JPH11263970A - Luminous material, its production and light emission using the same - Google Patents

Luminous material, its production and light emission using the same

Info

Publication number
JPH11263970A
JPH11263970A JP10352161A JP35216198A JPH11263970A JP H11263970 A JPH11263970 A JP H11263970A JP 10352161 A JP10352161 A JP 10352161A JP 35216198 A JP35216198 A JP 35216198A JP H11263970 A JPH11263970 A JP H11263970A
Authority
JP
Japan
Prior art keywords
oxide
metal
luminescent material
transition
electron shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10352161A
Other languages
Japanese (ja)
Other versions
JP3136338B2 (en
Inventor
Tadahiko Watanabe
忠彦 渡辺
Chiyoudan Jiyo
超男 徐
Morihito Akiyama
守人 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10352161A priority Critical patent/JP3136338B2/en
Publication of JPH11263970A publication Critical patent/JPH11263970A/en
Application granted granted Critical
Publication of JP3136338B2 publication Critical patent/JP3136338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a luminous material which is of the kind entirely different from a conventionally known one and is capable of emitting light by deformation caused by a mechanical external force such as a frictional force, shearing force or an impact force. SOLUTION: This luminous material is produced by adding an oxide of a rare earth metal or a transition metal having an unstable 3d, 4d, 5d or 4f electron shell and capable of causing the radiation transition in the electron shell in an amount of 0.02-0.5 mol.% expressed in terms of metal atoms to an oxide or a compound oxide of at least one metal belonging to the groups 2A, 3A, 4A and 3B of the periodic table, slowly increasing the temperature thereof to 900-1,100 deg.C in an inert atmosphere and then baking the resultant mixture at 1,200-1,500 deg.C in a reducing atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械的な外力を加
えて生じる変形によって発光する、これまでに知られて
いない新規な発光材料、その製造方法及びそれを用いた
発光方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel light-emitting material which emits light by deformation caused by the application of a mechanical external force, a novel light-emitting material which has not been known so far, a method for producing the same, and a light-emitting method using the same. .

【0002】[0002]

【従来の技術】従来、物質が外部からの刺激を与えられ
ることによって、低温度で可視域付近の光を発する現象
は、いわゆる蛍光現象としてよく知られている。このよ
うな蛍光現象を生じる物質、すなわち蛍光体は、蛍光ラ
ンプなどの照明灯や、CRT(Cathode Ray
Tube)いわゆるブラウン管などのディスプレイな
どとして用いられている。この蛍光現象を生じさせる外
部からの刺激は、紫外線、電子線、X線、放射線、電
界、化学反応などによって与えられているが、これま
で、機械的な外力を加えて変形を生じさせて発光する材
料は知られていなかった。
2. Description of the Related Art Heretofore, a phenomenon in which a substance emits light in the vicinity of the visible region at a low temperature due to an external stimulus is well known as a so-called fluorescent phenomenon. A substance that causes such a fluorescent phenomenon, that is, a fluorescent substance, is used for an illumination light such as a fluorescent lamp or a CRT (Cathode Ray).
Tube) is used as a display such as a so-called cathode ray tube. The external stimulus that causes this fluorescence phenomenon is given by ultraviolet rays, electron beams, X-rays, radiation, electric fields, chemical reactions, etc., but until now, it has been deformed by applying a mechanical external force to emit light. The material to do was unknown.

【0003】[0003]

【発明が解決しようとする課題】本発明は、摩擦力、せ
ん断力、衝撃力などの機械的な外力によりもたらされる
変形で発光する、これまで知られていたものとは全く異
なる種類の新規な発光材料を提供することを目的として
なされたものである。
SUMMARY OF THE INVENTION The present invention relates to a novel and totally different kind of novel light source which emits light by deformation caused by mechanical external forces such as frictional force, shear force and impact force. The purpose of the present invention is to provide a light emitting material.

【0004】[0004]

【課題を解決するための手段】本発明者らは、機械的変
形によって発光する新規な発光材料を開発すべく鋭意研
究を重ねた結果、特定の金属の酸化物又は複合酸化物の
母体結晶中に、特定の性質を有する希土類金属イオンや
遷移金属イオンを発光中心の中心イオンとして含む物質
が、そのような性能を有することを見出し、この知見に
基づいて本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to develop a novel luminescent material which emits light by mechanical deformation. In addition, they have found that a substance containing a rare earth metal ion or a transition metal ion having specific properties as a central ion of a luminescence center has such performance, and based on this finding, have completed the present invention.

【0005】すなわち、本発明は、周期表2A、3A、
4A及び3B族に属する少なくとも1種の金属の酸化物
又は複合酸化物の母体結晶中に、不安定な3d、4d、
5d又は4f電子殻を有し、この電子殻内で輻射転移を
生起しうる希土類金属イオン及び遷移金属イオンの中か
ら選ばれた少なくとも1種の金属イオンを発光中心の中
心イオンとして含む物質からなる機械的変形により発光
する発光材料、及びこの発光材料に機械的な外力を加え
て変形を生じさせることを特徴とする発光方法を提供す
るものである。また、前記発光材料は、本発明に従え
ば、周期表2A、3A、4A及び3B族に属する少なく
とも1種の金属の酸化物又は複合酸化物に対し、不安定
な3d、4d、5d又は4f電子殻を有し、この電子殻
内で輻射転移を生起しうる希土類金属及び遷移金属の中
から選ばれた少なくとも1種の金属の酸化物を、金属原
子換算で0.02〜0.5モル%の割合で添加し、不活
性雰囲気中、900〜1100℃の範囲の温度まで徐々
に昇温させたのち、還元雰囲気中、1200〜1500
℃の範囲の温度で焼成することにより製造することがで
きる。
That is, the present invention provides a periodic table 2A, 3A,
In the host crystal of the oxide or composite oxide of at least one metal belonging to groups 4A and 3B, unstable 3d, 4d,
It has a 5d or 4f electron shell, and is made of a substance containing, as a central ion of a luminescence center, at least one metal ion selected from a rare earth metal ion and a transition metal ion capable of causing radiation transition in the electron shell. An object of the present invention is to provide a light-emitting material that emits light by mechanical deformation, and a light-emitting method characterized by applying a mechanical external force to the light-emitting material to cause deformation. In addition, according to the present invention, the luminescent material is unstable to 3d, 4d, 5d or 4f with respect to an oxide or composite oxide of at least one metal belonging to Groups 2A, 3A, 4A and 3B of the periodic table. An oxide of at least one metal selected from the group consisting of a rare earth metal and a transition metal capable of causing a radiative transition in the electron shell, having an electron shell in an amount of 0.02 to 0.5 mol in terms of metal atoms. % In an inert atmosphere and gradually heated to a temperature in the range of 900 to 1100 ° C., and then reduced to 1200 to 1500 in a reducing atmosphere.
It can be manufactured by firing at a temperature in the range of ° C.

【0006】[0006]

【発明の実施の形態】本発明の発光材料は、機械的な外
力を加えて変形を生じさせることによって発光する新規
な機能材料であって、特定の金属の酸化物又は複合酸化
物の母体結晶中に、発光中心の中心イオンとして希土類
金属イオンや遷移金属イオンを含む物質からなるもので
ある。本発明においては、母体結晶として、また製造原
料として、周期表2A、3A、4A及び3B族に属する
金属、特に24〜180の範囲の原子量をもつ金属から
選ばれる少なくとも1種の金属の酸化物又は複合酸化物
が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The luminescent material of the present invention is a novel functional material which emits light by being deformed by applying a mechanical external force, and is a host crystal of a specific metal oxide or composite oxide. It is made of a substance containing a rare earth metal ion or a transition metal ion as the central ion of the luminescent center. In the present invention, an oxide of at least one metal selected from metals belonging to Groups 2A, 3A, 4A and 3B of the periodic table, particularly metals having an atomic weight in the range of 24 to 180, as a host crystal and as a raw material for production. Alternatively, a composite oxide is used.

【0007】このような金属の酸化物又は複合酸化物と
しては、MgO、SrO、CaO、ZrO2、CeO2
HfO2、Y23、Al23、Cr23及びTi23
中から選ばれた金属酸化物又はその複合酸化物が好まし
く、中でも発光強度が他の結晶構造のものよりも高い点
から、スピネル構造、ホタル石構造、イットリア構造、
コランダム構造又はβ‐アルミナ構造の結晶構造を有す
るものが好ましい。このような結晶構造を有する金属の
酸化物又は複合酸化物としては、高温でも組成が安定で
ある、スピネル構造のMgAl24、SrAl24、C
aAl24、ホタル石構造のZrO2、CeO2、HfO
2、イットリア構造のY23、コランダム構造のAl2
3、Cr23、Ti23及びβ‐アルミナ構造のSrM
gAl1017の中から選ばれた、金属の酸化物又は複合
酸化物を挙げることができる。特に好ましいのは、スピ
ネル構造及びβ‐アルミナ構造のものである。
Such metal oxides or composite oxides include MgO, SrO, CaO, ZrO 2 , CeO 2 ,
A metal oxide selected from HfO 2 , Y 2 O 3 , Al 2 O 3 , Cr 2 O 3 and Ti 2 O 3 or a composite oxide thereof is preferable. From a high point, spinel structure, fluorite structure, yttria structure,
Those having a crystal structure of corundum structure or β-alumina structure are preferred. As a metal oxide or composite oxide having such a crystal structure, MgAl 2 O 4 , SrAl 2 O 4 , C
aAl 2 O 4 , fluorite-structured ZrO 2 , CeO 2 , HfO
2, Y 2 O 3 yttria structure, corundum structure Al 2 O
3 , SrM with Cr 2 O 3 , Ti 2 O 3 and β-alumina structure
Metal oxides or composite oxides selected from gAl 10 O 17 can be used. Particularly preferred are those having a spinel structure and a β-alumina structure.

【0008】このような金属の酸化物又は複合酸化物の
母体結晶中に、発光中心の中心イオンとして含有する希
土類金属イオンや遷移金属イオンは、発光強度を飛躍的
に向上させるためのものであり、本発明においては、こ
のような希土類金属イオンや遷移金属イオンとして、不
安定な3d、4d、5d又は4f電子殻を有し、この電
子殻内で輻射転移を生起しうるイオンが、母体結晶中に
導入される。これらの中で特に好適なのは、第一イオン
化エネルギーが8eV以下、特に6eV以下のものであ
る。
A rare earth metal ion or a transition metal ion contained as a central ion of a luminescence center in a host crystal of such a metal oxide or a composite oxide is for dramatically improving the luminescence intensity. In the present invention, the rare earth metal ion or the transition metal ion has an unstable 3d, 4d, 5d or 4f electron shell, and an ion capable of causing a radiative transition in the electron shell is a host crystal. Introduced inside. Among them, particularly preferred are those having a first ionization energy of 8 eV or less, particularly 6 eV or less.

【0009】不安定な3d電子殻を有する遷移金属イオ
ンの中で好ましいのは、V、Cr、Mn、Fe、Co、
Ni、Cu、Znなどであり、不安定な4d電子殻をも
つ遷移金属イオンの中で好ましいのは、Nb、Moであ
り、不安定な5d電子殻をもつ遷移金属イオンの中で好
ましいのは、Ta、Wがある。他方、不安定な4f電子
殻をもつ希土類金属イオンの中で好ましいのは、Ce、
Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dyなど
である。本発明の製法に用いる遷移金属の酸化物や希土
類金属の酸化物における好ましい金属も、上記の好まし
い所定金属イオンにおける金属と全く同じものである。
Among transition metal ions having an unstable 3d electron shell, preferred are V, Cr, Mn, Fe, Co,
Preferred among transition metal ions having an unstable 4d electron shell, such as Ni, Cu, Zn, etc., are Nb and Mo, and preferred among transition metal ions having an unstable 5d electron shell. , Ta, and W. On the other hand, among the rare earth metal ions having an unstable 4f electron shell, preferred are Ce,
Examples include Pr, Nd, Pm, Sm, Eu, Gd, Tb, and Dy. Preferred metals in the transition metal oxide and rare earth metal oxide used in the production method of the present invention are exactly the same as the metals in the above-mentioned preferred predetermined metal ions.

【0010】これらの希土類金属イオンや遷移金属イオ
ンは、母体の金属の酸化物又は複合酸化物の結晶構造な
どに応じて1種又は2種以上を適宜選択し、発光中心の
中心イオンとして、母体結晶中に導入することができ
る。本発明の発光材料においては、母体結晶と発光中心
との組み合せによって、その発光強度が変化するが、特
にβ‐アルミナ構造又はスピネル構造をもつ金属の酸化
物又は複合酸化物を母体結晶とし、希土類金属イオンの
中から選ばれた少なくとも1種の金属イオンを発光中心
としたものが高い発光強度を示す。
One or more of these rare earth metal ions and transition metal ions are appropriately selected according to the crystal structure of the parent metal oxide or composite oxide and the like. It can be introduced into the crystal. In the light-emitting material of the present invention, the emission intensity changes depending on the combination of the host crystal and the emission center. In particular, a metal oxide or complex oxide having a β-alumina structure or a spinel structure is used as the host crystal, Those having at least one kind of metal ion selected from metal ions as the emission center exhibit high emission intensity.

【0011】本発明の発光材料は、以下に示す方法によ
って、効率よく製造することができる。まず、周期表2
A、3A、4A及び3B族に属する少なくとも1種の金
属の酸化物又は複合酸化物の粉末に対し、不安定な3
d、4d、5d又は4f電子殻を有し、この電子殻内で
輻射転移を生起しうる前記の希土類金属及び遷移金属の
中から選ばれた少なくとも1種の金属の酸化物の粉末
を、金属原子換算で0.02〜0.5モル%の割合で添
加し、十分に混合する。この希土類金属や遷移金属の酸
化物粉末の添加量が上記範囲を逸脱すると十分な発光効
率が得られない。
The luminescent material of the present invention can be efficiently produced by the following method. First, periodic table 2
A powder of an oxide or composite oxide of at least one metal belonging to Groups A, 3A, 4A and 3B
a powder of an oxide of at least one metal selected from the above-mentioned rare earth metals and transition metals having a d, 4d, 5d or 4f electron shell and capable of causing radiation transition in the electron shell, It is added at a ratio of 0.02 to 0.5 mol% in terms of atoms and mixed well. If the amount of the rare earth metal or transition metal oxide powder is outside the above range, sufficient luminous efficiency cannot be obtained.

【0012】次に、この混合粉末を、窒素ガスやアルゴ
ンガス中、あるいは真空中などの不活性雰囲気中、90
0〜1100℃の範囲の温度まで徐々に昇温して仮焼す
る。次いで、この仮焼粉末を所望形状に加圧成形したの
ち、これを水素ガス中などの還元雰囲気中、1200〜
1500℃の範囲の温度にて、30〜300分間程度焼
成することにより、所望の発光材料が得られる。
Next, this mixed powder is placed in an inert atmosphere such as nitrogen gas or argon gas, or in a vacuum, for 90 hours.
The temperature is gradually raised to a temperature in the range of 0 to 1100 ° C. and calcined. Next, the calcined powder is formed into a desired shape under pressure, and is then placed in a reducing atmosphere such as hydrogen gas at 1200 to 1200 μm.
By firing at a temperature in the range of 1500 ° C. for about 30 to 300 minutes, a desired luminescent material can be obtained.

【0013】このようにして得られた発光材料の発光強
度は結晶性に強く依存し、酸化物の結晶性が高いほど発
光強度が高くなる傾向がある。したがって、結晶性を向
上させることにより、発光強度を向上させることが可能
である。また、この発光材料においては、母体の金属酸
化物と発光中心の中心イオンとの組合わせによって、様
々な波長領域の発光が可能であり、肉眼で波長領域の変
化が確認できる。
The luminous intensity of the luminescent material thus obtained is strongly dependent on the crystallinity, and the higher the crystallinity of the oxide, the higher the luminous intensity tends to be. Therefore, the emission intensity can be improved by improving the crystallinity. Further, in this light emitting material, light emission in various wavelength regions is possible by a combination of the base metal oxide and the central ion of the light emission center, and a change in the wavelength region can be confirmed with the naked eye.

【0014】本発明の発光材料は、機械的な外力、例え
ば摩擦力、せん断力、衝撃力などを加えて変形すなわち
弾性変形又は塑性変形を生じさせることによって発光す
る。この発光は、機械的な外力によって結晶が変形する
とき、あるいは機械的な外力が除かれて復元するときに
生じる。その発光強度は、一般的に加える機械的な外力
が大きいほど高くなる傾向がある。したがって、発光強
度を測定することによって、発光材料に加えられている
機械的な作用力を知ることができる。これによって、発
光材料にかかる応力状態を無接触で検出が可能となり、
広い分野での応用が期待できる。
The luminescent material of the present invention emits light by applying a mechanical external force, for example, a frictional force, a shearing force, an impact force, or the like, to cause deformation, that is, elastic deformation or plastic deformation. This light emission occurs when the crystal is deformed by a mechanical external force or when the crystal is restored by removing the mechanical external force. Generally, the emission intensity tends to increase as the applied mechanical external force increases. Therefore, by measuring the luminous intensity, the mechanical acting force applied to the luminescent material can be known. This makes it possible to detect the state of stress applied to the luminescent material without contact,
It can be expected to be applied in a wide range of fields.

【0015】[0015]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1 代表的なスピネル構造の酸化物である高純度のMgAl
24粉末に、各割合の高純度CeO2粉末を十分によく
混合したのち、真空中で1000℃まで60分間かけて
徐々に昇温して仮焼した。この段階では、MgAl24
中に、発光中心となるセリウムイオンが生成する。次い
で、この仮焼粉末を加圧成形し、還元雰囲気中(水素ガ
ス雰囲気中)にて、1300℃で120分間焼成した。
この高温焼成により、セリウムイオンはMgAl24
結晶構造に導入される。このようにして得られた各発光
材料について、同一励起条件下での発光強度を測定し、
比較を行った。図1に、セリウムイオン添加量と発光強
度との関係を、半対数座標にてグラフで示す。なお、発
光強度は、発光材料表面を直径1mmの半球状のステン
レス棒で、荷重200g、速度4m/分の条件で摩擦す
ることにより、発光させて測定した。図1から分かるよ
うに、セリウムイオン添加量が0.05モル%の場合、
発光強度は220cpsであり、最も高い発光強度を示
している。この発光は肉眼でも観察でき、白色であっ
た。なお、セリウムイオンを添加していないMgAl2
4の発光強度は40cps程度であった。
Example 1 High purity MgAl which is a typical oxide having a spinel structure
After sufficiently mixing each ratio of high-purity CeO 2 powder with 2 O 4 powder, the mixture was calcined by gradually raising the temperature to 1000 ° C. over 60 minutes in a vacuum. At this stage, MgAl 2 O 4
Cerium ions serving as luminescence centers are generated therein. Next, the calcined powder was molded under pressure and fired at 1300 ° C. for 120 minutes in a reducing atmosphere (in a hydrogen gas atmosphere).
By this high-temperature firing, cerium ions are introduced into the crystal structure of MgAl 2 O 4 . For each luminescent material thus obtained, the luminescence intensity under the same excitation conditions was measured,
A comparison was made. FIG. 1 is a graph showing the relationship between the amount of cerium ions added and the emission intensity in semilogarithmic coordinates. The luminous intensity was measured by rubbing the surface of the luminescent material with a hemispherical stainless steel rod having a diameter of 1 mm under a load of 200 g and a speed of 4 m / min. As can be seen from FIG. 1, when the cerium ion addition amount is 0.05 mol%,
The light emission intensity is 220 cps, indicating the highest light emission intensity. This luminescence was observable with the naked eye and was white. In addition, MgAl 2 to which cerium ions were not added
The emission intensity of O 4 was about 40 cps.

【0017】実施例2〜5 実施例1と同様にして、MgAl24にEuイオン(実
施例2)、Mnイオン(実施例3)、Cuイオン(実施
例4)を、それぞれ0.05モル%含有させた発光材
料、及びEuイオン0.05モル%とTbイオン0.0
5モル%を含有させた発光材料(実施例5)を製造し、
発光強度を測定した。その結果を実施例1(Ceイオン
0.05モル%添加したもの)と共に表1に示す。
Examples 2 to 5 In the same manner as in Example 1, 0.05 Al of Eu ions (Example 2), Mn ions (Example 3) and Cu ions (Example 4) were added to MgAl 2 O 4. Mol% of a luminescent material, and 0.05 mol% of Eu ions and 0.0 of Tb ions.
A luminescent material containing 5 mol% (Example 5) was produced,
The emission intensity was measured. The results are shown in Table 1 together with Example 1 (with the addition of 0.05 mol% of Ce ions).

【0018】[0018]

【表1】 [Table 1]

【0019】表1から、MgAl24にCeイオンを添
加したものが最も高い発光強度を示すことが分かる。
Table 1 shows that MgAl 2 O 4 to which Ce ions are added exhibits the highest emission intensity.

【0020】実施例6 実施例1と同様にして、スピネル構造の酸化物であるC
aAl24にCeイオン0.05モル%を含有させた発
光材料を製造し、発光強度を測定したところ、発光強度
は180cpsであった。従来知られている酸化物発光
体の発光強度は5cps以下であり、従来のものよりか
なり高い発光強度を有することが分かった。
Example 6 In the same manner as in Example 1, a spinel oxide C
A light-emitting material in which 0.05 mol% of Ce ions was contained in aAl 2 O 4 was manufactured, and the light-emitting intensity was measured. As a result, the light-emitting intensity was 180 cps. The luminous intensity of the conventionally known oxide luminous body was 5 cps or less, and it was found that the luminous intensity was considerably higher than the conventional one.

【0021】実施例7 実施例1と同様にして、スピネル構造の酸化物であるS
rAl24にCeイオン0.05モル%を含有させた発
光材料を製造し、発光強度を測定したところ、発光強度
は60cpsであった。従来知られている酸化物発光体
の発光強度は5cps以下であり、従来のものよりも高
い発光強度を有することが分かった。
Example 7 In the same manner as in Example 1, the oxide S having a spinel structure was used.
A light emitting material in which 0.05 mol% of Ce ions was added to rAl 2 O 4 was manufactured, and the light emission intensity was measured. As a result, the light emission intensity was 60 cps. The luminous intensity of the conventionally known oxide luminous body is 5 cps or less, which indicates that the luminous intensity is higher than that of the conventional one.

【0022】実施例8〜10 実施例1と同様にして、ホタル石構造の酸化物であるZ
rO2(実施例8)、HfO2(実施例9)、CeO
2(実施例10)に、それぞれCeイオン0.05モル
%を含有させた発光材料を製造し、発光強度を測定し
た。その結果を表2に示す。
Examples 8 to 10 In the same manner as in Example 1, an oxide having a fluorite structure, Z
rO 2 (Example 8), HfO 2 (Example 9), CeO
2 In Example 10, a luminescent material containing 0.05 mol% of Ce ions was manufactured, and the luminescence intensity was measured. Table 2 shows the results.

【0023】[0023]

【表2】 [Table 2]

【0024】表2から、いずれの発光材料も、従来知ら
れている発光体よりも発光強度が高いことが分かる。
From Table 2, it can be seen that each of the luminescent materials has a higher luminous intensity than conventionally known luminescent materials.

【0025】実施例11 実施例1と同様にして、イットリア構造の代表的な酸化
物であるY23に、Ceイオン0.05モル%を含有さ
せた発光材料を製造し、発光強度を測定したところ、発
光強度は30cpsであり、従来知られている発光体よ
りも発光強度が高いものであった。
Example 11 In the same manner as in Example 1, a luminescent material containing 0.05 mol% of Ce ions in Y 2 O 3 , which is a typical oxide having an yttria structure, was produced. As a result of the measurement, the light emission intensity was 30 cps, which was higher than that of a conventionally known light emitter.

【0026】実施例12〜14 実施例1と同様にして、コランダム構造の酸化物である
Al23(実施例12)、Cr23(実施例13)及び
Ti23(実施例14)に、それぞれCeイオン0.0
5モル%を含有させた発光材料を製造し、発光強度を測
定した。その結果を表3に示す。
Examples 12 to 14 In the same manner as in Example 1, oxides having a corundum structure of Al 2 O 3 (Example 12), Cr 2 O 3 (Example 13) and Ti 2 O 3 (Example 14), each Ce ion 0.0
A luminescent material containing 5 mol% was produced, and the luminescence intensity was measured. Table 3 shows the results.

【0027】[0027]

【表3】 [Table 3]

【0028】表3から、いずれの発光材料も、従来知ら
れている発光体よりも発光強度が高いことが分かる。
From Table 3, it can be seen that each of the luminescent materials has a higher luminous intensity than conventionally known luminous bodies.

【0029】実施例15 実施例1と同様にして、β‐アルミナ構造の酸化物であ
るSrMgAl1017に、Euイオン0.5モル%を含
有させた発光材料を製造し、発光強度を測定した。その
結果を表4に示す。
Example 15 In the same manner as in Example 1, a luminescent material was prepared by adding 0.5 mol% of Eu ions to SrMgAl 10 O 17 which is an oxide having a β-alumina structure, and the luminescence intensity was measured. did. Table 4 shows the results.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】本発明の発光材料は、特定の結晶構造の
金属酸化物の母体結晶中に、発光中心の中心イオンとし
て、希土類金属イオンや遷移金属イオンを含有するもの
であって、機械的な外力を加えて変形を生じさせること
により発光する、これまで知られていない新規な機能材
料である。本発明の発光材料は、例えば機械的な作用を
光に変化させる新しい非接触コントローラー、種々の制
御プロセスなど、広い応用が期待できる。また、この発
光材料は高温での安定性に優れており、高温での応用も
期待できる。
The luminescent material of the present invention contains a rare-earth metal ion or a transition metal ion as a central ion of a luminescent center in a host crystal of a metal oxide having a specific crystal structure. It is a novel functional material that has not been known until now, which emits light when deformed by applying an external force. The luminescent material of the present invention can be expected to be widely applied to, for example, a new non-contact controller that changes a mechanical action into light, various control processes, and the like. In addition, this luminescent material has excellent stability at high temperatures, and can be expected to be applied at high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 MgAl24に発光中心の中心イオンとして
Ceイオンを添加してなる発光材料における、Ceイオ
ン添加量と発光強度との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between Ce ion addition amount and luminous intensity in a luminescent material obtained by adding Ce ion as a central ion of a luminescent center to MgAl 2 O 4 .

フロントページの続き (51)Int.Cl.6 識別記号 FI G01L 1/00 G01L 1/00 Z Continued on the front page (51) Int.Cl. 6 Identification symbol FI G01L 1/00 G01L 1/00 Z

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 周期表2A、3A、4A及び3B族に属
する少なくとも1種の金属の酸化物又は複合酸化物の母
体結晶中に、不安定な3d、4d、5d又は4f電子殻
を有し、この電子殻内で輻射転移を生起しうる希土類金
属イオン及び遷移金属イオンの中から選ばれた少なくと
も1種の金属イオンを発光中心の中心イオンとして含む
物質からなる機械的変形により発光する発光材料。
An unstable 3d, 4d, 5d or 4f electron shell is present in a host crystal of an oxide or a composite oxide of at least one metal belonging to Groups 2A, 3A, 4A and 3B of the periodic table. A luminescent material that emits light by mechanical deformation of a substance containing, as a central ion of a luminescent center, at least one metal ion selected from a rare earth metal ion and a transition metal ion capable of causing a radiative transition in the electron shell. .
【請求項2】 母体結晶が、MgO、SrO、CaO、
ZrO2、CeO2、HfO2、Y23、Al23、Cr2
3及びTi23の中から選ばれた金属酸化物又はその
複合酸化物である請求項1記載の発光材料。
2. The base crystal is composed of MgO, SrO, CaO,
ZrO 2 , CeO 2 , HfO 2 , Y 2 O 3 , Al 2 O 3 , Cr 2
O 3 and the light emitting material according to claim 1, wherein a metal oxide or a composite oxide thereof selected from among Ti 2 O 3.
【請求項3】 母体結晶がスピネル構造、ホタル石構
造、イットリア構造、コランダム構造又はβ‐アルミナ
構造を有するものである請求項2記載の発光材料。
3. The luminescent material according to claim 2, wherein the host crystal has a spinel structure, a fluorite structure, a yttria structure, a corundum structure or a β-alumina structure.
【請求項4】 発光中心の中心イオンがCe、Pr、N
d、Pm、Sm、Eu、Gd、Tb及びDyの中から選
ばれた希土類金属イオンである請求項1,2又は3記載
の発光材料。
4. The center ion of the emission center is Ce, Pr, N
4. The luminescent material according to claim 1, wherein the luminescent material is a rare earth metal ion selected from d, Pm, Sm, Eu, Gd, Tb and Dy.
【請求項5】 発光中心の中心イオンがV、Cr、M
n、Fe、Co、Ni、Cu、Zn、Nb、Mo、Ta
及びWの中から選ばれた遷移金属イオンである請求項1
ないし4のいずれかに記載の発光材料。
5. The center ions of the luminescence center are V, Cr, M
n, Fe, Co, Ni, Cu, Zn, Nb, Mo, Ta
And a transition metal ion selected from W and W.
5. The light emitting material according to any one of items 1 to 4.
【請求項6】 周期表2A、3A、4A及び3B族に属
する少なくとも1種の金属の酸化物又は複合酸化物に対
し、不安定な3d、4d、5d又は4f電子殻を有し、
この電子殻内で輻射転移を生起しうる希土類金属及び遷
移金属の中から選ばれた少なくとも1種の金属の酸化物
を、金属原子換算で0.02〜0.5モル%の割合で添
加し、不活性雰囲気中、900〜1100℃の範囲の温
度まで徐々に昇温させたのち、還元雰囲気中、1200
〜1500℃の範囲の温度で焼成することを特徴とする
機械的変形により発光する発光材料の製造方法。
6. An unstable 3d, 4d, 5d or 4f electron shell for an oxide or composite oxide of at least one metal belonging to Groups 2A, 3A, 4A and 3B of the periodic table;
An oxide of at least one metal selected from rare earth metals and transition metals capable of causing radiation transition in the electron shell is added at a ratio of 0.02 to 0.5 mol% in terms of metal atoms. After gradually increasing the temperature to a temperature in the range of 900 to 1100 ° C. in an inert atmosphere,
A method for producing a luminescent material which emits light by mechanical deformation, characterized by firing at a temperature in the range of ~ 1500C.
【請求項7】 周期表2A、3A、4A及び3B族に属
する少なくとも1種の金属の酸化物又は複合酸化物が、
MgO、SrO、CaO、ZrO2、CeO2、Hf
2、Y23、Al23、Cr23及びTi23の中か
ら選ばれた金属酸化物又はその複合酸化物である請求項
6記載の発光材料の製造方法。
7. An oxide or composite oxide of at least one metal belonging to groups 2A, 3A, 4A and 3B of the periodic table,
MgO, SrO, CaO, ZrO 2 , CeO 2 , Hf
O 2, Y 2 O 3, Al 2 O 3, Cr 2 O 3 and a manufacturing method of a light-emitting material according to claim 6, wherein a metal oxide or a composite oxide thereof selected from among Ti 2 O 3.
【請求項8】 金属酸化物又はその複合酸化物がスピネ
ル構造、ホタル石構造、イットリア構造、コランダム構
造又はβ‐アルミナ構造を有する請求項7記載の発光材
料の製造方法。
8. The method according to claim 7, wherein the metal oxide or the composite oxide has a spinel structure, a fluorite structure, an yttria structure, a corundum structure, or a β-alumina structure.
【請求項9】 希土類金属が、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb及びDyの中から選ばれた
ものである請求項6,7又は8記載の発光材料の製造方
法。
9. The rare earth metal is Ce, Pr, Nd, P
The method for producing a luminescent material according to claim 6, 7 or 8, wherein the method is selected from m, Sm, Eu, Gd, Tb and Dy.
【請求項10】 遷移金属が、V、Cr、Mn、Fe、
Co、Ni、Cu、Zn、Nb、Mo、Ta及びWの中
から選ばれたものである請求項6ないし9のいずれかに
記載の発光材料の製造方法。
10. The transition metal is V, Cr, Mn, Fe,
The method for producing a luminescent material according to any one of claims 6 to 9, wherein the luminescent material is selected from Co, Ni, Cu, Zn, Nb, Mo, Ta and W.
【請求項11】 周期表2A、3A、4A及び3B族に
属する少なくとも1種の金属の酸化物又は複合酸化物の
母体結晶中に、不安定な3d、4d、5d又は4f電子
殻を有し、この電子殻内で輻射転移を生起しうる希土類
金属イオン及び遷移金属イオンの中から選ばれた少なく
とも1種の金属イオンを発光中心の中心イオンとして含
む物質からなる発光材料に機械的な外力を加えて変形を
生じさせることを特徴とする発光方法。
11. An unstable 3d, 4d, 5d or 4f electron shell in a host crystal of an oxide or composite oxide of at least one metal belonging to Groups 2A, 3A, 4A and 3B of the periodic table. A mechanical external force is applied to a luminescent material made of a substance containing, as a central ion of a luminescent center, at least one metal ion selected from a rare earth metal ion and a transition metal ion capable of causing radiation transition in the electron shell. In addition, a light emitting method characterized by causing deformation.
【請求項12】 変形が弾性変形又は塑性変形である請
求項11記載の発光方法。
12. The light emitting method according to claim 11, wherein the deformation is an elastic deformation or a plastic deformation.
JP10352161A 1997-11-28 1998-11-27 Light-emitting material, method for producing the same, and light-emitting method using the same Expired - Lifetime JP3136338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10352161A JP3136338B2 (en) 1997-11-28 1998-11-27 Light-emitting material, method for producing the same, and light-emitting method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-341894 1997-11-28
JP34189497 1997-11-28
JP10352161A JP3136338B2 (en) 1997-11-28 1998-11-27 Light-emitting material, method for producing the same, and light-emitting method using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11322246A Division JP3136340B2 (en) 1997-11-28 1999-11-12 Light-emitting material, method for producing the same, and light-emitting method using the same

Publications (2)

Publication Number Publication Date
JPH11263970A true JPH11263970A (en) 1999-09-28
JP3136338B2 JP3136338B2 (en) 2001-02-19

Family

ID=26577086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10352161A Expired - Lifetime JP3136338B2 (en) 1997-11-28 1998-11-27 Light-emitting material, method for producing the same, and light-emitting method using the same

Country Status (1)

Country Link
JP (1) JP3136338B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215195A (en) * 2000-02-02 2001-08-10 Chuken Consultant:Kk Concrete structure and method for detecting deterioration thereof
JP2002194349A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material and method for producing the same
JP2003165973A (en) * 2001-11-30 2003-06-10 National Institute Of Advanced Industrial & Technology Mechanoluminescent material
JP2004196916A (en) * 2002-12-17 2004-07-15 National Institute Of Advanced Industrial & Technology Elastic body and power transmission apparatus using the same
JP2005132861A (en) * 2003-10-28 2005-05-26 Japan Science & Technology Agency Method for producing luminant, and luminant
WO2005090516A1 (en) * 2004-03-23 2005-09-29 Hamamatsu Foundation For Science And Technology Promotion Near ultraviolet excitable phosphor and method for preparation thereof
JP2013245292A (en) * 2012-05-25 2013-12-09 Futaba Corp Ultraviolet light-emitting material and ultraviolet light source
JP2014115219A (en) * 2012-12-11 2014-06-26 Japan Fine Ceramics Center Strain/stress measuring method of structure and strain/stress sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846582A (en) * 1972-07-07 1973-07-03
JPH0238484A (en) * 1988-07-27 1990-02-07 Toshiba Corp Inorganic light-emitting substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846582A (en) * 1972-07-07 1973-07-03
JPH0238484A (en) * 1988-07-27 1990-02-07 Toshiba Corp Inorganic light-emitting substance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215195A (en) * 2000-02-02 2001-08-10 Chuken Consultant:Kk Concrete structure and method for detecting deterioration thereof
JP2002194349A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material and method for producing the same
JP2003165973A (en) * 2001-11-30 2003-06-10 National Institute Of Advanced Industrial & Technology Mechanoluminescent material
JP2004196916A (en) * 2002-12-17 2004-07-15 National Institute Of Advanced Industrial & Technology Elastic body and power transmission apparatus using the same
JP2005132861A (en) * 2003-10-28 2005-05-26 Japan Science & Technology Agency Method for producing luminant, and luminant
WO2005090516A1 (en) * 2004-03-23 2005-09-29 Hamamatsu Foundation For Science And Technology Promotion Near ultraviolet excitable phosphor and method for preparation thereof
JP2013245292A (en) * 2012-05-25 2013-12-09 Futaba Corp Ultraviolet light-emitting material and ultraviolet light source
JP2014115219A (en) * 2012-12-11 2014-06-26 Japan Fine Ceramics Center Strain/stress measuring method of structure and strain/stress sensor

Also Published As

Publication number Publication date
JP3136338B2 (en) 2001-02-19

Similar Documents

Publication Publication Date Title
JP3837488B2 (en) Mechanoluminescence material
JP3511083B2 (en) High intensity stress luminescent material, manufacturing method thereof, and luminescent method using the same
US6802990B2 (en) Fluorescent substances for vacuum ultraviolet radiation excited light-emitting devices
JP3273317B2 (en) Stress-stimulated luminescent material and method of manufacturing the same
JP3136340B2 (en) Light-emitting material, method for producing the same, and light-emitting method using the same
US6159394A (en) Stress emission material and its manufacturing method
JPH11263970A (en) Luminous material, its production and light emission using the same
JP3918051B2 (en) Mechanoluminescence material and method for producing the same
US3758486A (en) Rare earth niobate composition
JP2002194349A (en) Stress-induced light-emitting material and method for producing the same
JP2000313878A (en) Luminous material, its preparation and luminescence process using the same
JP2013515138A (en) Oxynitride pyrosilicate afterglow phosphor
JP2958450B2 (en) Method for manufacturing luminous body
JP4399624B2 (en) Mechanoluminescence material
JPH11116946A (en) Inorganic material emitting light by force and its preparation
CN100383217C (en) Phosphor for vacuum ultravilet ray-excited light-emitting element
JP3264045B2 (en) Phosphor manufacturing method
JP2000290646A (en) Fluophor
JP2004359701A (en) Light-accumulating phosphor
CN106833637B (en) A kind of dysprosium ion Doped Tungsten barium tantalate and its preparation method and application
KR100336970B1 (en) Novel green phosphors and methods of preparing the same
JPH1171581A (en) Rare earth borate fluorescent substance and its production
JPS6013882A (en) Fluorescent material
JP2003105333A (en) Method for producing luminous phosphor of ultrafine particle by wet process
JPS585221B2 (en) Luminescent composition and slow electron beam excitation fluorescent display tube

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term