つまり、このように満液式の第2熱源熱交
換器3における液相冷媒Rの検出液位に基づいて膨張弁
機構7全体としての膨張弁開度を自動調整することで、
その膨張弁開度をそのときの採熱源状況に適合した開度
に適切に調整するようにしてあり、これにより、低圧異
常や液バックといったトラブルを確実に回避し、また、
高い運転効率を保ちながらの安定的な装置運転を可能に
する。
That is, by automatically adjusting the expansion valve opening of the expansion valve mechanism 7 as a whole based on the detected liquid level of the liquid-phase refrigerant R in the full-heat type second heat source heat exchanger 3 as described above,
The opening degree of the expansion valve is adjusted appropriately to an opening degree suitable for the heat-collecting source situation at that time, thereby reliably avoiding troubles such as low pressure abnormality and liquid backing, and
It enables stable equipment operation while maintaining high operation efficiency.

【0047】〔別実施形態〕次に別実施形態を列記す
る。
[Other Embodiments] Next, other embodiments will be listed.

【0048】請求項1に係る発明の実施において、第1
熱源熱交換器2で冷媒Rと熱交換させる第1熱源熱媒
A、第2熱源熱交換器3で冷媒Rと熱交換させる第2熱
源熱媒L、負荷熱交換器4で冷媒Rと熱交換させる負荷
熱媒Mは、夫々、大気空気や熱媒液に限られるものでは
なく、気体、液体、固体を問わず、どのような熱媒であ
ってもよい。
In the implementation of the invention according to claim 1, the first
The first heat source heat medium A for exchanging heat with the refrigerant R in the heat source heat exchanger 2, the second heat source heat medium L for exchanging heat with the refrigerant R in the second heat source heat exchanger 3, and the refrigerant R and heat in the load heat exchanger 4. The load heat mediums M to be exchanged are not limited to atmospheric air and heat medium liquids, and may be any heat mediums regardless of gas, liquid or solid.

【0049】第1熱源単独の負荷対応運転、第2熱源単
独の負荷対応運転、第2熱源除霜運転、負荷熱源除霜運
転の夫々において第1熱源熱交換器2や第2熱源熱交換
器3あるいは負荷熱交換器4を機能停止状態にするの
に、前述の実施形態では機能停止対象の熱交換器に対す
る熱媒供給の停止により、その熱交換器を機能停止状態
にする方式を示したが、これに代え、機能停止対象の熱
交換器に対する冷媒供給の停止により、その熱交換器を
機能停止状態にする方式を採用してもよい。
In the load corresponding operation of the first heat source alone, the load compatible operation of the second heat source alone, the second heat source defrosting operation, and the load heat source defrosting operation, the first heat source heat exchanger 2 and the second heat source heat exchanger In order to bring the heat exchanger 3 or the load heat exchanger 4 into the function-disabled state, the above-described embodiment shows the method of bringing the heat exchanger into the function-disabled state by stopping the supply of the heat medium to the heat exchanger to be stopped. However, instead of this, a method may be adopted in which the heat supply of the heat exchanger to be stopped is stopped so that the heat exchanger is stopped.

【0050】本発明に係る2熱源ヒートポンプ装置は、
融雪に限らず、温熱を要する各種分野に適用できる。
The two-source heat pump device according to the present invention is
Not limited to snow melting, it can be applied to various fields that require heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】融雪装置の装置構成を示す回路図FIG. 1 is a circuit diagram showing a device configuration of a snow melting device.

【図2】2熱源併用の負荷対応運転における冷媒の流れ
を示す回路図
FIG. 2 is a circuit diagram showing the flow of refrigerant in a load-compatible operation using two heat sources together.

【図3】第1熱源単独の負荷対応運転における冷媒の流
れを示す回路図
FIG. 3 is a circuit diagram showing the flow of refrigerant in a load-only operation of the first heat source alone.

【図4】第2熱源単独の負荷対応運転における冷媒の流
れを示す回路図
FIG. 4 is a circuit diagram showing the flow of refrigerant in a load-only operation of the second heat source alone.

【図5】第2熱源除霜運転における冷媒の流れを示す回
路図
FIG. 5 is a circuit diagram showing a refrigerant flow in a second heat source defrosting operation.

【図6】負荷熱源除霜運転における冷媒の流れを示す回
路図
FIG. 6 is a circuit diagram showing a refrigerant flow in a load heat source defrosting operation.

【符号の説明】[Explanation of symbols]

2 第1熱源熱交換器 3 第2熱源熱交換器 4 負荷熱交換器 10 制御手段 A 第1熱源熱媒,大気空気 C 凝縮器 E 蒸発器 L 第2熱源熱媒 M 負荷熱媒 R 冷媒 2 First heat source heat exchanger 3 Second heat source heat exchanger 4 load heat exchanger 10 Control means A first heat source heat medium, atmospheric air C condenser E evaporator L second heat source heat medium M load heat medium R refrigerant

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 47/02 570 F25B 47/02 570A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 47/02 570 F25B 47/02 570A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を負荷熱媒と熱交換させる負荷熱交
換器と、冷媒を第1熱源熱媒と熱交換させる第1熱源熱
交換器と、冷媒を第2熱源熱媒と熱交換させる第2熱源
熱交換器を設け、 第1及び第2熱源熱交換器に冷媒を直列に通過させる状
態でそれら第1及び第2熱源熱交換器を蒸発器として機
能させて第1及び第2熱源熱媒の両方から採熱しなが
ら、負荷熱交換器を凝縮器として機能させて負荷熱媒を
加熱する2熱源併用の負荷対応運転と、 第2熱源熱交換器を機能停止させた状態で、第1熱源熱
交換器を蒸発器として機能させて第1熱源熱媒から採熱
しながら、負荷熱交換器を凝縮器として機能させて負荷
熱媒を加熱する第1熱源単独の負荷対応運転と、 第1熱源熱交換器を機能停止させた状態で、第2熱源熱
交換器を蒸発器として機能させて第2熱源熱媒から採熱
しながら、負荷熱交換器を凝縮器として機能させて負荷
熱媒を加熱する第2熱源単独の負荷対応運転との切り換
え実施が可能な構成にし、 これら2熱源併用の負荷対応運転と第1熱源単独の負荷
対応運転と第2熱源単独の負荷対応運転との切り換えを
第1及び第2熱源熱媒夫々の温度に応じて自動的に行う
制御手段を設けてあるヒートポンプ装置であって、 前記制御手段を、 次の(イ)〜(ヘ)の各条件に対して、 t1≧Xかつt2≧Yかつt1≧t2かつΔt<Z1 ………(イ) t1≧Xかつt2≧Yかつt1≦t2かつΔt<Z2 ………(ロ) t1≧Xかつt2≧Yかつt1>t2かつΔt≧Z1 ………(ハ) t1≧Xかつt2≧Yかつt1<t2かつΔt≧Z2 ………(ニ) t1≧Xかつt2<Y ………(ホ) t1<Xかつt2≧Y ………(ヘ) 但し、t1:第1熱源熱媒の温度 t2:第2熱源熱媒の温度 Δt:第1熱源熱媒と第2熱源熱媒との温度差 X:第1設定閾温度 Y:第2設定閾温度 Z1:第1設定温度差 Z2:第2設定温度差 第1及び第2熱源熱媒が(イ)又は(ロ)の条件にある
とき2熱源併用の負荷対応運転を実施し、 第1及び第2熱源熱媒が(ハ)又は(ホ)の条件にある
とき第1熱源単独の負荷対応運転を実施し、 第1及び第2熱源熱媒が(ニ)又は(ヘ)の条件にある
とき第2熱源単独の負荷対応運転を実施する構成にして
あるヒートポンプ装置。
1. A load heat exchanger for exchanging heat between a refrigerant and a load heat medium, a first heat source heat exchanger for exchanging heat for a refrigerant with a first heat source heat medium, and a heat exchange for a refrigerant with a second heat source heat medium. A second heat source heat exchanger is provided, and the first and second heat source heat exchangers are caused to function as an evaporator in a state in which the refrigerant is allowed to pass through the first and second heat source heat exchangers in series. In the load compatible operation of using two heat sources in combination, in which the load heat exchanger functions as a condenser to heat the load heat medium while collecting heat from both of the heat medium, and the second heat source heat exchanger is deactivated. A load-corresponding operation of the first heat source alone that causes the first heat source heat exchanger to function as an evaporator and collects heat from the first heat source heat medium, while causing the load heat exchanger to function as a condenser to heat the load heat medium; With the first heat source heat exchanger stopped functioning, the second heat source heat exchanger functions as an evaporator. The load heat exchanger functions as a condenser to heat the load heat medium while collecting heat from the second heat source heat medium, and the second heat source alone can be switched to a load-corresponding operation. A control means is provided for automatically switching between load compatible operation using the heat source together, load compatible operation of the first heat source alone, and load compatible operation of the second heat source alone according to the temperature of each of the first and second heat source heat mediums. The heat pump device according to any one of the following conditions (a) to (f): t1 ≧ X and t2 ≧ Y and t1 ≧ t2 and Δt <Z1 (A) t1 ≧ X and t2 ≧ Y and t1 ≦ t2 and Δt <Z2 ... (B) t1 ≧ X and t2 ≧ Y and t1> t2 and Δt ≧ Z1 ... (C) t1 ≧ X and t2 ≧ Y and t1 <t2 and Δt ≧ Z2 ... (D) t1 ≧ X and t2 <Y (E) t1 <X and t2 ≧ Y (f) where t1: temperature of the first heat source heat medium t2: temperature of the second heat source heat medium Δt: first heat source heat medium and second heat source heat Temperature difference with medium X: First set threshold temperature Y: Second set threshold temperature Z1: First set temperature difference Z2: Second set temperature difference First and second heat source heat medium is (a) or (b) When the condition is met, a load-corresponding operation using two heat sources is performed, and when the first and second heat source heat mediums are in the condition (c) or (e), the load-corresponding operation of the first heat source alone is performed, And a heat pump device configured to perform a load-corresponding operation of the second heat source alone when the second heat source heat medium is in the condition (d) or (f).
【請求項2】 第1熱源熱媒が大気空気であることに対
し、前記した各負荷対応運転の切り換え実施に加えて、 負荷熱交換器を機能停止させた状態で、第2熱源熱交換
器を蒸発器として機能させて第2熱源熱媒から採熱しな
がら、第1熱源熱交換器を凝縮器として機能させて放熱
させる第2熱源除霜運転と、 第2熱源熱交換器を機能停止させた状態で、負荷熱交換
器を蒸発器として機能させて負荷熱媒から採熱しなが
ら、第1熱源熱交換器を凝縮器として機能させて放熱さ
せる負荷熱源除霜運転との切り換え実施が可能な構成に
し、 前記制御手段を、 第1熱源熱交換器の除霜必要時に各負荷対応運転に優先
して除霜運転を実施する際、第2熱源熱媒の温度t2が
除霜用の設定閾温度Y′以上のときには第2熱源除霜運
転を実施し、第2熱源熱媒の温度t2が除霜用の設定閾
温度Y′未満のときには負荷熱源除霜運転を実施する構
成にしてある請求項1記載のヒートポンプ装置。
2. The second heat source heat exchanger with the load heat exchanger stopped in addition to the above-described switching operation for each load operation, while the first heat source heat medium is atmospheric air. Second heat source defrosting operation in which the first heat source heat exchanger functions as a condenser to radiate heat while the heat is taken from the second heat source heat medium by causing the second heat source heat exchanger to function as an evaporator, and the second heat source heat exchanger to stop functioning. In this state, it is possible to perform switching from load heat source defrosting operation in which the load heat exchanger functions as an evaporator and heat is taken from the load heat medium while the first heat source heat exchanger functions as a condenser to radiate heat. When the defrosting operation is performed by prioritizing the operation corresponding to each load when defrosting the first heat source heat exchanger is required, the control means sets the temperature t2 of the second heat source heat medium to a set threshold for defrosting. When the temperature is equal to or higher than Y ', the second heat source defrosting operation is performed to The heat pump apparatus according to claim 1, wherein you have to configure to implement load heat source defrosting operation when the temperature t2 is set threshold temperature less than Y 'for defrosting the medium.
JP2002004292A 2002-01-11 2002-01-11 Heat pump device Pending JP2003207225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004292A JP2003207225A (en) 2002-01-11 2002-01-11 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004292A JP2003207225A (en) 2002-01-11 2002-01-11 Heat pump device

Publications (1)

Publication Number Publication Date
JP2003207225A true JP2003207225A (en) 2003-07-25

Family

ID=27643656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004292A Pending JP2003207225A (en) 2002-01-11 2002-01-11 Heat pump device

Country Status (1)

Country Link
JP (1) JP2003207225A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175731A1 (en) * 2012-05-25 2013-11-28 サンデン株式会社 Geothermal heat pump device
WO2014054310A1 (en) * 2012-10-05 2014-04-10 三菱電機株式会社 Heat pump device
CN104704302A (en) * 2012-10-05 2015-06-10 三菱电机株式会社 Heat pump device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013175731A1 (en) * 2012-05-25 2013-11-28 サンデン株式会社 Geothermal heat pump device
JP2013245874A (en) * 2012-05-25 2013-12-09 Sanden Corp Geothermal heat pump device
WO2014054310A1 (en) * 2012-10-05 2014-04-10 三菱電機株式会社 Heat pump device
CN104704303A (en) * 2012-10-05 2015-06-10 三菱电机株式会社 Heat pump device
CN104704302A (en) * 2012-10-05 2015-06-10 三菱电机株式会社 Heat pump device
JPWO2014054176A1 (en) * 2012-10-05 2016-08-25 三菱電機株式会社 Heat pump equipment
JPWO2014054310A1 (en) * 2012-10-05 2016-08-25 三菱電機株式会社 Heat pump equipment
CN104704303B (en) * 2012-10-05 2016-10-26 三菱电机株式会社 Heat pump assembly
US9599377B2 (en) 2012-10-05 2017-03-21 Mitsubishi Electric Corporation Heat pump apparatus
CN104704302B (en) * 2012-10-05 2017-05-17 三菱电机株式会社 Heat pump device

Similar Documents

Publication Publication Date Title
JP5868498B2 (en) Heat pump equipment
CA2615689C (en) An air conditioning heat pump with secondary compressor
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
KR100563306B1 (en) Ground source heat pump type heating and cooing system haviang means for feeding assistant heat source
KR100550566B1 (en) A hotting drive method of heat pump multi-air conditioner
JP2006017427A (en) Cooling system
JPH10166847A (en) Air conditioner for vehicle
JP2003106712A (en) Air conditioning device
JP5404471B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD
JP6888280B2 (en) Refrigerator
JPH11325634A (en) Four-way valve cooler of air conditioner
JP2008025885A (en) Heat pump device
JP2003207225A (en) Heat pump device
JP2006336949A (en) Heat storage type air conditioner
KR200366307Y1 (en) Ground source heat pump type heating and cooing system haviang means for feeding assistant heat source
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
KR102066694B1 (en) An engine-driven heat pump system
JP2008002695A (en) Heat pump device
JP2002286309A (en) Refrigerator
JP4360183B2 (en) Air conditioner
JP3164079B2 (en) Refrigeration equipment
JP2002195685A (en) Dual heat-sources heat pump apparatus
JP2008025887A (en) Heat pump device
JP2008025886A (en) Heat pump device
JP4398687B2 (en) Heat pump air conditioning system