JP2002194349A - Stress-induced light-emitting material and method for producing the same - Google Patents

Stress-induced light-emitting material and method for producing the same

Info

Publication number
JP2002194349A
JP2002194349A JP2000398327A JP2000398327A JP2002194349A JP 2002194349 A JP2002194349 A JP 2002194349A JP 2000398327 A JP2000398327 A JP 2000398327A JP 2000398327 A JP2000398327 A JP 2000398327A JP 2002194349 A JP2002194349 A JP 2002194349A
Authority
JP
Japan
Prior art keywords
stress
base material
stimulated luminescent
luminescent material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000398327A
Other languages
Japanese (ja)
Inventor
Yukio Jo
超男 徐
Gei Ryu
芸 劉
Morihito Akiyama
守人 秋山
Kazuhiro Nonaka
一洋 野中
Hiroshi Tateyama
博 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000398327A priority Critical patent/JP2002194349A/en
Publication of JP2002194349A publication Critical patent/JP2002194349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stress-induced light-emitting material capable of effectively emitting the light with good repeatability, when a mechanical external force is applied to the material, and to provide a method for producing the same. SOLUTION: This stress-induced light-emitting material is formed by using an oxide expressed by the formula: MN2O4 (M is one or more metal elements selected from the group consisting of Mg, Sr, Ba, and Zn; and N is one or more metal elements selected from the group consisting of Ga and Al) as a base material and adding one or more elements selected from rare earth elements or transition metals which emit the light when carries excited with mechanical energy return to the ground state as emission centers to the base material, wherein the element constituting the emission center is contained in an amount of 0.001-20 mol% based on the amount of the element expressed by M.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、応力発光材料、特
に機械的な外力を直接可視光に変換することが可能であ
ると共に、優れた再現性を有する新規な応力発光材料あ
るいはメカノルミネッセンス材料およびその製造方法に
関するものである。
The present invention relates to the stress light-emitting material, with particularly it is possible to convert the mechanical force directly visible, and novel stress-luminescent material or mechanochemical luminescent material having excellent reproducibility The present invention relates to the manufacturing method.

【0002】[0002]

【従来の技術】従来、物質が外部刺激を与えられること
によって室温付近で可視光を発する現象は、いわゆる蛍
光現象として知られている。このような蛍光現象を生じ
る物質、すなわち蛍光体は、蛍光ランプなどの照明灯や
CRT(Cathode Ray Tube)、いわゆるブラウン管など
のディスプレイにおいて利用されている。この蛍光現象
を生じさせる外部からの刺激は、通常、紫外線、電子
線、X線、放射線、電界、化学反応などによって与えら
れるが、これまで、機械的な外力等の刺激を加えて変形
させることにより強く発光する材料は、あまり知られて
いない。特に、今までは機械刺激に伴った発光輝度の変
化が小さく、また、繰り返し応力を加えると発光強度の
減衰が激しく、機械的な外力による発光強度の再現性が
ない等の問題があり、実用化されるに至っていない。
2. Description of the Related Art Heretofore, a phenomenon in which a substance emits visible light at around room temperature when an external stimulus is applied thereto is known as a so-called fluorescent phenomenon. A substance that causes such a fluorescent phenomenon, that is, a phosphor, is used in an illumination lamp such as a fluorescent lamp or a display such as a CRT (Cathode Ray Tube), a so-called cathode ray tube. External stimuli that cause this fluorescence phenomenon are usually given by ultraviolet rays, electron beams, X-rays, radiation, electric fields, chemical reactions, etc., but until now, they have been deformed by applying stimuli such as mechanical external forces. Materials that emit more intensely are not known. In particular, there has been a problem in that the change in light emission luminance due to mechanical stimulation has been small, and the light emission intensity has been greatly attenuated by repeated stress, and there is no reproducibility of the light emission intensity due to mechanical external force. Has not been converted.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、機械的
な外力等の刺激によって効率的にかつ再現性よく発光す
る材料に関して長期にわたる研究を行った結果、特に、
MNで表される酸化物(MおよびNは、Mg,S
r,Ba,Znの群、およびGa,Alの群からそれぞ
れ選ばれた少なくとも1つ以上の金属元素)で構成され
る母体材料に対して発光中心を添加するのが有効である
ばかりでなく、母体材料の格子欠陥の制御手段とその発
光中心の適切な添加量及び適切な添加方法を見出し、結
果的に、機械的エネルギーを光エネルギーに変換する効
率を著しく向上させることに成功した。
DISCLOSURE OF THE INVENTION The present inventors have conducted long-term research on a material that emits light efficiently and with good reproducibility when stimulated by a mechanical external force or the like.
An oxide represented by MN 2 O 4 (M and N are Mg, S
It is not only effective to add a luminescent center to a base material composed of at least one metal element selected from the group of r, Ba, Zn, and the group of Ga, Al, They found a means for controlling lattice defects in the base material and an appropriate addition amount and an appropriate addition method of the luminescent center, and as a result, succeeded in significantly improving the efficiency of converting mechanical energy into light energy.

【0004】本発明は、かかる知見に基づくものであ
り、その技術の課題は、摩擦力、せん断力、衝撃力、圧
力、張力などの機械的な外力によって再現性よく効率的
に発光するところの、これまで知られていたものとは異
なる種類の新規な応力発光材料とその製造方法を提供す
ることにある。
[0004] The present invention is based on such knowledge, and the technical problem of the present invention is to efficiently emit light with good reproducibility by mechanical external forces such as frictional force, shear force, impact force, pressure and tension. Another object of the present invention is to provide a novel stress-stimulated luminescent material of a type different from those known hitherto and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の応力発光材料は、MNで表される化
合物(MおよびNは、Mg,Sr,Ba,Znの群、お
よびGa,Alの群からそれぞれ選ばれた少なくとも1
つ以上の金属元素)で構成される酸化物を母体材料と
し、機械的エネルギーによって励起されたキャリアーが
基底状態に戻る場合に発光するところの希土類または遷
移金属から選ばれた1種類以上の元素を、上記母体材料
に発光中心として添加し、Mで表わされ金属元素に対す
る発光中心元素のモル%を0.001〜20%としたこ
とを特徴とするものである。
In order to achieve the above object, a stress-stimulated luminescent material according to the present invention comprises a compound represented by MN 2 O 4 (M and N are groups of Mg, Sr, Ba, Zn, And at least one selected from the group of Ga and Al
One or more elements selected from rare earths or transition metals that emit light when carriers excited by mechanical energy return to the ground state. And a luminescent center element is added to the base material, and the mole% of the luminescent center element with respect to the metal element represented by M is set to 0.001 to 20%.

【0006】上記応力発光材料においては、母体材料と
して、MgGa,ZnGa,ZnAl
,SnZn,BaAlまたはMgAl
で表される酸化物を用いるのが、効率的で再現性の
よい発光を得るために特に有効である。また、本発明の
応力発光材料は、上記酸化物を母体材料とし、Mまたは
Nに対して0.0001〜20モル%の格子欠陥を有す
るもの、或いは、母体材料がスピネル構造を有する化合
物で構成されるものにおいて、擬スピネルまたは逆スピ
ネル構造を含むものとすることもできる。
In the stress-stimulated luminescent material, MgGa 2 O 4 , ZnGa 2 O 4 , ZnAl 2 O is used as a base material.
4 , SnZn 2 O 4 , BaAl 2 O 4 or MgAl 2
The use of an oxide represented by O 4 is particularly effective for obtaining efficient and reproducible light emission. Further, the stress-stimulated luminescent material of the present invention comprises the above oxide as a host material and has a lattice defect of 0.0001 to 20 mol% with respect to M or N, or a compound having a spinel structure as the host material. In some embodiments, a pseudo spinel or inverse spinel structure may be included.

【0007】一方、上記目的を達成するための本発明の
応力発光材料の製造方法は、上記MNで表される
酸化物で構成される母体材料に、機械的エネルギーによ
って励起されたキャリアーが基底状態に戻る場合に発光
する希土類または遷移金属の1種類以上を発光中心とし
て、上記Mで表わされ金属元素に対するモル%が0.0
01〜20%となるように添加して混合した後、酸化雰
囲気中において300〜1800℃で焼成し、次に還元
雰囲気中において400〜1800℃で焼成し、発光中
心をドープすることを特徴とするものである。
On the other hand, the production method of the stress light-emitting material of the present invention for achieving the above object, the base material consists of an oxide represented by the MN 2 O 4, carriers excited by mechanical energy When at least one kind of rare earth or transition metal that emits light when the element returns to the ground state is used as an emission center, the mole% of the metal element represented by M is 0.0
After adding and mixing so as to have a concentration of 01 to 20%, the mixture is fired at 300 to 1800 ° C. in an oxidizing atmosphere, and then fired at 400 to 1800 ° C. in a reducing atmosphere to dope the emission center. Is what you do.

【0008】[0008]

【発明の実施の形態】本発明に係る応力発光材料は、基
本的には、母体材料に発光中心を添加して構成される。
母体材料としては、特に、MNで表される化合物
(MおよびNは、Mg,Sr,Ba,Znの群、および
Ga,Alの群からそれぞれ選ばれた少なくとも1つ以
上の金属元素)の1種類以上からなる材料が適し、それ
らを用いた場合の発光強度が他の物質に比べて強くなる
ことがわかっている。そのため、母体材料はそれらのう
ちから選択するすることになる。上記応力発光材料にお
いては、後述する実施例においても示しているように、
母体材料として、MgGa,ZnGa,Z
nAl,SnZn ,BaAlまたは
MgAlで表される酸化物を用いるのが、効率的
で再現性のよい発光を得るために有効である。
BEST MODE FOR CARRYING OUT THE INVENTION The stress-stimulated luminescent material according to the present invention
Basically, it is configured by adding a luminescent center to a base material.
As the base material, in particular, MN2O4Compounds represented by in
(M and N are, Mg, Sr, Ba, a group of Zn, and
At least one selected from the group consisting of Ga and Al
Material consisting of one or more of the above metal elements)
Emission intensity when using them is stronger than other substances
I know that. Therefore, the base material is
You will have to choose later. The above stress-stimulated luminescent materials
In addition, as shown in the examples described later,
As a matrix material, MgGa2O4, ZnGa2O4, Z
nAl2O4, SnZn 2O4, BaAl2O4Or
MgAl2O4It is more efficient to use an oxide represented by
This is effective for obtaining light emission with good reproducibility.

【0009】また、上記の母体材料には、機械的エネル
ギーによって励起されたキャリアーが基底状態に戻る場
合に発光するところの希土類や遷移金属の発光中心を添
加すると、発光強度をさらに高輝度化させることができ
る。発光中心となる材料としては、Ce,Pr,Nd,
Pm,Sm,Eu,Gd,Tb,Dy、Ho,Er,T
m,Yb,Luの希土類、およびTi,Zr,V,C
r,Mn,Sn,Fe,Co,Ni,Cu,Zn,N
b,Mo,Ta,Wの遷移金属イオンのうちの1種類ま
たはそれ以上を用いるのが適しているが、母体材料の結
晶構造によって最適発光中心は異なる。例えば、母体材
料がZnAl の場合には特にMnが有効であり、
BaAlの場合にはCe,Sm,Eu,Mnなど
の添加が有効である。なお、一般的には、Eu,Ce,
Sm,Tb,Dy,Nd,Mn,Snの群から選ばれた
1種類以上の元素が、発光中心として用いられる。
Further, the above-mentioned base material includes mechanical energy.
Field where carriers excited by the energy return to the ground state
Luminescence centers of rare earths and transition metals
When pressurized, it is possible to further higher luminance emission intensity
You. As a material serving as a light emission center, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
rare earths of m, Yb, Lu, and Ti, Zr, V, C
r, Mn, Sn, Fe, Co, Ni, Cu, Zn, N
b, Mo, Ta, W
Others are suitable to use more, but formation of the base material
Optimum emission center by crystal structure is different. For example, base material
The material is ZnAl2O 4Is particularly effective in the case of
BaAl2O4In the case of Ce, Sm, Eu, Mn, etc.
Is effective. In general, Eu, Ce,
Selected from the group of Sm, Tb, Dy, Nd, Mn, Sn
One or more elements are used as emission centers.

【0010】応力発光材料は、添加する発光中心によっ
て発光色が異なり、そのため、発光中心の種類を選ぶこ
とによって、フルカラー、すなわち、種々の色の発光が
得られている。添加する発光中心となる材料の添加量
は、Mで表わされる金属元素に対して、0.001〜2
0モル%の範囲内で選ぶことができる。それが、0.0
01モル%に満たない場合には、発光強度の向上が不十
分であり、一方、20モル%以上となると、母体材料の
結晶構造が維持できなくなり、発光効率が低下して実用
に適さない。
The luminescent color of the stress-stimulated luminescent material differs depending on the luminescent center to be added. Therefore, by selecting the kind of the luminescent center, full-color, that is, various colors of light can be obtained. The amount of the material to be added as the emission center is 0.001 to 2 with respect to the metal element represented by M.
It can be selected within the range of 0 mol%. It is 0.0
If the amount is less than 01 mol%, the emission intensity is insufficiently improved. On the other hand, if the amount is more than 20 mol%, the crystal structure of the base material cannot be maintained, and the luminous efficiency is lowered, which is not suitable for practical use.

【0011】また、MN化合物において、M或い
はNに対して格子欠陥濃度を制御することによって、応
力発光強度を更に著しく向上させることができる。この
欠陥濃度の制御は、仕込み比の調製と焼成条件の制御に
より達成される。仕込み時にM或いはNの組成比を予め
減らすと容易であり、還元雰囲気中において焼成するこ
とによりM或いはNの欠損型化合物が得られる。この欠
陥型材料は高輝度応力発光特性を有する。欠陥濃度とし
ては、欠損は0.0001から20モル%の範囲内に選
ぶことができる。これが、0.0001モル%に満たな
い場合には、発光強度の向上が不十分であり、一方、2
0モル%1以上となると母体材料の結晶構造が維持でき
なくなり、発光効率が低下して実用に適さない。
Further, in the MN 2 O 4 compound, the stress emission intensity can be further remarkably improved by controlling the concentration of lattice defects with respect to M or N. The control of the defect concentration is achieved by adjusting the charging ratio and controlling the firing conditions. Is easy Reducing advance the composition ratio of M or N in the time of charging, defect type compound of M or N is obtained by firing in a reducing atmosphere. This defect-type material has high luminance stress emission characteristics. As the defect concentration, the defect can be selected in the range of 0.0001 to 20 mol%. If the content is less than 0.0001 mol%, the emission intensity is insufficiently improved.
When the content is 0 mol% or more, the crystal structure of the base material cannot be maintained, and the luminous efficiency decreases, which is not suitable for practical use.

【0012】上記応力発光材料の発光強度は、励起源と
なる機械的な作用力の性質に依存するが、一般的には加
えた機械的な作用力が大きいほど発光強度が強くなる。
従って、発光特性を測定することによって、材料に掛か
られた機械的な作用力を知ることができる。これによっ
て、材料にかかる応力状態を無接触で検出できるように
なり、応力状態の可視化することも可能であるため、応
力検出器その他の広い分野での応用が期待できる。
The luminous intensity of the stress-stimulated luminescent material depends on the nature of the mechanical force acting as an excitation source. Generally, the greater the applied mechanical force, the higher the luminous intensity.
Therefore, by measuring the light emission characteristics, the mechanical acting force applied to the material can be known. As a result, the stress state applied to the material can be detected in a non-contact manner, and the stress state can be visualized. Therefore, application in a stress detector and other wide fields can be expected.

【0013】上記の応力発光材料は各種環境下におい
て、物理的かつ化学的に安定である。機械的な外力を加
えて変形をさせることによって発光中心のキャリアーが
励起されて、基底に戻る場合に発光するが、これは各種
の環境中において適用できる。例えば、大気中をはじ
め、真空、大気、還元又は酸化雰囲気中においてはもち
ろん、水中、無機溶液、有機溶液の各種溶液環境におい
ても、機械的な外力によって発光させることができる。
従って、各種環境下での応力検知に有効である。
[0013] The stress-luminescent material under various environmental, it is physically and chemically stable. The carrier at the emission center is excited by the deformation by applying a mechanical external force, and emits light when returning to the base. This can be applied in various environments. For example, light can be emitted by a mechanical external force not only in the atmosphere but also in various solution environments of water, an inorganic solution, and an organic solution as well as in a vacuum, the atmosphere, a reducing or oxidizing atmosphere.
Therefore, it is effective for stress detection under various environments.

【0014】また、上記の応力発光材料は、樹脂やプラ
スチックなどの有機材料に任意比で混合又は埋込んで複
合材料を形成すると、その複合材料に機械的な外力を加
えたとき、発光材料の機械的な変形に伴って発光させる
ことができる。さらに、他の材料の表面上に上記の応力
発光材料を塗布することができる。この場合、材料に機
械的な外力を加えると、材料表面の発光材料層が変形に
よって発光する。このような方法を用いれば、少ない発
光材料で大面積な発光が得られる。
When the stress-stimulated luminescent material is mixed or embedded in an organic material such as resin or plastic at an arbitrary ratio to form a composite material, when a mechanical external force is applied to the composite material, the luminescent material becomes Light emission can be caused by mechanical deformation. Furthermore, the above-mentioned stress-stimulated luminescent material can be applied on the surface of another material. In this case, when a mechanical external force is applied to the material, the light emitting material layer on the surface of the material emits light by deformation. With such a method, light emission in a large area can be obtained with a small amount of light-emitting material.

【0015】上記応力発光材料を製造するに際しては、
上記MNで表される酸化物により構成される母体
材料に、機械的エネルギーによって励起されたキャリア
ーが基底状態に戻る場合に発光する希土類または遷移金
属の1種類以上を発光中心として所要量添加し、よく混
合した後、酸化雰囲気中において300〜1800℃で
焼成し、次に還元雰囲気中において400〜1800℃
で30分以上焼成することにより、発光中心のドープが
達成される。また、ほう酸などのフラックスを添加する
ことによって、発光特性は向上させることができる。
[0015] In the production of the stress-stimulated luminescent material,
In the base material composed of the oxide represented by MN 2 O 4, at least one kind of rare earth or transition metal which emits light when carriers excited by mechanical energy return to the ground state is used as a light emission center. After adding and mixing well, bake at 300-1800 ° C. in an oxidizing atmosphere, and then 400-1800 ° C. in a reducing atmosphere.
By baking for 30 minutes or more, doping of the luminescent center is achieved. Further, by adding a flux such as boric acid, the light emission characteristics can be improved.

【0016】[0016]

【実施例】以下に本発明の実施例を示す。Examples of the present invention will be described below.

【0017】〔SrAl系〕 試料1−1 原料として炭酸ストロンチウム、アルミナ、酸化錫を用
い、Sn0.01Sr 0.99Alの組成になる
ようにそれらを秤量し、十分混合した後、まず空気中に
おいて600℃で1時間を焼成し、その焼成体を粉砕し
て、次に、5%H−Arの還元雰囲気中において11
00℃で4時間焼成した。得られた化合物を試料1−1
とした。
[SrAl2O4System] Sample 1-1 Using strontium carbonate, alumina and tin oxide as raw materials
Yes, Sn0.01Sr 0.99Al2O4The composition of
After weighing them and mixing well, first in air
And fired at 600 ° C for 1 hour.
And then 5% H211 in a reducing atmosphere of Ar
It was baked at 00 ° C. for 4 hours. The obtained compound was used as a sample 1-1.
And

【0018】この応力発光材料の応力発光特性を調べる
ために、得られた粉末試料を下記の形態に成形した。 1)粉末試料を金型に固め、3Gpaの静水圧で成形し
て、1300℃4時間焼成することにより、成形ペレッ
トを作製し、以下に述べる発光測定を行った。 2)粉末試料とエポキシ樹脂とを重量比1:1で混合し
て、複合材料ペレットを作製し、発光測定を行った。発
光特性の測定は、これらの成形体を用いて、摩擦と圧縮
等の機械刺激に対する発光の測定を行った。また、発光
スペクトルは分光器により同時に測定した。
To examine the stress-stimulated luminescent properties of this stress-stimulated luminescent material, the obtained powder sample was molded into the following form. 1) solidified powder sample in a mold, and molded by hydrostatic pressure of 3 GPa, by calcining 1300 ° C. 4 h, the molded pellets produced were emission measurements described below. 2) powder sample and the weight ratio of the epoxy resin were mixed 1: 1 to prepare a composite material pellets were emission measurement. For the measurement of the luminescence characteristics, luminescence was measured for mechanical stimuli such as friction and compression using these molded bodies. The emission spectrum was measured simultaneously by a spectrometer.

【0019】図1には、Sn0.01Sr0.99Al
の成形ペレットについて、摩擦試験器により1m
mのステンレス棒を用いて荷重4N、摩擦速度は40c
m/sで摩擦を加えた場合の発光の経時的変化を示して
いる。肉眼でも明確に青色の発光を確認できるほどの強
い光を発した。
FIG. 1 shows that Sn 0.01 Sr 0.99 Al
1 m of the molded pellet of 2 O 4 was measured with a friction tester.
4N load with a friction speed of 40c
The time-dependent change of light emission when friction is applied at m / s is shown. The light emitted was strong enough for the naked eye to clearly see blue light emission.

【0020】図2には、上記Sn0.01Sr0.99
Alの成形ペレットについて、材料試験機により
1000Nの機械的作用力を掛けた場合の応力発光の経
時的変化を示している。肉眼でも明確に青色の発光を確
認できるほどの強い光を発した。図3には、上記Sn
0.01Sr0.99Alと樹脂との複合材料ペ
レットについて、圧縮に対する応力発光強度と応力との
相関を示す。発光強度は応力の増大と共に増大する相関
を示した。
[0020] FIG. 2, the Sn 0.01 Sr 0.99
The time-dependent change of stress light emission when a mechanical action force of 1000 N is applied to a molded pellet of Al 2 O 4 by a material tester is shown. The light emitted was strong enough for the naked eye to clearly see blue light emission. FIG. 3 shows the above Sn
For composite pellets with 0.01 Sr 0.99 Al 2 O 4 and the resin, showing the correlation between stress luminescent intensity and the stress against compression. The luminescence intensity showed a correlation that increased with increasing stress.

【0021】試料1−2〜試料1−13 これらの試料についても上記と同様に調製し、発光測定
を行った。結果(MSr1−xAl系の機械的
刺激による発光強度Iと無刺激の場合の強度Iとの変
化比:I/I)は表1に示している。
Samples 1-2 to 1-13 These samples were prepared in the same manner as described above, and the luminescence was measured. Result (change ratio of M x Sr 1-x Al 2 O 4 -system intensity I 0 in the case of the emission intensity I and non-stimulated by mechanical stimulation: I / I 0) is shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】他の系についても同様に調製した。表2〜
表6に、それぞれ特に発光強度の高かった材料系とし
て、BaAl,MgAl,MgGa
,ZnAl,ZnGaについての結
果(各系の機械的刺激による発光強度の変化比)を示
す。
The other systems were prepared similarly. Table 2
Table 6 shows that the material systems having particularly high emission intensities were BaAl 2 O 4 , MgAl 2 O 4 , and MgGa.
The results of 2 O 4 , ZnAl 2 O 4 , and ZnGa 2 O 4 (the ratio of change in emission intensity due to mechanical stimulation of each system) are shown.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 [Table 6]

【0029】また、上記の材料系について、純相の結晶
構造よりも、適切な結晶欠陥を有したものが発光強度が
高いことが、本発明に関連する実験より確認されてい
る。図4に、2つのZnAl:Mn試料の結晶構
造を示す。同図中の試料Bは、純相のZnAl
ピネル構造を有するが、試料Aはスピネル構造と共に擬
スピネルのピークが観察されている。この擬スピネルの
ピークは部分逆スピネルによるものと考えられる。上記
試料Aと試料Bは、それぞれ、1%H−N中おいて
1250℃と900℃で加熱処理したものである。
Further, it has been confirmed from experiments relating to the present invention that the above-mentioned material systems having appropriate crystal defects have higher emission intensity than the pure phase crystal structure. FIG. 4 shows the crystal structures of two ZnAl 2 O 4 : Mn samples. The sample B in the figure has a pure phase ZnAl 2 O 4 spinel structure, while the sample A has a pseudo-spinel peak together with the spinel structure. This pseudo spinel peak is considered to be due to partial inverse spinel. Samples A and B were heat-treated at 1250 ° C. and 900 ° C. in 1% H 2 —N 2 , respectively.

【0030】図5には試料Aと試料Bの応力発光強度を
示しているが、試料Aの発光強度が試料Bのそれよりも
大幅に向上している。また、結晶欠陥を有する応力発光
材料は、残光強度が高いものが多い。図6に紫外線ラン
プで照射後の試料Aにおける発光強度と残光強度の減衰
時間依存性を示す。試料Bは同様な傾向を示したが、発
光強度の値は試料Aより2桁も低かった。
FIG. 5 shows the stress emission intensity of Sample A and Sample B. The emission intensity of Sample A is much higher than that of Sample B. In addition, many stress-stimulated luminescent materials having crystal defects have high afterglow intensity. FIG. 6 shows the decay time dependence of the emission intensity and the afterglow intensity of Sample A after irradiation with an ultraviolet lamp. Sample B showed a similar tendency, but the emission intensity value was two orders of magnitude lower than Sample A.

【0031】欠陥濃度はサーモルミネッセンス測定より
評価した。図7にZnAl:Mn試料A,Bにお
けるサーモルミネッセンスの測定例を示す。ピークの面
積は欠陥濃度に比例することから、試料Aは試料Bより
2桁多い結晶欠陥を有することが分かった。この結晶欠
陥は、擬スピネル(部分逆スピネル)に起因するもので
あり、応力発光強度を飛躍的に向上できることが分かっ
た。
The defect concentration was evaluated by thermoluminescence measurement. FIG. 7 shows a measurement example of thermoluminescence in ZnAl 2 O 4 : Mn samples A and B. Since the area of the peak was proportional to the defect concentration, it was found that Sample A had two orders of magnitude more crystal defects than Sample B. This crystal defect was caused by pseudo spinel (partially reverse spinel), and it was found that the stress-stimulated luminescence intensity could be dramatically improved.

【0032】結晶の欠陥濃度はさまざまの方法で最適化
することができる。例えば、焼成温度、焼成雰囲気など
の焼成条件、調製の出発原料の仕込組成比、添加物など
の方法が有効である。ZnAl:Mnでは、還元
雰囲気中で熱処理することが特に有効である。図8に還
元雰囲気中において図中に示す種々の温度で焼成したZ
nAl:Mn試料の結晶構造を示す。1150℃
以上で焼成すると、擬スピネル相が現われ、また、13
00℃以上で焼成すると、Al不純物相が顕著に
増える。熱重量分析をしたところ、還元雰囲気中におい
て1100℃以上の温度で焼成すると、Znが昇華する
ことが分かった。これより、還元雰囲気中において種々
の温度で焼成することにより、ZnAl:Mnの
結晶欠陥を制御することができた。
The defect concentration of a crystal can be optimized in various ways. For example, methods such as firing conditions such as firing temperature and firing atmosphere, charged composition ratio of starting materials for preparation, and additives are effective. For ZnAl 2 O 4 : Mn, heat treatment in a reducing atmosphere is particularly effective. FIG. 8 shows that Z was fired at various temperatures shown in the drawing in a reducing atmosphere.
The crystal structure of the nAl 2 O 4 : Mn sample is shown. 1150 ° C
When calcined as described above, a pseudo spinel phase appears, and 13
When firing at 00 ° C. or more, the Al 2 O 3 impurity phase is significantly increased. As a result of thermogravimetric analysis, it was found that Zn was sublimated when firing at a temperature of 1100 ° C. or more in a reducing atmosphere. Thus, by firing at various temperatures in a reducing atmosphere, the crystal defects of ZnAl 2 O 4 : Mn could be controlled.

【0033】図9の(a)および(b)に、種々の温度
で処理したZnAl:Mn試料の結晶構造と発光
強度との相関を示す。純相のスピネルでは、欠陥が少な
すぎるために発光強度が低い。また、結晶が大きく崩れ
ていると、欠陥が多すぎるために、発光強度も低い。ス
ピネル構造と共に、擬スピネル或いは部分逆スピネルを
有する試料の方が、結晶構造を保ちながら適切な欠陥濃
度を有しているために、1140〜1280℃で焼成し
た試料は最も高い応力発光強度を示すことが分かった。
応力発光強度は残光強度に比例する。図10に上記Zn
Al:Mn試料における応力発光強度と残光強度
の関係についての測定例を示す。この測定により、応力
によって変化した発光強度Iと応力を加えないときの残
光強度Iとの比I/Iは一定であることが分かっ
た。
FIGS. 9A and 9B show the correlation between the crystal structure of the ZnAl 2 O 4 : Mn sample treated at various temperatures and the emission intensity. Pure phase spinel has low emission intensity due to too few defects. In addition, when the crystal is largely broken, the number of defects is too large, so that the emission intensity is low. With spinel structure, towards samples with pseudo spinel or partial inverse spinel is, in order to have a proper defect concentration while maintaining the crystal structure, the sample calcined at 1,140-1,280 ° C. represents the highest stress luminous intensity I understood that.
The stress emission intensity is proportional to the afterglow intensity. FIG.
Al 2 O 4: shows an example of measurement of the relationship between stress luminescent intensity and afterglow intensity in the Mn samples. From this measurement, it was found that the ratio I / I 0 between the emission intensity I changed by the stress and the afterglow intensity I 0 when no stress was applied was constant.

【0034】また、水中、エタノール、アセトン、0.
1モル塩酸溶液などの環境下でも、同様な傾向が得られ
た。表に摩擦力と圧縮力に対する応力発光強度と発光中
心波長と色を同時に示した。なお、引っ張り力に対する
応力発光強度は圧縮の場合と同様な結果が得られた。各
種環境媒体の光物性(散乱係数、屈折率、吸収係数等)
によって発光強度の測定値が異なるが、何れも大気中の
図1と図2に示すのと同様な傾向が得られた。
Further, in water, ethanol, acetone, 0.1.
The same tendency was obtained under an environment such as a 1 molar hydrochloric acid solution. In the table, the stress emission intensity, the emission center wavelength, and the color for the frictional force and the compressive force are shown at the same time. In addition, the stress luminescence intensity with respect to the tensile force obtained the same result as in the case of compression. Optical properties of various environmental media (scattering coefficient, refractive index, absorption coefficient, etc.)
Although the measured values of the luminescence intensity differ depending on the type, the same tendency as shown in FIGS. 1 and 2 in the atmosphere was obtained in each case.

【0035】[0035]

【発明の効果】以上に詳述したように、本発明によれ
ば、摩擦力、せん断力、衝撃力、圧力などの機械的な外
力によってフルカラーに高輝度で発光する応力発光材料
およびその製造方法を得ることができ、また、上記機械
的な外力をそれが作用する材料自体の発光により直接光
に変換することができるため、各種環境において、まっ
たく新しい光素子としての利用の可能性など、種々の制
御プロセスなどにおける広い応用が期待できる。
As described above in detail, according to the present invention, a stress-luminescent material which emits light in full color with high luminance by a mechanical external force such as a frictional force, a shearing force, an impact force, and a pressure, and a method of manufacturing the same. In addition, since the above mechanical external force can be directly converted into light by the light emission of the material itself acting on it, in various environments, it can be used as a completely new optical element. Wide application can be expected in the control process of

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るSn0.01Sr0.99Al
の成形ペレットについて、摩擦を加えた場合の発光
の経時的変化を示すグラフである。
FIG. 1 shows Sn 0.01 Sr 0.99 Al 2 according to the present invention.
Molding pellets O 4, is a graph showing changes over time in light emission when added friction.

【図2】本発明に係るSn0.01Sr0.99Al
の成形ペレットについて、機械的作用力を掛けた場
合の応力発光の経時的変化を示すグラフである。
FIG. 2 shows Sn 0.01 Sr 0.99 Al 2 according to the present invention.
Molding pellets O 4, is a graph showing the variation with time of the stress luminescent when multiplied by the mechanical action force.

【図3】本発明に係るSn0.01Sr0.99Al
の複合材料ペレットについての、圧縮に対する応力
発光強度と応力との相関を示すグラフである。
FIG. 3 shows Sn 0.01 Sr 0.99 Al 2 according to the present invention.
Of O 4 for the composite pellet, it is a graph showing the correlation between the stress light-emitting intensity and the stress against compression.

【図4】本発明に係るZnAl:Mnの試料A
(スピネル構造と擬スピネル構造)および試料B(純相
のZnAlスピネル構造)の結晶構造をX線回折
パターンによって示す図である。
FIG. 4 shows a sample A of ZnAl 2 O 4 : Mn according to the present invention.
Shows the (spinel structure and pseudo spinel structure) and Sample B X-ray diffraction pattern of the crystal structure of (ZnAl 2 O 4 spinel structure phase pure).

【図5】図4の試料Aと試料Bの応力発光強度を示すグ
ラフである。
FIG. 5 is a graph showing the stress luminescence intensity of Sample A and Sample B of FIG.

【図6】紫外線ランプで照射後の試料Aにおける発光強
度と残光強度の減衰時間依存性を示すグラフである。
FIG. 6 is a graph showing the decay time dependence of the emission intensity and the afterglow intensity of Sample A after irradiation with an ultraviolet lamp.

【図7】上記試料Aおよび試料Bにおけるサーモルミネ
ッセンスの測定例を示すグラフである。
7 is a graph showing an example of measurement of thermo-luminescence in the sample A and sample B.

【図8】還元雰囲気中において種々の温度で焼成したZ
nAl:Mn試料の結晶構造をX線回折パターン
によって示す図である。
FIG. 8: Z calcined at various temperatures in a reducing atmosphere
nAl 2 O 4: is a diagram showing the crystal structure of the Mn sample by X-ray diffraction pattern.

【図9】(a)および(b)は、種々の温度で処理した
ZnAl:Mn試料の結晶構造と発光強度との相
関を示すグラフである。
FIGS. 9 (a) and (b) are graphs showing the correlation between the crystal structure of a ZnAl 2 O 4 : Mn sample treated at various temperatures and the emission intensity.

【図10】上記ZnAl:Mn試料における応力
発光強度と残光強度の関係についての測定例を示すグラ
フである。
FIG. 10 is a graph showing a measurement example of the relationship between the stress emission intensity and the afterglow intensity in the ZnAl 2 O 4 : Mn sample.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野中 一洋 佐賀県鳥栖市宿町字野々下807番地1 工 業技術院九州工業技術研究所内 (72)発明者 立山 博 佐賀県鳥栖市宿町字野々下807番地1 工 業技術院九州工業技術研究所内 Fターム(参考) 4H001 CA02 CA04 CF02 XA00 XA08 XA12 XA13 XA30 XA31 XA38 XA50 XA56 YA22 YA25 YA26 YA27 YA28 YA29 YA30 YA40 YA50 YB52 YB62  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiro Nonaka 807-1, Nonoshita, Jukucho, Tosu-shi, Saga Prefecture Inside the Kyushu Institute of Industrial Technology (72) Inventor Hiroshi Tateyama Hiroshi Tateyama Jukucho, Tosu-shi, Saga 807 No. 1 F-term in Kyushu Institute of Technology (reference) 4H001 CA02 CA04 CF02 XA00 XA08 XA12 XA13 XA30 XA31 XA38 XA50 XA56 YA22 YA25 YA26 YA27 YA28 YA29 YA30 YA40 YA50 YB52 YB62

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】MNで表される化合物(MおよびN
は、Mg,Sr,Ba,Znの群、およびGa,Alの
群からそれぞれ選ばれた少なくとも1つ以上の金属元
素)で構成される酸化物を母体材料とし、 機械的エネルギーによって励起されたキャリアーが基底
状態に戻る場合に発光するところの希土類または遷移金
属から選ばれた1種類以上の元素を、上記母体材料に発
光中心として添加し、 Mで表わされ金属元素に対する発光中心元素のモル%を
0.001〜20%とした、ことを特徴とする応力発光
材料。
A compound represented by MN 2 O 4 (M and N
Is composed of an oxide composed of at least one metal element selected from the group consisting of Mg, Sr, Ba, and Zn, and the group consisting of Ga and Al) as a base material, and a carrier excited by mechanical energy. Adding at least one element selected from rare earths or transition metals, which emits light when the element returns to the ground state, to the base material as an emission center; Was set to 0.001 to 20%.
【請求項2】MgGaで表される酸化物を母体材
料としたことを特徴とする請求項1に記載の応力発光材
料。
2. The stress-stimulated luminescent material according to claim 1, wherein an oxide represented by MgGa 2 O 4 is used as a base material.
【請求項3】ZnGaで表される酸化物を母体材
料としたことを特徴とする請求項1に記載の応力発光材
料。
3. The stress-stimulated luminescent material according to claim 1, wherein an oxide represented by ZnGa 2 O 4 is used as a base material.
【請求項4】ZnAlで表される酸化物を母体材
料としたことを特徴とする請求項1に記載の応力発光材
料。
4. The stress-stimulated luminescent material according to claim 1, wherein an oxide represented by ZnAl 2 O 4 is used as a base material.
【請求項5】SnZnで表される酸化物を母体材
料としたことを特徴とする請求項1に記載の応力発光材
料。
5. The stress-stimulated luminescent material according to claim 1, wherein an oxide represented by SnZn 2 O 4 is used as a base material.
【請求項6】BaAlで表される酸化物を母体材
料としたことを特徴とする請求項1に記載の応力発光材
料。
6. The stress-stimulated luminescent material according to claim 1, wherein an oxide represented by BaAl 2 O 4 is used as a base material.
【請求項7】MgAlで表される酸化物を母体材
料としたことを特徴とする請求項1に記載の応力発光材
料。
7. The stress-stimulated luminescent material according to claim 1, wherein an oxide represented by MgAl 2 O 4 is used as a base material.
【請求項8】MNで表される化合物(MおよびN
は、Mg,Sr,Ba,Znの群、およびGa,Alの
群からそれぞれ選ばれた少なくとも1つ以上の金属元
素)で構成される酸化物を母体材料とし、MまたはNに
対して0.0001〜20モル%の格子欠陥を有する、
ことを特徴とする応力発光材料。
8. A compound represented by MN 2 O 4 (M and N
Is an oxide composed of at least one metal element selected from the group consisting of Mg, Sr, Ba and Zn, and the group consisting of Ga and Al). having 0001-20 mole% of lattice defects,
A stress-stimulated luminescent material, comprising:
【請求項9】母体材料がスピネル構造を有する化合物で
構成されるものにおいて、擬スピネルまたは逆スピネル
構造を含む、ことを特徴とする請求項1ないし5のいず
れかに記載の応力発光材料。
9. The stress-stimulated luminescent material according to claim 1, wherein the host material is composed of a compound having a spinel structure and includes a pseudo spinel or an inverse spinel structure.
【請求項10】MNで表される酸化物(Mおよび
Nは、Mg,Sr,Ba,Znの群、およびGa,Al
の群からそれぞれ選ばれた少なくとも1つ以上の金属元
素)で構成される母体材料に、機械的エネルギーによっ
て励起されたキャリアーが基底状態に戻る場合に発光す
る希土類または遷移金属の1種類以上を発光中心とし
て、上記Mで表わされ金属元素に対するモル%が0.0
01〜20%となるように添加して混合した後、酸化雰
囲気中において300〜1800℃で焼成し、次に還元
雰囲気中において400〜1800℃で焼成し、発光中
心をドープすることを特徴とする応力発光材料の製造方
法。
10. An oxide represented by MN 2 O 4 (M and N represent a group of Mg, Sr, Ba, Zn, Ga, Al
A base material composed of at least one metal element selected from the group consisting of: a rare earth element or a transition metal that emits light when carriers excited by mechanical energy return to a ground state. As a center, the mole% of the metal element represented by M above is 0.0
After adding and mixing so as to have a concentration of 01 to 20%, the mixture is fired at 300 to 1800 ° C. in an oxidizing atmosphere, and then fired at 400 to 1800 ° C. in a reducing atmosphere to dope the emission center. Of producing a stress-stimulated luminescent material.
JP2000398327A 2000-12-27 2000-12-27 Stress-induced light-emitting material and method for producing the same Pending JP2002194349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398327A JP2002194349A (en) 2000-12-27 2000-12-27 Stress-induced light-emitting material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398327A JP2002194349A (en) 2000-12-27 2000-12-27 Stress-induced light-emitting material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002194349A true JP2002194349A (en) 2002-07-10

Family

ID=18863320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398327A Pending JP2002194349A (en) 2000-12-27 2000-12-27 Stress-induced light-emitting material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002194349A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011572A1 (en) * 2002-07-29 2004-02-05 National Institute Of Advanced Industrial Science And Technology Mechanoluminescence material and process for producing the same
JP2004137329A (en) * 2002-10-16 2004-05-13 Sony Corp Stress-induced light-emitting particle, stress-induced light-emitting artificial sand, stress-induced light-emitting particle aggregate, stress-induced light-emitting flexible structure and method for producing stress-induced light-emitting particle
JP2004137351A (en) * 2002-10-17 2004-05-13 Sony Corp Composite material, artificial luminous skin and artificial luminous body
WO2004101711A1 (en) * 2003-05-14 2004-11-25 Japan Science And Technology Agency TRANSITION METAL DOPED SPINEL TYPE MgAl2O4 PHOSPHOR, LASER APPARATUS INCLUDING THE SAME AND PROCESS FOR PRODUCING THE PHOSPHOR
WO2005097946A1 (en) * 2004-04-09 2005-10-20 National Institute Of Advanced Industrial Science And Technology High-brightness stress light emitting material and production method therefor, and its applications
EP1923040A2 (en) 2006-11-17 2008-05-21 L'oreal Cosmetic composition comprising an interferential pigment and a colouring agent which is sensitive to an external stimulus
WO2011030671A1 (en) * 2009-09-14 2011-03-17 国立大学法人宇都宮大学 Method for producing zn-al-oxide fluorescent material
US7981404B2 (en) 2004-04-08 2011-07-19 L'oreal S.A. Composition for application to the skin, to the lips, to the nails, and/or to hair
US8007772B2 (en) 2002-10-02 2011-08-30 L'oreal S.A. Compositions to be applied to the skin and the integuments
JP2014115220A (en) * 2012-12-11 2014-06-26 Japan Fine Ceramics Center Strain/stress measuring method of structure and strain/stress sensor
US9609934B2 (en) 2004-10-05 2017-04-04 L'oreal Method of applying makeup by means of a magnetic composition including at least one interferential pigment
US9649261B2 (en) 2004-10-05 2017-05-16 L'oreal Method of applying makeup to a surface and a kit for implementing such a method
CN113403065A (en) * 2021-04-30 2021-09-17 河北大学 Fluoride-based stress luminescent material, preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846582A (en) * 1972-07-07 1973-07-03
JPH1088126A (en) * 1996-09-18 1998-04-07 Kasei Optonix Co Ltd Luminous sintered fluorescent substance and its production
JPH11506413A (en) * 1996-01-03 1999-06-08 ロディア シミ Zinc, gallium and oxygen based compounds, methods of preparation and use
JPH11263970A (en) * 1997-11-28 1999-09-28 Agency Of Ind Science & Technol Luminous material, its production and light emission using the same
JP2000026854A (en) * 1998-07-06 2000-01-25 Japan Science & Technology Corp Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
JP2000119647A (en) * 1997-11-28 2000-04-25 Agency Of Ind Science & Technol Luminous material, preparation thereof and method for luminescence using same
JP2000282030A (en) * 1999-03-31 2000-10-10 Somar Corp Soundproofing material, cooling material, heat-resisting material, vibration-absorbing material and shock- absorbing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846582A (en) * 1972-07-07 1973-07-03
JPH11506413A (en) * 1996-01-03 1999-06-08 ロディア シミ Zinc, gallium and oxygen based compounds, methods of preparation and use
JPH1088126A (en) * 1996-09-18 1998-04-07 Kasei Optonix Co Ltd Luminous sintered fluorescent substance and its production
JPH11263970A (en) * 1997-11-28 1999-09-28 Agency Of Ind Science & Technol Luminous material, its production and light emission using the same
JP2000119647A (en) * 1997-11-28 2000-04-25 Agency Of Ind Science & Technol Luminous material, preparation thereof and method for luminescence using same
JP2000026854A (en) * 1998-07-06 2000-01-25 Japan Science & Technology Corp Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
JP2000282030A (en) * 1999-03-31 2000-10-10 Somar Corp Soundproofing material, cooling material, heat-resisting material, vibration-absorbing material and shock- absorbing material

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059746A (en) * 2002-07-29 2004-02-26 National Institute Of Advanced Industrial & Technology Mechano-luminescent material and its manufacturing method
WO2004011572A1 (en) * 2002-07-29 2004-02-05 National Institute Of Advanced Industrial Science And Technology Mechanoluminescence material and process for producing the same
US7258817B2 (en) 2002-07-29 2007-08-21 National Institute Of Advanced Industrial Science And Technology Mechanoluminescence material and process for producing the same
US8007772B2 (en) 2002-10-02 2011-08-30 L'oreal S.A. Compositions to be applied to the skin and the integuments
JP2004137329A (en) * 2002-10-16 2004-05-13 Sony Corp Stress-induced light-emitting particle, stress-induced light-emitting artificial sand, stress-induced light-emitting particle aggregate, stress-induced light-emitting flexible structure and method for producing stress-induced light-emitting particle
JP2004137351A (en) * 2002-10-17 2004-05-13 Sony Corp Composite material, artificial luminous skin and artificial luminous body
EP1640431A4 (en) * 2003-05-14 2008-11-05 Japan Science & Tech Corp Transition metal doped spinel type fluorescent material
WO2004101711A1 (en) * 2003-05-14 2004-11-25 Japan Science And Technology Agency TRANSITION METAL DOPED SPINEL TYPE MgAl2O4 PHOSPHOR, LASER APPARATUS INCLUDING THE SAME AND PROCESS FOR PRODUCING THE PHOSPHOR
EP1640431A1 (en) * 2003-05-14 2006-03-29 Japan Science and Technology Corporation Transition metal doped spinel type mgal sb 2 /sb o sb 4 /sb phosphor, laser apparatus including the same and process for producing the phosphor
US7981404B2 (en) 2004-04-08 2011-07-19 L'oreal S.A. Composition for application to the skin, to the lips, to the nails, and/or to hair
WO2005097946A1 (en) * 2004-04-09 2005-10-20 National Institute Of Advanced Industrial Science And Technology High-brightness stress light emitting material and production method therefor, and its applications
GB2430441B (en) * 2004-04-09 2009-01-07 Nat Inst Of Advanced Ind Scien High-luminosity stress-stimulated luminescent material
JPWO2005097946A1 (en) * 2004-04-09 2007-08-16 独立行政法人産業技術総合研究所 High intensity stress luminescent material, method for producing the same, and use thereof
GB2430441A (en) * 2004-04-09 2007-03-28 Nat Inst Of Advanced Ind Scien High-brightness stress light emitting material and production method therefor, and its applications
US8128839B2 (en) 2004-04-09 2012-03-06 National Institute Of Advanced Industrial Science & Technology High-luminosity stress-stimulated luminescent material, manufacturing method thereof, and use thereof
US9609934B2 (en) 2004-10-05 2017-04-04 L'oreal Method of applying makeup by means of a magnetic composition including at least one interferential pigment
US9649261B2 (en) 2004-10-05 2017-05-16 L'oreal Method of applying makeup to a surface and a kit for implementing such a method
EP1923040A2 (en) 2006-11-17 2008-05-21 L'oreal Cosmetic composition comprising an interferential pigment and a colouring agent which is sensitive to an external stimulus
WO2011030671A1 (en) * 2009-09-14 2011-03-17 国立大学法人宇都宮大学 Method for producing zn-al-oxide fluorescent material
JP2011057941A (en) * 2009-09-14 2011-03-24 Utsunomiya Univ ZnAl-BASED OXIDE PHOSPHOR AND METHOD FOR PRODUCING THE SAME
JP2014115220A (en) * 2012-12-11 2014-06-26 Japan Fine Ceramics Center Strain/stress measuring method of structure and strain/stress sensor
CN113403065A (en) * 2021-04-30 2021-09-17 河北大学 Fluoride-based stress luminescent material, preparation method and application thereof
CN113403065B (en) * 2021-04-30 2022-11-18 河北大学 Fluoride-based stress luminescent material, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3511083B2 (en) High intensity stress luminescent material, manufacturing method thereof, and luminescent method using the same
JP4868500B2 (en) High-strength stress-stimulated luminescent material that emits ultraviolet light, its manufacturing method, and use thereof
JP3837488B2 (en) Mechanoluminescence material
JP3273317B2 (en) Stress-stimulated luminescent material and method of manufacturing the same
JP2992631B1 (en) Stress-stimulated luminescent material and manufacturing method thereof
JP2002194349A (en) Stress-induced light-emitting material and method for producing the same
Sahu The role of europium and dysprosium in the bluish-green long lasting Sr 2 Al 2 SiO 7: Eu 2+, Dy 3+ phosphor by solid state reaction method
JP4963077B2 (en) Stress-stimulated luminescent material that emits ultraviolet light, method for producing the same, and use thereof
JP3918051B2 (en) Mechanoluminescence material and method for producing the same
CN113817465A (en) Bismuth ion doped germanate base orange long afterglow material and preparation method thereof
JP3488602B2 (en) Blue to blue-green luminous aluminum silicate phosphor and method for producing the same
CN109666481A (en) A kind of long after glow luminous material and preparation method thereof
CN107502350A (en) A kind of praseodymium doped laminated perovskite type red long afterglow luminous material, Its Preparation Method And Use
JP5039706B2 (en) Long afterglow luminescent material and method for producing the same
CN107828414B (en) Silicozirconate elastic stress luminescent material and preparation method and application thereof
CN100386405C (en) Red long afterglow luminescent material and its prepn
JP3421736B2 (en) Light emission method by mechanical external force
JP3826210B2 (en) Rare earth complex oxide phosphor
CN114774125B (en) Long-afterglow luminescent material and preparation method thereof
CN109536165A (en) A kind of germanium stannate long after glow luminous material and preparation method thereof
CN113214832B (en) Deep trap long afterglow luminescent material and preparation method thereof
JP2000345152A (en) Yellow light emitting afterglow photoluminescent phosphor
JP3585994B2 (en) Method for producing alkaline earth metal aluminate phosphorescent phosphor
WO2007034609A1 (en) Ultraviolet emission long-persistence phosphor
JP4399624B2 (en) Mechanoluminescence material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041206

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060428