JP2001215195A - Concrete structure and method for detecting deterioration thereof - Google Patents

Concrete structure and method for detecting deterioration thereof

Info

Publication number
JP2001215195A
JP2001215195A JP2000025121A JP2000025121A JP2001215195A JP 2001215195 A JP2001215195 A JP 2001215195A JP 2000025121 A JP2000025121 A JP 2000025121A JP 2000025121 A JP2000025121 A JP 2000025121A JP 2001215195 A JP2001215195 A JP 2001215195A
Authority
JP
Japan
Prior art keywords
concrete
deterioration
fluorescent
concrete structure
fluorescent carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000025121A
Other languages
Japanese (ja)
Other versions
JP4229562B2 (en
Inventor
Kazuyuki Hirao
一之 平尾
Katsuhisa Tanaka
勝久 田中
Koji Kataoka
宏治 片岡
Takeo Komaki
健男 小牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUKEN CONSULTANT KK
Sumitomo Osaka Cement Co Ltd
Chuken Consultant Co Ltd
Original Assignee
CHUKEN CONSULTANT KK
Sumitomo Osaka Cement Co Ltd
Chuken Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUKEN CONSULTANT KK, Sumitomo Osaka Cement Co Ltd, Chuken Consultant Co Ltd filed Critical CHUKEN CONSULTANT KK
Priority to JP2000025121A priority Critical patent/JP4229562B2/en
Publication of JP2001215195A publication Critical patent/JP2001215195A/en
Application granted granted Critical
Publication of JP4229562B2 publication Critical patent/JP4229562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration detection method for easily performing the investigation of deterioration over the whole of a concrete struture and the concrete structure of which the deterioration is easily detected. SOLUTION: In a method for detecting the deterioration of the concrete structure, a fluorescent carrier generating fractal luminescence is bonded to the surface of concrete, and the deterioration of concrete is detected by the fluorescence emitted from the fluorescent carrier accompanied by the damage of concrete.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主としてコンクリ
ート構造物の劣化検知方法およびコンクリート構造物に
関する。
The present invention relates to a method for detecting deterioration of a concrete structure and a concrete structure.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】コンク
リート構造物の劣化調査の方法としては、構造物から直
接コアー供試体を採り、その強度を圧縮試験で調べる方
法と、構造物の表面に現れたひび割れの形状と割れ幅を
目視調査したり、超音波の伝播速度を測定してその劣化
の程度を推定する方法がある。通常は、破壊検査である
前者よりも、後者の形で定期検査などが行われている
が、長大橋を例にとれば、管理の為の通路が確保されて
いない場合は、船上から双眼鏡を使って調査したり、あ
るいは実際に足場を架設して始めて調査にかかるなど、
目視検査の為に費やす労力とコストは構造物を管理する
側の大きな負担となっている。
2. Description of the Related Art As a method of investigating the deterioration of a concrete structure, a method of directly taking a core specimen from the structure and examining its strength by a compression test and a method of examining the strength of the surface of the structure are described. There are methods for visually inspecting the shape and width of cracks and for measuring the propagation speed of ultrasonic waves to estimate the degree of deterioration. Normally, periodic inspections are performed in the latter form rather than the former, which is a destructive inspection.However, taking long bridges as an example, if there is no passage for management, use binoculars from the ship. Use it to investigate, or to start investigating only after actually laying a scaffold,
The labor and cost spent for visual inspection is a heavy burden on the side of managing the structure.

【0003】最近では、応力やひび割れの発生が予測さ
れる箇所に歪みゲージを貼り付け、ひび割れを電気的に
検出する方法や、光ファイバーを使って変位を光学的に
計測する技術も開発されてはいるが、測定個所が点又は
部分的であり、構造物全体にわたる検査は困難であっ
た。
Recently, a method has been developed in which a strain gauge is attached to a place where the occurrence of stress or crack is predicted, and a crack is electrically detected, and a technique of optically measuring displacement using an optical fiber has been developed. However, the measurement points were point or partial, and it was difficult to inspect the entire structure.

【0004】そこで、本発明は、コンクリート構造物全
体にわたって劣化調査を容易に行うための劣化検知方法
および劣化検知が容易なコンクリート構造物を提供する
ことを課題とする。
Accordingly, an object of the present invention is to provide a deterioration detection method for easily performing a deterioration investigation on the entire concrete structure and a concrete structure with which deterioration can be easily detected.

【0005】[0005]

【課題を解決するための手段】本発明者らは、鋭意研究
した結果、コンクリート構造物の劣化調査に有効な、新
規な方法を発見した。これは、フラクトルミネッセンス
を応用することにより、コンクリート構造物に起こった
劣化を、「部分」的な視点でなく「面」としての視点で
検知することができるものである。
Means for Solving the Problems As a result of intensive studies, the present inventors have found a new method that is effective for investigating the deterioration of concrete structures. In this method, the degradation occurring in a concrete structure can be detected not only from a “partial” viewpoint but from a “surface” viewpoint by applying the fractoluminescence.

【0006】即ち、本発明の解決手段は、フラクトルミ
ネッセンスを生じる蛍光担体をコンクリート表面に付着
させ、コンクリートの破損に伴ない前記蛍光担体から発
せられた蛍光によって、コンクリートの劣化を検知する
ことを特徴とするコンクリート構造物の劣化検知方法に
ある。また、本発明の解決手段は、破壊に伴なって蛍光
を発する蛍光担体を、コンクリート表面に付着させたこ
とを特徴とするコンクリート構造物にある。
[0006] That is, the solution of the present invention is characterized in that a fluorescent carrier that generates fructoluminescence is attached to the concrete surface, and deterioration of the concrete is detected by the fluorescence emitted from the fluorescent carrier accompanying the breakage of the concrete. The method for detecting deterioration of a concrete structure. Further, a solution of the present invention is a concrete structure characterized in that a fluorescent carrier that emits fluorescence upon destruction is attached to a concrete surface.

【0007】フラクトルミネッセンスとは、物体が破損
する時に生じるエネルギーで周りの原子を励起し、励起
された電子が再び基底状態に復帰するときに解放するエ
ネルギーが蛍光となって現れる現象を言う。コンクリー
ト構造物が耐力の限界に達すると、引っ張り応力に耐え
きれなくなったコンクリートの表面に先ず微細な亀裂が
起こる。この場合に、該コンクリートの表面がフラクト
ルミネッセンスを起こす蛍光担体によって覆われていれ
ば、このような亀裂によるエネルギーによって該蛍光担
体が蛍光を発する。従って観察者は、微細な表面の亀裂
ではなく、そこから発せられる蛍光色により亀裂を観察
することができ、かかる蛍光色を発している部分に耐力
の限界となる程度の力が働いたことが分かる。
Fractoluminescence refers to a phenomenon in which surrounding atoms are excited by energy generated when an object is damaged, and the energy released when excited electrons return to the ground state again appears as fluorescence. When a concrete structure reaches the limit of its proof stress, fine cracks first occur on the surface of the concrete that cannot withstand the tensile stress. In this case, if the surface of the concrete is covered with a fluorescent carrier that causes fructoluminescence, the fluorescent carrier emits fluorescence due to energy due to such cracks. Therefore, the observer can observe the crack not by the fine surface crack but by the fluorescent color emitted therefrom. I understand.

【0008】前記フラクトルミネッセンスを起こす蛍光
物質としては、ユーロピウムなどに例示される希土類元
素が挙げられる。希土類元素が蛍光を生ずるためには、
希土類元素単独で付着されるよりも、結晶構造体等を担
体として該担体に希土類元素が添加されたもの(以下、
「蛍光担体」という)としてコンクリート表面に付着さ
れていることが好ましい。担体としては、長石及びBa
FXなどの結晶構造体やガラス相、又はこれらの複合物
などが例示される。
[0008] Examples of the fluorescent substance causing fructoluminescence include rare earth elements exemplified by europium and the like. In order for rare earth elements to produce fluorescence,
Rather than being attached alone with a rare earth element, a structure in which a rare earth element is added to the carrier using a crystal structure or the like as a carrier (hereinafter, referred to as
It is preferably attached to the concrete surface as “fluorescent carrier”. As carriers, feldspar and Ba
Examples include a crystal structure such as FX, a glass phase, or a composite thereof.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態につい
て説明する。まず、長石の構成元素に希土類元素を添加
して焼成することにより蛍光担体を作製し、該蛍光担体
を粉砕することにより、粉末状の蛍光担体とする。かか
る蛍光担体の粉末は、色々な手段でコンクリート構造物
の表面に塗布することができるが、より確実に劣化を検
知するためにはコンクリート表面に密着させて均一に塗
布することが望ましく、その為には、例えば以下の2つ
の方法によって塗布することが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. First, a fluorescent carrier is prepared by adding a rare earth element to the constituent elements of feldspar and firing, and the fluorescent carrier is pulverized to obtain a powdery fluorescent carrier. The powder of the fluorescent carrier can be applied to the surface of the concrete structure by various means. However, in order to more reliably detect the deterioration, it is desirable to apply the powder uniformly to the concrete surface. For example, it is preferable to apply by the following two methods.

【0010】まず、第1の方法としては、前記蛍光担体
をメチルシロキサンなどに例示されるガラス系塗料、又
はアクリル樹脂などに例示される有機塗料に混ぜた後、
コンクリート構造物の表面に刷毛塗り又は吹き付け塗装
の方法で塗りつけるものである。
First, as a first method, the fluorescent carrier is mixed with a glass paint such as methylsiloxane or an organic paint such as acrylic resin.
The surface of the concrete structure is applied by brushing or spraying.

【0011】第2の方法としては、前記蛍光担体を同様
に塗料に混ぜた後、予めコンクリート型枠の内側表面に
塗りつけるか、或いは蛍光担体を含む薄膜を予め作製し
て型枠の内側表面に張っておき、コンクリート打設後、
型枠を脱型する際に型枠の表面から構造物の表面に転写
させる方法である。
As a second method, the fluorescent carrier is similarly mixed with a paint and then applied to the inside surface of a concrete mold in advance, or a thin film containing the fluorescent carrier is prepared in advance and applied to the inside surface of the mold. After putting concrete,
This is a method of transferring from the surface of the mold to the surface of the structure when removing the mold.

【0012】観察者が色として亀裂を観察するために
は、蛍光担体が長時間に亘り残光を出し続けることが望
ましい。このような残光を出し続けやすい担体の構造例
としては、SrA124、CaA124などの結晶構造
体が挙げられる。
In order for the observer to observe the crack as a color, it is desirable that the fluorescent carrier keeps emitting afterglow for a long time. As the structure of such residual light out continued easy carriers include SrA1 2 O 4, CaA1 crystal structure, such as 2 O 4.

【0013】また、検知計器や環境によっては特定の波
長が検知に有効な場合があり、この場合には、色彩の変
化については多数の電子準位を持つ希土類元素イオン、
例えばPr3+、Er3+などを使用することで、発色光の
波長を調整することができる。
In addition, a specific wavelength may be effective for detection depending on the detection instrument or environment. In this case, a change in color is rare earth element ion having a large number of electronic levels,
For example, by using Pr 3+ , Er 3+, etc., the wavelength of the coloring light can be adjusted.

【0014】表1は、長石の構成元素と希土類元素との
組成、およびそのフラクトルミネッセンスの色を示した
ものである。
Table 1 shows the composition of the constituent elements of feldspar and the rare earth elements, and the color of the fractoluminescence thereof.

【0015】[0015]

【表1】 [Table 1]

【0016】また、コンクリート構造物表面に蛍光が生
じた際に、一般の人に不安を与えない工夫を施した方が
好ましい場合もあると考えられる。このような場合に
は、二次的に紫外光線又は赤外光線を当てて初めて検出
が可能となる方法を採用することが好ましく、即ちBa
FX(Xはハロゲン元素を示す)を担体として、該担体
にEu2+を添加した蛍光担体に見られる揮尽発光を利用
することにより実現できる。ここで、揮尽発光とは、蛍
光の一時的な発光が終わった後、紫外光線または赤外光
線を照射することによって再び励起されると、貯えられ
ていたエネルギーが全て蛍光となって再び発光する現象
をいう。
It is also considered that it may be preferable to take measures to prevent anxiety to ordinary people when fluorescent light is generated on the surface of the concrete structure. In such a case, it is preferable to adopt a method that can be detected only by secondarily irradiating an ultraviolet ray or an infrared ray, that is, Ba.
FX (X represents a halogen element) is used as a carrier, and this can be realized by utilizing the burned-out luminescence seen in a fluorescent carrier obtained by adding Eu 2+ to the carrier. Here, the burned emission means that after the temporary emission of the fluorescent light is finished, when it is excited again by irradiating ultraviolet light or infrared light, all the stored energy becomes fluorescent and emits light again. The phenomenon that does.

【0017】揮尽発光を利用すれば、コンクリート構造
物の劣化検査を行う際に、紫外光線等を照射することに
よって蛍光が生じるため、一般の人に不安を与えないだ
けでなく構造物を管理する者にとっても検査しやすいも
のとなる。
If the burn-out luminescence is used, when a concrete structure is inspected for deterioration, fluorescent light is generated by irradiating an ultraviolet ray or the like. It will be easier for those who do the inspection.

【0018】また、コンクリートの表面の亀裂は必ずし
も構造物の耐力の限界ばかりで生じるものではない。例
えば、コンクリート中の塩分による鉄筋腐食膨張によっ
て亀裂が生じることもある。この場合には、亀裂、即ち
蛍光がコンクリート中に配筋した鉄筋に沿った形で発生
する為、劣化の原因が該鉄筋の腐食膨張であることを推
定するのが容易となる。従って、構造物の管理者は、コ
ンクリ−トをはつり修復する時期を蛍光により適確に判
断することができる。
Further, cracks on the surface of concrete do not necessarily occur only at the limit of the proof stress of the structure. For example, cracks may be caused by reinforcement corrosion expansion due to salt in concrete. In this case, cracks, that is, fluorescence are generated along the reinforcing bars arranged in the concrete, so that it is easy to estimate that the cause of deterioration is corrosion expansion of the reinforcing bars. Therefore, the manager of the structure can accurately judge the time to repair the concrete by using the fluorescence.

【0019】上記実施形態では、蛍光担体を粉砕して粉
末とし、かかる粉末をコンクリート表面に塗布する方法
について説明したが、本発明はこれに限定されるもので
はない。
In the above embodiment, the method of pulverizing the fluorescent carrier into powder and applying the powder to the concrete surface has been described, but the present invention is not limited to this.

【0020】他の実施形態としては、例えば蛍光担体を
粒径0.5mm程度の粒状に調製し、さらにセメントと
混ぜてモルタルとすることにより、該モルタルをコンク
リート表面に塗布することなどが例示できる。
In another embodiment, for example, a fluorescent carrier may be prepared in the form of particles having a particle size of about 0.5 mm, mixed with cement to form a mortar, and the mortar may be applied to the concrete surface. .

【0021】以下、本発明の実施例について説明する。Hereinafter, embodiments of the present invention will be described.

【0022】まず、蛍光担体の粉末を以下のようにして
作製した。即ち、蛍光担体の原料を、表1に示したN
o.1の組成となるように秤量し混合した後、アルミナ
坩堝中に入れ、該アルミナ坩堝を顆粒状炭素で満たした
一回り大きいアルミナ坩堝の中に入れ蓋をした。この坩
堝を電気炉に入れ、室温から1800℃まで3時間をか
けて昇温し、さらに1800℃で2時間保持して原料を
溶融し、1600℃まで2時間かけて徐冷し、その後室
温までを炉内放冷して試料1とした。かかる試料1につ
いて粉末X線回折の測定を行うことによって、長石の結
晶構造の一つであるヘキサゴナルセルシアンと同定され
た。さらに、試料1をボールミルによって粉砕し、蛍光
担体1とした。
First, a powder of a fluorescent carrier was prepared as follows. That is, the raw material of the fluorescent carrier was changed to N shown in Table 1.
o. After weighing and mixing to obtain the composition of Example 1, the mixture was placed in an alumina crucible, and the alumina crucible was placed in a slightly larger alumina crucible filled with granular carbon and capped. This crucible is placed in an electric furnace, and the temperature is raised from room temperature to 1800 ° C. over 3 hours, and further kept at 1800 ° C. for 2 hours to melt the raw material, gradually cooled to 1600 ° C. over 2 hours, and then cooled to room temperature. Was allowed to cool in a furnace to obtain Sample 1. By performing powder X-ray diffraction measurement on Sample 1, it was identified as hexagonal celsian, which is one of the crystal structures of feldspar. Further, the sample 1 was pulverized with a ball mill to obtain a fluorescent carrier 1.

【0023】フラクトルミネッセンスを応用し、コンク
リート構造物に起こった劣化を面で検知した実施例を次
に示す。
An embodiment in which the degradation occurring in a concrete structure is detected from the surface by applying fructoluminescence will be described below.

【0024】実施例1 <供試体の作製>塗装材としてメチルシロキサンを使用
し、蛍光担体1を、100g/Lの割合でボールミルで
混合した。かかる混合物を、円筒型(10cmφ×20
cm)のコンクリート供試体の側面に刷毛を使って塗布
した。 <試験および結果>該コンクリート供試体に、圧縮試験
機により上下方向から圧縮力を作用させると、破壊時に
該コンクリート供試体の表面に蛍光が生じるのが観察さ
れた。高速度写真とコンクリート供試体との破断面を照
らし合わせてみると、破断の基点と見なされる位置から
順に蛍光が発せられたことが分かった。
Example 1 <Preparation of Test Specimen> Methylsiloxane was used as a coating material, and the fluorescent carrier 1 was mixed in a ball mill at a ratio of 100 g / L. This mixture was placed in a cylindrical shape (10 cmφ × 20
cm) of the concrete specimen was applied using a brush. <Test and Results> When a compressive force was applied to the concrete specimen from above and below by a compression tester, it was observed that fluorescence was generated on the surface of the concrete specimen at the time of breaking. When the high-speed photograph was compared with the fracture surface of the concrete specimen, it was found that fluorescence was emitted in order from the position regarded as the fracture origin.

【0025】実施例2 <供試体の作製>アクリル塗料に蛍光担体1を200g
/Lの割合で混合した。あらかじめ作成しておいた板状
の橋梁モデル(100cm×30cm×3cm)の床板
コンクリート供試体の下面に、前記蛍光担体1が混合さ
れたアクリル塗料を吹き付け塗装した。 <試験および結果>前記床板コンクリート供試体を上面
より載荷すると、床板コンクリート供試体の中央部に蛍
光が生じ、コンクリート供試体下面中央に床板の長手方
向と直角の向きにひび割れが発生した。あらかじめ埋め
込んでおいた歪み計の解析から、蛍光を目視確認した位
置とひび割れの位置は一致した。
Example 2 <Preparation of Specimen> 200 g of fluorescent carrier 1 in acrylic paint
/ L. Acrylic paint mixed with the fluorescent carrier 1 was sprayed onto the lower surface of a floor-plate concrete specimen of a plate-like bridge model (100 cm × 30 cm × 3 cm) prepared in advance. <Test and Results> When the floor slab concrete specimen was loaded from above, fluorescence was generated at the center of the floor slab concrete specimen, and cracks were generated at the center of the lower surface of the concrete slab in a direction perpendicular to the longitudinal direction of the floor slab. From the analysis of the strain meter embedded in advance, the position where the fluorescence was visually confirmed coincided with the position of the crack.

【0026】実施例3 <供試体の作製>塩害によるコンクリート劣化の指標と
してのフラクトルミネッセンス機能実験を行うために、
鉄筋を配筋したコンクリート板状供試体の片側の面に実
施例2と同じ塗装を施した。 <試験および結果>かかるコンクリート板状供試体に、
飽和食塩水を間欠的に噴霧する塩害促進試験器に入れ、
塩害を起こさせて蛍光を観測した。蛍光は鉄筋に沿う形
で観測されたが、やがてその位置にひび割れが現れた。
検査の結果、鉄筋が錆によって膨張したこと、即ち典型
的な塩害によるコンクリート表面のひび割れが原因とな
って生じた劣化であることが確認できた。
Example 3 <Preparation of Specimen> In order to conduct a fructoluminescence function experiment as an index of concrete deterioration due to salt damage,
The same coating as in Example 2 was applied to one surface of a concrete plate-like specimen having a reinforcing bar. <Tests and results>
Put in a salt damage accelerating tester that sprays saturated saline intermittently,
Fluorescence was observed with salt damage. The fluorescence was observed along the rebar, but eventually cracks appeared at that location.
As a result of the inspection, it was confirmed that the reinforcing bar expanded due to rust, that is, deterioration caused by cracking of the concrete surface due to typical salt damage.

【0027】[0027]

【発明の効果】本発明によれば、コンクリート構造物が
耐力の限界に達すると、引っ張り応力に耐えきれなくな
ったコンクリートの表面に先ず微細な亀裂が走るが、か
かる亀裂部から蛍光が発せられることにより亀裂を全体
的な面として容易に検知することができる。実際には、
例えばコンクリート長大橋の橋桁下面に蛍光担体を塗布
し、色彩の変化を観察することで、橋の健全度を確かめ
ることができるため、従来のひび割れパターンの目視詳
細観察による定期検査に代わるモニタリング方式として
有効である。
According to the present invention, when a concrete structure reaches the limit of its proof stress, firstly, fine cracks run on the surface of the concrete which cannot withstand the tensile stress, but fluorescence is emitted from such cracks. Thereby, the crack can be easily detected as the entire surface. actually,
For example, by applying a fluorescent carrier to the underside of the bridge girder of a concrete long bridge and observing the change in color, it is possible to check the soundness of the bridge, so it is a monitoring method that replaces the conventional periodic inspection by visually observing crack patterns in detail. It is valid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 勝久 京都市左京区松ヶ崎壱町田町6番地2 グ ラン・シティオ北山通り218 (72)発明者 片岡 宏治 奈良県生駒郡三郷町城山台4丁目9番13号 (72)発明者 小牧 健男 奈良県生駒市高山町136の99番地 Fターム(参考) 2G043 AA03 CA05 DA02 EA01 GA07 GB21 KA01 KA03 LA01 2G050 AA02 BA02 BA12 CA01 CA03 DA03 EA04 EA06 EB07 EC06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Katsuhisa Tanaka, Inventor 218, Gran-Cityo Kitayama-dori 6-2, Matsugasaki Ichimachidamachi, Sakyo-ku, Kyoto-shi (72) Inventor Koji Kataoka 4-9, Shiroyamadai, Misato-cho, Ikoma-gun, Nara Prefecture No. 13 (72) Inventor Takeo Komaki No. 99, 136 Takayama-cho, Ikoma City, Nara Prefecture F-term (reference) 2G043 AA03 CA05 DA02 EA01 GA07 GB21 KA01 KA03 LA01 2G050 AA02 BA02 BA12 CA01 CA03 DA03 EA04 EA06 EB07 EC06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート表面に、フラクトルミネッ
センスを生じる蛍光担体を付着させ、コンクリートの破
損に伴ない前記蛍光担体から発せられた蛍光によって、
コンクリートの劣化を検知することを特徴とするコンク
リート構造物の劣化検知方法。
1. A fluorescent carrier generating fructoluminescence is attached to a concrete surface, and the fluorescent light emitted from the fluorescent carrier accompanying the breakage of concrete is
A method for detecting deterioration of a concrete structure, comprising detecting deterioration of the concrete.
【請求項2】 フラクトルミネッセンスを生ずる蛍光担
体が、コンクリート表面に付着されたことを特徴とする
コンクリート構造物。
2. A concrete structure, wherein a fluorescent carrier generating fructoluminescence is attached to a concrete surface.
JP2000025121A 2000-02-02 2000-02-02 Deterioration detection method for concrete structures Expired - Fee Related JP4229562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000025121A JP4229562B2 (en) 2000-02-02 2000-02-02 Deterioration detection method for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000025121A JP4229562B2 (en) 2000-02-02 2000-02-02 Deterioration detection method for concrete structures

Publications (2)

Publication Number Publication Date
JP2001215195A true JP2001215195A (en) 2001-08-10
JP4229562B2 JP4229562B2 (en) 2009-02-25

Family

ID=18551024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025121A Expired - Fee Related JP4229562B2 (en) 2000-02-02 2000-02-02 Deterioration detection method for concrete structures

Country Status (1)

Country Link
JP (1) JP4229562B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149109A (en) * 2011-01-17 2012-08-09 Jfe Steel Corp Anticorrosive coating material and coated steel stock
CN105067508A (en) * 2015-09-02 2015-11-18 无锡通用钢绳有限公司 Equipment and method for testing alkali resistance of steel wire rope

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846582A (en) * 1972-07-07 1973-07-03
JPS63204142A (en) * 1987-02-19 1988-08-23 Ishikawajima Harima Heavy Ind Co Ltd Cracking inspection for concrete
JPH01114740A (en) * 1987-10-29 1989-05-08 Mitsubishi Heavy Ind Ltd Detection of crack of concrete
JPH0238484A (en) * 1988-07-27 1990-02-07 Toshiba Corp Inorganic light-emitting substance
JPH03261863A (en) * 1990-03-12 1991-11-21 Nippon Kozai Kk Method for measuring crack in concrete structure and measuring agent used therein
JPH04188060A (en) * 1990-11-21 1992-07-06 Kansai Electric Power Co Inc:The Method for judging degradation degree of building material
JPH06109723A (en) * 1992-09-25 1994-04-22 Takashi Nishiyama Analyzing method for structure of base rock, concrete and the like
JPH07134071A (en) * 1993-11-11 1995-05-23 Ohbayashi Corp Intelligent structural member
JPH09145709A (en) * 1995-11-20 1997-06-06 Ohbayashi Corp Concrete member and method for detecting its cracking
JPH09257677A (en) * 1996-03-26 1997-10-03 Agency Of Ind Science & Technol Damage prediction method for structure member made of brittle material
JPH1031002A (en) * 1996-07-15 1998-02-03 Arusu Kaihatsu Kk Structure and method of detecting crack of structure
JPH10111266A (en) * 1996-10-03 1998-04-28 Shimizu Corp Inspection for concrete structure
JPH11153592A (en) * 1997-11-20 1999-06-08 Hazama Gumi Ltd Method for fixing indicator
JPH11183383A (en) * 1997-12-18 1999-07-09 Hazama Gumi Ltd Fluorescence measuring method for concrete containing fluorescent colorant
JPH11263970A (en) * 1997-11-28 1999-09-28 Agency Of Ind Science & Technol Luminous material, its production and light emission using the same
JP2001153788A (en) * 1999-11-25 2001-06-08 Hitachi Cable Ltd Method for diagnosing deterioration of structure and fluorescent structure
JP2001264312A (en) * 2001-02-07 2001-09-26 Ohbayashi Corp Concrete block

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4846582A (en) * 1972-07-07 1973-07-03
JPS63204142A (en) * 1987-02-19 1988-08-23 Ishikawajima Harima Heavy Ind Co Ltd Cracking inspection for concrete
JPH01114740A (en) * 1987-10-29 1989-05-08 Mitsubishi Heavy Ind Ltd Detection of crack of concrete
JPH0238484A (en) * 1988-07-27 1990-02-07 Toshiba Corp Inorganic light-emitting substance
JPH03261863A (en) * 1990-03-12 1991-11-21 Nippon Kozai Kk Method for measuring crack in concrete structure and measuring agent used therein
JPH04188060A (en) * 1990-11-21 1992-07-06 Kansai Electric Power Co Inc:The Method for judging degradation degree of building material
JPH06109723A (en) * 1992-09-25 1994-04-22 Takashi Nishiyama Analyzing method for structure of base rock, concrete and the like
JPH07134071A (en) * 1993-11-11 1995-05-23 Ohbayashi Corp Intelligent structural member
JPH09145709A (en) * 1995-11-20 1997-06-06 Ohbayashi Corp Concrete member and method for detecting its cracking
JPH09257677A (en) * 1996-03-26 1997-10-03 Agency Of Ind Science & Technol Damage prediction method for structure member made of brittle material
JPH1031002A (en) * 1996-07-15 1998-02-03 Arusu Kaihatsu Kk Structure and method of detecting crack of structure
JPH10111266A (en) * 1996-10-03 1998-04-28 Shimizu Corp Inspection for concrete structure
JPH11153592A (en) * 1997-11-20 1999-06-08 Hazama Gumi Ltd Method for fixing indicator
JPH11263970A (en) * 1997-11-28 1999-09-28 Agency Of Ind Science & Technol Luminous material, its production and light emission using the same
JPH11183383A (en) * 1997-12-18 1999-07-09 Hazama Gumi Ltd Fluorescence measuring method for concrete containing fluorescent colorant
JP2001153788A (en) * 1999-11-25 2001-06-08 Hitachi Cable Ltd Method for diagnosing deterioration of structure and fluorescent structure
JP2001264312A (en) * 2001-02-07 2001-09-26 Ohbayashi Corp Concrete block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149109A (en) * 2011-01-17 2012-08-09 Jfe Steel Corp Anticorrosive coating material and coated steel stock
CN105067508A (en) * 2015-09-02 2015-11-18 无锡通用钢绳有限公司 Equipment and method for testing alkali resistance of steel wire rope

Also Published As

Publication number Publication date
JP4229562B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
Zhang et al. Observation and quantification of water penetration into strain hardening cement-based composites (SHCC) with multiple cracks by means of neutron radiography
Golewski Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems
Zhang et al. Neutron imaging of water penetration into cracked steel reinforced concrete
Singh et al. Influence of cellulose fiber addition on self-healing and water permeability of concrete
Olawale et al. Progress in triboluminescence-based smart optical sensor system
Fernandes et al. Durability of bond in NSM CFRP-concrete systems under different environmental conditions
Zhou et al. Fracture analysis in brittle sandstone by digital imaging and AE techniques: Role of flaw length ratio
Ramanathan et al. Condition assessment of concrete and glass fiber reinforced polymer (GFRP) rebar after 18 years of service life
Olawale et al. Real time failure detection in unreinforced cementitious composites with triboluminescent sensor
No Guidebook on non-destructive testing of concrete structures
Paul et al. Crack formation and chloride induced corrosion in reinforced strain hardening cement-based composite (R/SHCC)
Vigroux et al. High temperature behaviour of various natural building stones
Rigopoulos et al. Petrographic investigation of microcrack initiation in mafic ophiolitic rocks under uniaxial compression
Vanniamparambil et al. A data fusion approach for progressive damage quantification in reinforced concrete masonry walls
Lieboldt et al. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures
Mpalaskas et al. Acoustic emission monitoring of granite under bending and shear loading
Timilsina et al. A life-time reproducible mechano-luminescent paint for the visualization of crack propagation mechanisms in concrete structures
Schabowicz et al. Application of X-ray microtomography to quality assessment of fibre cement boards
Chandra et al. Modelling of fracto-mechanoluminescence damage sensor for structures
Lukschová et al. Petrographic identification of alkali–silica reactive aggregates in concrete from 20th century bridges
Ababneh et al. Assessment of shrinkage-induced cracks in restrained and unrestrained cement-based slabs
He et al. Durability evaluation of reinforced concrete with surface treatment of soy methyl ester-polystyrene under freeze-thaw cycles and calcium chloride
Sassoni et al. New method for controllable accelerated aging of marble: Use for testing of consolidants
Verstrynge et al. Debonding damage analysis in composite-masonry strengthening systems with polymer-and mortar-based matrix by means of the acoustic emission technique
JP4229562B2 (en) Deterioration detection method for concrete structures

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees