JP2014115219A - Strain/stress measuring method of structure and strain/stress sensor - Google Patents

Strain/stress measuring method of structure and strain/stress sensor Download PDF

Info

Publication number
JP2014115219A
JP2014115219A JP2012270369A JP2012270369A JP2014115219A JP 2014115219 A JP2014115219 A JP 2014115219A JP 2012270369 A JP2012270369 A JP 2012270369A JP 2012270369 A JP2012270369 A JP 2012270369A JP 2014115219 A JP2014115219 A JP 2014115219A
Authority
JP
Japan
Prior art keywords
strain
stress
emission wavelength
wavelength
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012270369A
Other languages
Japanese (ja)
Other versions
JP6000837B2 (en
Inventor
Yoshiki Okuhara
芳樹 奥原
Yasutoshi Mizuta
安俊 水田
Kenichi Nambara
健一 南原
Yasutaka Watanabe
泰孝 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Chubu Electric Power Co Inc
Original Assignee
Japan Fine Ceramics Center
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Chubu Electric Power Co Inc filed Critical Japan Fine Ceramics Center
Priority to JP2012270369A priority Critical patent/JP6000837B2/en
Publication of JP2014115219A publication Critical patent/JP2014115219A/en
Application granted granted Critical
Publication of JP6000837B2 publication Critical patent/JP6000837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact-type strain/stress measuring method capable of measuring the strain or stress in static and dynamic pulling/compression directions with high accuracy, and determining each directionality thereof.SOLUTION: A strain/stress sensor including an oxide-based ceramics formed by adding 0.1-10 atom% (preferably 0.3-6.0 atom%) of Mn to AlO, in which an emission wavelength, when irradiating excitation light, fluctuates according to the intensity of a strain/stress, and a fluctuation direction of the emission wavelength is different according to the direction of the strain/stress, is installed on a structure. The strain/stress sensor is irradiated with an exciting light to undergo fluorescence emission, and the emission wavelength is measured by wavelength measuring means; and an amount and direction of emission wavelength change with respect to a reference emission wavelength, when a strain/stress does not act on the structure, are measured, to thereby measure the static or dynamic strain or stress generated in the structure, and to determine its directionality. The strain/stress sensor can be a bulk body formed by sintering the oxide-based ceramics.

Description

本発明は、光を利用して構造物に生じた歪ないし応力を計測検知できる非接触式の歪・応力計測技術に関する。具体的には、与えられた歪・応力の大きさに応じて励起光を照射したときの発光波長が変動する酸化物系セラミックスからなる蛍光材料を使用した歪・応力計測方法と、これに使用する歪・応力センサに関する。   The present invention relates to a non-contact strain / stress measurement technique capable of measuring and detecting strain or stress generated in a structure using light. Specifically, a strain / stress measurement method using a fluorescent material made of an oxide-based ceramic whose emission wavelength fluctuates when irradiated with excitation light according to the magnitude of applied strain / stress, and used for this The present invention relates to a strain / stress sensor.

構造物の安全利用には当該構造物に作用する物理量の把握が重要であり、従来から多岐にわたるモニタリング技術の開発が進められている。この構造物に作用する物理量を計測するセンサとして、変位、歪、力、加速度、又はトルクなど、様々な物理量を対象としたセンサが利用されている。これらのセンサの原理として、上記種々の物理量を歪に変換し、それを歪センサにより計測しているケースが多い。すなわち、歪・応力場を計測できる歪センサは、様々な物理量のモニタリングに応用できる基本的なデバイスとなり得る。   Understanding the physical quantities acting on the structure is important for the safe use of the structure, and a variety of monitoring techniques have been developed. As sensors for measuring physical quantities acting on the structure, sensors for various physical quantities such as displacement, strain, force, acceleration, or torque are used. As a principle of these sensors, there are many cases where the above-mentioned various physical quantities are converted into strain and measured by the strain sensor. That is, a strain sensor that can measure strain and stress fields can be a basic device that can be applied to monitoring various physical quantities.

歪・応力場を計測する歪センサとしては、歪ゲージや圧電フィルムなどの電気的な方式を採用したセンサや、光学的な手法として光ファイバセンサなどが開発されている。しかし、これら従来の歪センサに共通する課題として、歪センサと計測者との間には電気的・光学的な信号ライン(ケーブルや導線)が必要であり、いわゆる接触式(有線)の計測というのが前提となる。これでは、信号ラインの配設にコストを要するばかりか、計測場所や計測対象も制約されてしまう。そこで、動的な応力が作用することで発光する特性を有する応力発光材料を使用した、いわゆる非接触式(無線)の歪センサとして、特許文献1ないし特許文献3がある。特許文献1ないし特許文献3では、応力発光材料が応力の大きさに比例して発光の「強度」が増大するという特性を利用している。具体的には、応力発光材料を構造物に貼着するなどして付与し、当該応力発光材料からの発光強度を計測することで、歪・応力の発生、大きさ、分布などを計測できるとしている。応力発光材料は、応力の動的変化をエネルギー源として発光し、動的な歪・応力に応答して発光強度を変えるため、外部からの電気的・光学的エネルギー供給を必要としない、という点が長所として挙げられる。   As a strain sensor for measuring a strain / stress field, a sensor employing an electrical method such as a strain gauge or a piezoelectric film, and an optical fiber sensor as an optical method have been developed. However, as a problem common to these conventional strain sensors, an electrical / optical signal line (cable or conductor) is required between the strain sensor and the measurer, so-called contact type (wired) measurement. Is the premise. This not only costs the arrangement of the signal lines, but also restricts the measurement location and measurement target. Therefore, there are Patent Documents 1 to 3 as so-called non-contact (wireless) strain sensors using a stress-stimulated luminescent material that emits light when a dynamic stress is applied. In Patent Document 1 to Patent Document 3, a stress light-emitting material utilizes the characteristic that the “intensity” of light emission increases in proportion to the magnitude of stress. Specifically, it is possible to measure the generation, size, distribution, etc. of strain / stress by applying a stress luminescent material to a structure, etc., and measuring the luminescence intensity from the stress luminescent material. Yes. Stress-stimulated luminescent materials emit light using the dynamic change of stress as an energy source, and change the emission intensity in response to dynamic strain / stress, so that no external electrical or optical energy supply is required. Can be cited as an advantage.

一方、発光「強度」ではなく、発光「波長」を計測することで構造物の変位を計測する非接触型の歪・応力センサとして、本出願人も特許文献4を提案している。特許文献4の歪・応力センサは、歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、MAl24(M=Sr、Ca又はBa)に発光中心イオンとしてEuを0.1〜3.0at%添加した酸化物系セラミックスからなる。 On the other hand, the present applicant has also proposed Patent Document 4 as a non-contact type strain / stress sensor that measures displacement of a structure by measuring light emission “wavelength” instead of light emission “intensity”. In the strain / stress sensor of Patent Document 4, the emission wavelength when irradiated with excitation light varies depending on the magnitude of strain / stress, and the variation direction of the emission wavelength varies depending on the direction of strain / stress, It is made of oxide ceramics in which 0.1 to 3.0 at% Eu is added as a luminescent center ion to MAl 2 O 4 (M = Sr, Ca, or Ba).

また、非特許文献1には、与えられた応力の大きさに応じて励起光を照射したときの発光(フォトルミネッセンスPhotoluminescence)の波長が変動する酸化物系セラミックスからなる蛍光材料が開示されている。ここでの酸化物系セラミックスは、Al23中に発光中心イオンとしてCr3+が添加されている。この現象を応用した応力分布の解析技術として、非特許文献2がある。当該非特許文献2では、遮熱コーティングと金属基材の界面に生成するCr3+添加Al23の発光波長の変化により、応力を検出する方法が提案されている。 Non-Patent Document 1 discloses a fluorescent material made of an oxide ceramic in which the wavelength of light emission (photoluminescence) when irradiated with excitation light according to the magnitude of applied stress is varied. . In the oxide ceramics here, Cr 3+ is added as a luminescent center ion in Al 2 O 3 . There is Non-Patent Document 2 as an analysis technique of stress distribution using this phenomenon. Non-Patent Document 2 proposes a method for detecting stress based on a change in emission wavelength of Cr 3+ added Al 2 O 3 generated at the interface between the thermal barrier coating and the metal substrate.

また、非特許文献3には、与えられた静水圧(等方的な圧縮応力)の大きさに応じて励起光を照射したときの発光波長が変動する酸化物系セラミックスからなる蛍光材料が開示されている。ここでの酸化物系セラミックスは、SrAl24やCaAl24中に発光中心イオンとしてEu2+が1%添加されている。 Non-Patent Document 3 discloses a fluorescent material made of an oxide-based ceramic whose emission wavelength fluctuates when irradiated with excitation light in accordance with a given hydrostatic pressure (isotropic compressive stress). Has been. In the oxide-based ceramics here, 1% of Eu 2+ is added as a luminescent center ion in SrAl 2 O 4 or CaAl 2 O 4 .

特開2004-85483号公報JP 2004-85483 A 特開2005-307998号公報Japanese Patent Laid-Open No. 2005-307998 再表2006-85424号公報Table 2006-85424 特開2011−127992号公報JP 2011-127992 A

J. He, and D. R. Clarke, "Determination of the Piezospectroscopic Coefficients for Chromium-Doped Sapphire", J. Am, Ceram, Soc., 78 (5), 1347-1353 (1995)J. He, and D. R. Clarke, "Determination of the Piezospectroscopic Coefficients for Chromium-Doped Sapphire", J. Am, Ceram, Soc., 78 (5), 1347-1353 (1995) 川崎重工業株式会社, 「航空機エンジンのメンテナンスにおける蛍光分光による損傷測定技術の先導調査研究」独立行政法人新エネルギー・産業技術総合開発機構 平成18年度成果報告書Kawasaki Heavy Industries, Ltd., "Leading research on damage measurement technology by fluorescence spectroscopy in aircraft engine maintenance" New Energy and Industrial Technology Development Organization, 2006 results report C. E. Tyner and H. G. Drickamer, "Studies of Luminescence Efficiency of Eu2+ Activated Phosphors as a function of Temperature and High Pressure", J. Chem, Phys., 67 (9), 4116-4122 (1977)C. E. Tyner and H. G. Drickamer, "Studies of Luminescence Efficiency of Eu2 + Activated Phosphors as a function of Temperature and High Pressure", J. Chem, Phys., 67 (9), 4116-4122 (1977)

特許文献1ないし特許文献3は、信号ラインが不要な非接触での歪・応力場のモニタリングを可能とする応力発光材料を使用した歪センサである。しかし、特許文献1ないし特許文献3では、応力発光材料の発光強度を計測することで動的な歪・応力の分布等を計測しているので、次のような問題がある。すなわち、応力発光材料における発光強度は、単純に応力や歪の大きさに依存するだけでなく、応力や歪の変化する速度にも大きく依存する。したがって、ある構造体に応力発光材料を付与して発光強度の分布が得られたとしても、それが歪・応力の大きさを反映した情報であるのか、それらの変化速度を反映したものであるのかの判定は不可能であり、対象物の何を診断しているのかを明らかとするのは難しい。また、応力発光材料によっては繰り返し応力によって発光強度が低下し、安定した特性を得るのが難しいものもある。さらに、応力や歪が変化しない場合には発光現象は止まってしまうため、そのままでは静的な歪・応力のセンシングは不可能である。これらの静的な歪・応力を診断するためには、初期の無応力状態から連続的なモニタリングを絶えず継続してその変化のデータを蓄積する必要があることから、コストの増大を招くなど大きな課題を抱える。   Patent Documents 1 to 3 are strain sensors using a stress light-emitting material that enables non-contact monitoring of strain / stress fields that do not require a signal line. However, in Patent Documents 1 to 3, since the dynamic strain / stress distribution and the like are measured by measuring the light emission intensity of the stress light-emitting material, there are the following problems. In other words, the light emission intensity in the stress luminescent material not only simply depends on the magnitude of the stress or strain, but also greatly depends on the rate at which the stress or strain changes. Therefore, even if a stress-stimulated luminescent material is applied to a certain structure and a distribution of luminescence intensity is obtained, it is information that reflects the magnitude of strain and stress, or the rate of change thereof. It is difficult to determine what the object is being diagnosed. In addition, some stress-stimulated luminescent materials have a light emission intensity that is reduced by repeated stress, and it is difficult to obtain stable characteristics. Furthermore, when the stress or strain does not change, the light emission phenomenon stops, so static strain / stress sensing is impossible as it is. In order to diagnose these static strains / stresses, it is necessary to continuously monitor data from the initial no-stress state and continuously accumulate data on the changes. Have a challenge.

これに対し特許文献4は、励起光を照射して発光させ、当該発光波長の変化を計測することで構造物の変位を計測しているので、上記のような問題はない。しかし、このような歪・応力センサにおいても、より歪感度の高いものが求められている。   On the other hand, Patent Document 4 does not have the above-described problem because the displacement of the structure is measured by irradiating the excitation light to emit light and measuring the change in the emission wavelength. However, such strain / stress sensors are also required to have higher strain sensitivity.

非特許文献1および非特許文献2の技術は、蛍光材料そのものの発光波長が応力に応じて変化することを利用するため、上記のような問題点はない。すなわち、動的な歪・応力だけでなく静的な歪・応力に対しても発光波長の変化を検出可能であって、蛍光材料面全体が発光するため計測対象である構造物の表面からの発光を捉えればよい。しかしながら、このCr3+添加Al23における波長シフト量は、1GPaの圧縮応力に対して14429cm-3(波長693.19nm)から14426cm-3(波長693.05nm)への変化であり、応力感度(単位応力1GPaあたりの波長シフト量)は0.14nm/GPaとなる。Al23のヤング率を335GPaとすると1GPaに対する圧縮歪は0.3%となり、単位歪(1%)当たりの波長シフト量を歪感度と定義すると、Cr3+添加Al23における歪感度は0.47nm/%となる。このように、非特許文献1および非特許文献2に記載のCr3+添加Al23では、動的な歪・応力だけでなく静的な歪・応力に対する発光波長変化を検出可能という点で有意義であるが、その歪感度や応力感度が低いという課題を有する。これら歪感度や応力感度をより向上できれば、検出精度の向上、計測時間の短縮、さらには低コスト化など、様々なメリットが期待できる。 Since the techniques of Non-Patent Document 1 and Non-Patent Document 2 utilize the fact that the emission wavelength of the fluorescent material itself changes according to the stress, there is no problem as described above. That is, it is possible to detect changes in the emission wavelength not only for dynamic strain / stress but also for static strain / stress, and since the entire fluorescent material surface emits light, it can be measured from the surface of the structure being measured. What is necessary is just to catch luminescence. However, the wavelength shift amount in the Cr 3+ added Al 2 O 3 is a change from 14429Cm -3 (wavelength 693.19Nm) against compressive stress of 1GPa 14426cm -3 to (wavelength 693.05Nm), stress Sensitivity (amount of wavelength shift per unit stress of 1 GPa) is 0.14 nm / GPa. When the Young's modulus of Al 2 O 3 is 335 GPa, the compressive strain for 1 GPa is 0.3%, and when the amount of wavelength shift per unit strain (1%) is defined as strain sensitivity, the strain in Cr 3+ added Al 2 O 3 is The sensitivity is 0.47 nm /%. As described above, the Cr 3 + -added Al 2 O 3 described in Non-Patent Document 1 and Non-Patent Document 2 can detect not only dynamic strain / stress but also a change in emission wavelength with respect to static strain / stress. However, the strain sensitivity and stress sensitivity are low. If these strain sensitivity and stress sensitivity can be further improved, various advantages such as improved detection accuracy, shorter measurement time, and lower cost can be expected.

非特許文献3の技術も、蛍光材料そのものの発光波長が静水圧(等方的な応力)に応じて変化することを利用するため、上記のような問題点はない。すなわち、静的な応力に対して発光波長の変化を検出可能である。しかしながら、この文献中では、静水圧下という等方的な圧縮応力に対する発光波長の応答性について記述されているのみである。一般的な構造物などの変形において、このような応力場が想定されることは少なく、1次元もしくは2次元方向の変形がほとんどであり、さらに、圧縮方向だけではなく引張方向に対する応答性も必須である。したがって、この文献に記載された材料系(SrAl24やCaAl24中に発光中心イオンとしてEu2+を添加)が、現実的に構造物の歪・応力センサとして利用できるとは判断できない。 The technique of Non-Patent Document 3 also uses the fact that the emission wavelength of the fluorescent material itself changes according to the hydrostatic pressure (isotropic stress), and thus does not have the above problems. That is, it is possible to detect a change in the emission wavelength with respect to static stress. However, this document only describes the response of the emission wavelength to isotropic compressive stress under hydrostatic pressure. In the deformation of general structures, such a stress field is rarely expected, and deformation in one or two dimensions is almost all, and responsiveness not only in the compression direction but also in the tensile direction is essential. It is. Therefore, it is judged that the material system described in this document (Eu 2+ added as a luminescent center ion in SrAl 2 O 4 or CaAl 2 O 4 ) can be practically used as a strain / stress sensor for structures. Can not.

そこで、本発明は上記課題を解決するものであって、動的のみならず静的な歪ないし応力とその方向性(引張方向又は圧縮方向)とを任意のタイミングでより高感度に計測できる非接触式の歪・応力計測方法と、これに使用する歪・応力センサを提供することを目的とする。   Therefore, the present invention solves the above-mentioned problem, and can measure not only dynamic but also static strain or stress and its directionality (tensile direction or compression direction) with higher sensitivity at any timing. It is an object of the present invention to provide a contact-type strain / stress measurement method and a strain / stress sensor used therefor.

そのための手段として、本発明は、構造物に与えられた歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性(引張歪・応力か圧縮歪・応力か)に応じて発光波長の変動方向が異なる蛍光材料、すなわちAl23に発光中心イオンとしてMnを0.1〜10at%(好ましくは0.3〜6.0at%)添加した酸化物系セラミックスからなる歪・応力センサを設置し、任意のタイミングで前記歪・応力センサに励起光を照射して蛍光発光させ、このときの発光波長を波長計測手段によって計測し、予め計測しておいた前記構造物に歪・応力が作用していない状態における基準発光波長に対する発光波長変化量とその変化の方向(短波長側への変化か長波長側への変化か)を計測することで、構造物に生じた静的および動的な歪ないし応力の計測とその方向性(引張方向か圧縮方向か)の判定とを行う、構造物の歪・応力計測方法を提案できる。 As a means for that purpose, the present invention changes the emission wavelength when the excitation light is irradiated according to the magnitude of strain / stress applied to the structure, and the direction of strain / stress (tensile strain / stress Fluorescent material whose emission wavelength varies depending on compression strain / stress), that is, 0.1 to 10 at% (preferably 0.3 to 6.0 at%) of Mn is added to Al 2 O 3 as an emission center ion. The strain / stress sensor made of the oxide-based ceramics is installed, and the strain / stress sensor is irradiated with excitation light at an arbitrary timing to emit fluorescence, and the emission wavelength at this time is measured by the wavelength measuring means and measured in advance. The amount of change in emission wavelength relative to the reference emission wavelength and the direction of change (change to short wavelength side or change to long wavelength side) are measured in a state where no strain or stress is applied to the structure. So that the structure Flip was the measurement of static and dynamic strain or stress performing the determination of the direction (or tensile direction or compression direction), it may propose strain and stress measurement method of the structure.

このAl23にMnを添加した酸化物系セラミックス(蛍光材料)においては、発光中心(Mn)イオンの電子軌道間もしくは欠陥準位において励起された電子が遷移する際に発光現象を引き起こす。この発光現象において、Al23の結晶構造に歪・応力が作用することで配位子場が変化することで電子軌道間もしくは欠陥準位のエネルギー状態が変化し、これによって発光特性が変化するという原理を応用している。そして、蛍光材料に引張もしくは圧縮方向の歪・応力を与えた状態で、フォトルミネッセンス(励起光照射)によって電子の励起−再結合過程における発光現象である蛍光発光させることで、動的のみならず静止した歪・応力場においても歪・応力の分布に応じた発光波長が得られるというコンセプトである。 In this oxide ceramic (fluorescent material) in which Mn is added to Al 2 O 3 , a light emission phenomenon is caused when electrons excited between the electron orbits of the emission center (Mn) ions or in the defect level transition. In this light emission phenomenon, the energy state between electron orbitals or defect levels changes due to the change of the ligand field due to the strain and stress acting on the crystal structure of Al 2 O 3 , which changes the light emission characteristics. The principle of doing is applied. Then, in a state where strain or stress in the tensile or compressive direction is applied to the fluorescent material, fluorescence is emitted as a light emission phenomenon in the excitation-recombination process of electrons by photoluminescence (excitation light irradiation). The concept is that a light emission wavelength corresponding to the strain / stress distribution can be obtained even in a static strain / stress field.

前記歪・応力センサは、前記酸化物系セラミックスを焼結したバルク体として前記構造物の表面へ接着すればよい。なお、バルク体とは、例えば板状(薄片状)や塊状など、一定の厚みを有する立体形状のものであり、具体的な形状は特に制限されない。構造物に作用した応力は、歪・応力センサによって求めた歪量から、計測対象物である構造物のヤング率をもとに計測することができる。   The strain / stress sensor may be bonded to the surface of the structure as a bulk body obtained by sintering the oxide ceramic. The bulk body is a three-dimensional shape having a certain thickness such as a plate shape (flaky shape) or a lump shape, and the specific shape is not particularly limited. The stress acting on the structure can be measured based on the Young's modulus of the structure that is the object to be measured from the amount of strain obtained by the strain / stress sensor.

また、構造物に設置して該構造物に生じた歪ないし応力を計測するための歪・応力センサであって、歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、Al23に発光中心イオンとしてMnを0.1〜10at%(好ましくは0.3〜6.0at%)添加した酸化物系セラミックスからなる歪・応力センサも提案できる。当該歪・応力センサとしても、前記酸化物系セラミックスを焼結したバルク体とすることができる。 Also, a strain / stress sensor that is installed in a structure and measures strain or stress generated in the structure, and the emission wavelength varies when excitation light is irradiated according to the magnitude of the strain / stress. And 0.1 to 10 at% (preferably 0.3 to 6.0 at%) of Mn as a luminescent center ion is added to Al 2 O 3 , and the direction of fluctuation of the emission wavelength varies depending on the direction of strain and stress. A strain / stress sensor made of an oxide-based ceramic can also be proposed. The strain / stress sensor may be a bulk body obtained by sintering the oxide ceramics.

本発明の歪・応力センサは、Al23にMnを0.1〜10at%(好ましくは0.3〜6.0at%)添加した蛍光材料である酸化物系セラミックスからなり、与えられた歪・応力の大きさに応じた基準発光波長に対する発光波長のシフト量が大きい。したがって、この蛍光材料を使用した歪・応力センサによれば、構造物における歪ないし応力を高精度に計測可能となる。また、計測時間の短縮や低コスト化にも有利である。また、本発明の歪・応力センサでは、引張・圧縮という歪・応力の印加方向によって発光波長シフトの方向を変えること、さらに等方的な応力でなくても1次元もしくは2次元的な歪・応力場に対しても応答性を示すこと、が初めて見出されており、実際の構造体における変形診断を可能としている。すなわち、構造物に生じた引張方向のみならず圧縮方向における静的および動的な歪ないし応力の計測を確実に計測できる。しかも、その方向性の判定、すなわち引張方向の歪・応力か圧縮方向の歪・応力かを判定することができる。 The strain / stress sensor of the present invention is made of an oxide ceramic that is a fluorescent material obtained by adding 0.1 to 10 at% (preferably 0.3 to 6.0 at%) of Mn to Al 2 O 3 . The shift amount of the emission wavelength with respect to the reference emission wavelength according to the magnitude of strain / stress is large. Therefore, according to the strain / stress sensor using this fluorescent material, the strain or stress in the structure can be measured with high accuracy. It is also advantageous for shortening the measurement time and reducing the cost. Further, in the strain / stress sensor of the present invention, the direction of the emission wavelength shift is changed depending on the strain / stress application direction of tension / compression, and one-dimensional or two-dimensional strain / It has been found for the first time that it exhibits responsiveness to a stress field, which enables deformation diagnosis in an actual structure. That is, it is possible to reliably measure static and dynamic strains or stresses in the compression direction as well as the tensile direction generated in the structure. Moreover, it is possible to determine the directionality, that is, whether the strain / stress in the tensile direction or the strain / stress in the compression direction.

本発明の構造物の歪・応力計測方法は、蛍光材料の発光現象を利用した非接触式の計測方法なので、診断対象が広範囲にわたる大型構造体における多点計測、高所や立入り管理区域などの危険箇所における計測、真空中での計測、高速回転体における計測など、接触式のセンサでは困難もしくは不可能な診断対象に対しても高精度な計測が可能となる。また、集光・発散できるという光の性質により、計測点のサイズを微小なミクロ領域から任意のセンシング領域を選定でき、2次元的な走査によって平面内における歪・応力分布診断の高精度化・高速化にも有効となる。   Since the strain / stress measurement method of the structure of the present invention is a non-contact type measurement method using the light emission phenomenon of the fluorescent material, such as multi-point measurement in a large structure having a wide range of diagnosis targets, such as high places and access control areas, etc. High-precision measurement is possible even for diagnostic objects that are difficult or impossible with contact-type sensors, such as measurement in hazardous locations, measurement in a vacuum, and measurement in a high-speed rotating body. In addition, due to the nature of light that can be condensed and diverged, it is possible to select an arbitrary sensing area from the micro area of the measurement point, and to improve the accuracy of strain and stress distribution diagnosis in the plane by two-dimensional scanning. It is also effective for speeding up.

そのうえで、励起光を照射した際の蛍光発光波長の変化(シフト)量によって歪ないし応力を計測するので、従来技術のような動的な歪・応力場だけではなく、静的な歪・応力場における歪ないし応力も計測できる。すなわち、応力が作用している瞬間のみならず、応力が作用した後においても歪ないし応力を計測できる。静的な歪・応力場における歪・応力による波長変化を計測するので、動的な歪・応力場のように歪・応力の変化速度の影響はなく、的確に歪ないし応力を計測できる。また、励起光を照射すればいつでも発光するので、動的な歪・応力のように常時観測している必要は無く、任意のタイミングで歪ないし応力を計測できる。また、本発明では蛍光材料の構造変化に基づく発光波長変化を検出するので、グレーティングを使用する場合に比べて、集光などによって空間分解能を狭くすることもでき、発光の検出方向にも制約を受けない。   In addition, since strain or stress is measured by the amount of change (shift) in the fluorescence emission wavelength when irradiated with excitation light, not only dynamic strain and stress fields as in the prior art, but also static strain and stress fields. Strain or stress can be measured. That is, the strain or stress can be measured not only at the moment when the stress is applied but also after the stress is applied. Since the wavelength change due to the strain / stress in the static strain / stress field is measured, there is no influence of the strain / stress change rate unlike the dynamic strain / stress field, and the strain or stress can be accurately measured. In addition, since it emits light whenever it is irradiated with excitation light, there is no need to constantly observe it like dynamic strain / stress, and strain or stress can be measured at any timing. In addition, since the present invention detects a change in emission wavelength based on a change in the structure of the fluorescent material, the spatial resolution can be narrowed by condensing light compared to the case of using a grating, and the detection direction of emission is also limited. I do not receive it.

本発明の歪・応力センサを、バルク体として構造物表面へ貼着する形態とすることで、製造も容易であって対象物の制約が小さく施工性がよい。構造物に貼着する場合には、その接着界面における耐熱性などを考慮する必要があるが、歪・応力センサを薄片状にすればこれを解決でき、また、歪の追従性や限界値の拡大にも有利である。   By adopting a form in which the strain / stress sensor of the present invention is attached to the surface of a structure as a bulk body, the manufacturing is easy, the restrictions on the object are small, and the workability is good. When affixing to a structure, it is necessary to consider the heat resistance at the adhesive interface, but this can be solved by making the strain / stress sensor into a thin piece, and the strain followability and limit value It is also advantageous for expansion.

歪・応力計測方法の機構を示す模式図である。It is a schematic diagram which shows the mechanism of the strain / stress measurement method. 圧縮歪を与える機構の模式図である。It is a schematic diagram of the mechanism which gives a compressive strain. 引張歪を与える機構の模式図である。It is a schematic diagram of the mechanism which gives a tensile strain. 圧縮歪を与えた場合のPL発光スペクトルのシフト方向を示すグラフである。It is a graph which shows the shift direction of PL emission spectrum at the time of giving compression distortion. 圧縮歪の大きさとこれに伴うPL発光スペクトルのシフト量との関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of a compressive strain, and the shift amount of PL emission spectrum accompanying this. 引張歪の大きさとこれに伴うPL発光スペクトルのシフト量との関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of a tensile strain and the shift amount of PL emission spectrum accompanying this.

本発明は、与えられた歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性(引張方向又は圧縮方向)に応じて発光波長の変動方向が異なる酸化物系セラミックスからなる蛍光材料を歪・応力センサとして使用し、構造物に応力が作用した場合の動的又は静的な歪ないし応力を計測するものである。なお、以下の説明では、励起光照射による蛍光発光を、PL発光と称すことがある。   In the present invention, the emission wavelength varies when the excitation light is irradiated according to the applied strain / stress, and the emission wavelength varies according to the direction of the strain / stress (tensile direction or compression direction). A fluorescent material made of oxide ceramics with different directions is used as a strain / stress sensor to measure dynamic or static strain or stress when stress acts on a structure. In the following description, fluorescence emission due to excitation light irradiation may be referred to as PL emission.

本発明の歪・応力センサに使用する蛍光材料は、Al23にMnを添加したものである。すなわち、MnAl24単相からなるものではなく、Al23相とMnAl24相とが混在した結晶構造となっている。Mnの添加量は0.1〜10at%、好ましくは0.3〜6.0at%、より好ましくは4.0〜6.0at%とする。Mnの添加量が多すぎても少なすぎても、歪・応力感度が低下するからである。Mnの添加量が4.0〜6.0at%であれば、歪・応力感度が最も高くなる。 The fluorescent material used in the strain / stress sensor of the present invention is a material in which Mn is added to Al 2 O 3 . In other words, does not consist MnAl 2 O 4 single phase, it has a crystal structure in which the Al 2 O 3 phase and MnAl 2 O 4 phase are mixed. The amount of Mn added is 0.1 to 10 at%, preferably 0.3 to 6.0 at%, more preferably 4.0 to 6.0 at%. This is because the strain / stress sensitivity decreases if the amount of Mn added is too large or too small. When the amount of Mn added is 4.0 to 6.0 at%, the strain / stress sensitivity is the highest.

また、上記酸化物系セラミックスには、歪・応力感度をより高めるための添加剤として、H2BO3を添加することも好ましい。その添加量は、0.5〜5.0at%、好ましくは1.0〜3.0at%程度とすればよい。 Moreover, it is also preferable to add H 2 BO 3 to the oxide ceramics as an additive for further improving strain / stress sensitivity. The addition amount may be about 0.5 to 5.0 at%, preferably about 1.0 to 3.0 at%.

当該蛍光材料におけるPL発光は、発光中心(Mn)イオンの電子軌道間もしくは欠陥準位において励起された電子が遷移する際に発光現象を引き起こす。そして、このような蛍光材料を歪・応力センサとして使用する場合、上記発光現象において、Al23の結晶構造に歪が作用することによって配位子場が変化することで発光中心イオンの電子軌道間もしくは欠陥準位のエネルギー状態が変化し、これによって発光特性、すなわちPL発光波長が変動(シフト)する原理を応用している。 The PL emission in the fluorescent material causes a light emission phenomenon when electrons excited between electron orbits of the emission center (Mn) ion or in a defect level transition. When such a fluorescent material is used as a strain / stress sensor, in the above luminescence phenomenon, the ligand field changes due to the strain acting on the crystal structure of Al 2 O 3 , and thus the electrons of the luminescent center ions. The principle that the energy state between the orbits or the defect level changes and the emission characteristics, that is, the PL emission wavelength fluctuate (shift) by this is applied.

このような酸化物系セラミックスからなる歪・応力センサは、セラミックスの原料(出発原料)を焼成した焼結体(バルク体)とすればよい。代表的には、セラミックスの原料粉末を混合・焼成する公知の固相反応法によって製造できる。具体的には、各種出発原料を混合し、各出発原料の融点未満の温度で焼成して焼結体を得ればよい。このとき、必要に応じて各出発原料を混合した状態で、焼成(本焼)温度より低い温度で仮焼し、該仮焼後の焼結体を粉砕・成型したうえで、焼成(本焼)することが好ましい。組成の均一化や緻密化を図ることができるからである。   The strain / stress sensor made of such an oxide ceramic may be a sintered body (bulk body) obtained by firing a ceramic material (starting material). Typically, it can be produced by a known solid phase reaction method in which ceramic raw material powders are mixed and fired. Specifically, various starting materials may be mixed and fired at a temperature lower than the melting point of each starting material to obtain a sintered body. At this time, if necessary, the starting materials are mixed and calcined at a temperature lower than the firing (fired) temperature, and the sintered body after the calcination is pulverized and molded, followed by firing (fired). ) Is preferable. This is because the composition can be made uniform and dense.

このとき、母材(Al23)中の酸素欠損量がPL発光波長のシフト量だけでなく発光強度にも影響し、大気中で焼成するとPL発光強度が弱くなる傾向がある。したがって、焼成や必要に応じて行う仮焼を、酸化を防ぐために無酸素雰囲気で行う。好ましくは、還元雰囲気とする。還元雰囲気であれば、母材構造へ積極的に酸素欠損を導入でき、配位子場の変化に対してより発光エネルギー状態を変えやすいMnの価数状態、もしくは欠陥順位を形成できるからである。無酸素雰囲気としては、Arガスなどの不活性ガスや窒素ガス雰囲気とすればよい。より好適な還元雰囲気とする場合は、不活性ガス中に5%程度の水素ガスを混合した雰囲気とすればよい。 At this time, the amount of oxygen vacancies in the base material (Al 2 O 3 ) affects not only the shift amount of the PL emission wavelength but also the emission intensity, and when baked in the atmosphere, the PL emission intensity tends to be weakened. Therefore, firing and calcination as necessary are performed in an oxygen-free atmosphere to prevent oxidation. A reducing atmosphere is preferable. This is because, in a reducing atmosphere, oxygen deficiency can be positively introduced into the base material structure, and a valence state of Mn that can easily change the luminescence energy state with respect to changes in the ligand field, or a defect order can be formed. . The oxygen-free atmosphere may be an inert gas such as Ar gas or a nitrogen gas atmosphere. In order to obtain a more preferable reducing atmosphere, an atmosphere in which about 5% hydrogen gas is mixed in an inert gas may be used.

酸化物系セラミックスのバルク体からなる歪・応力センサの形状は、構造物に設置できる形状であれば特に限定されないが、薄片状(例えば厚み0.1〜5mm程度)とすることが好ましい。薄片状であれば、構造物に生じた歪への追従性が良好であると共に、施工性も良い。または、一定の厚みを有する立体形状のバルク体とすることもできる。薄片状の歪・応力センサは、直接薄片状に焼結するほか、ある程度の厚みを有するバルク体を切断、切削、又は研削等の後加工によって薄片状とすることもできる。バルク体からなる歪・応力センサは、構造物の表面に接着することで設置することができる。このとき、構造物の任意の部位に凹みを設けて歪・応力センサを埋め込むように設置したり、構造物における二点の間に挟まれるように設置することもできる。構造物によって挟持されるように設置した場合は、圧縮応力の計測に適している。   The shape of the strain / stress sensor made of a bulk body of oxide ceramics is not particularly limited as long as it is a shape that can be installed on a structure, but is preferably in the form of a flake (for example, about 0.1 to 5 mm thick). If it is flake-like, the followability to the strain generated in the structure is good and the workability is also good. Or it can also be set as the three-dimensional bulk body which has fixed thickness. The flaky strain / stress sensor can be directly sintered into a flaky shape, or a bulk material having a certain thickness can be formed into a flaky shape by post-processing such as cutting, cutting, or grinding. A strain / stress sensor made of a bulk body can be installed by adhering to the surface of the structure. At this time, a dent can be provided at an arbitrary part of the structure so as to embed the strain / stress sensor, or it can be installed so as to be sandwiched between two points in the structure. When installed so as to be sandwiched between structures, it is suitable for measurement of compressive stress.

このようにして設置した歪・応力センサによって、構造物に生じた歪ないし応力の計測方法について説明する。図1に示すように、構造物1に設置した歪・応力センサ10に励起光11を照射すると、当該歪・応力センサ10が蛍光発光するので、その蛍光発光12の発光波長を図外の波長計測手段によって計測する。照射する励起光11には、発光波長よりも高エネルギー(短波長)の光を使用する。具体的には、波長250〜500nm程度の励起光が挙げられる。波長計測手段としては、光の波長を計測できるものであれば特に限定されず、公知の機器を使用できる。代表的には、分光器が挙げられる。   A method for measuring strain or stress generated in the structure using the strain / stress sensor thus installed will be described. As shown in FIG. 1, when the strain / stress sensor 10 installed in the structure 1 is irradiated with excitation light 11, the strain / stress sensor 10 emits fluorescence. Measure by measuring means. As the excitation light 11 to be irradiated, light having a higher energy (short wavelength) than the emission wavelength is used. Specifically, excitation light having a wavelength of about 250 to 500 nm can be mentioned. The wavelength measuring means is not particularly limited as long as it can measure the wavelength of light, and a known device can be used. A typical example is a spectroscope.

これを前提として、先ずは、構造物1に歪が生じていない状態における基準発光波長を予め計測しておく。基準発光波長は、歪・応力センサ10を構造物1に設置した直後、又は構造物1に設置する前に計測しておけばよい。そして、歪・応力センサ10を構造物1へ設置した後、任意のタイミング(任意の時間経過後)で蛍光発光12の波長を計測したとき、構造物1に歪が生じていれば、蛍光発光12の波長は基準発光波長とは異なる波長となっている。そこで、基準発光波長に対する発光波長変化(シフト量)を計測することで、構造物1に生じた歪を計測することができる。このとき、歪の方向性、すなわち引張方歪か圧縮歪かによって、発光波長変化の方向性が逆(短波長側へのシフトか長波長側へのシフトか)になるので、当該発光波長変化の方向性によって引張方向の歪か圧縮方向の歪かを判定することもできる。もちろん、構造物1に歪が生じていなければ、発光波長の変動は無い。また、歪と応力はヤング率を比例定数として比例関係にあるため、計測された歪値から応力を求めることもできる。同時に、引張応力か圧縮応力かも判定できる。基準発光波長は、波長計測手段に連結された情報処理装置に記憶しておき、基準発光波長と発光波長との対比も当該情報処理装置によって行うと効率的である。   On the premise of this, first, the reference emission wavelength in a state where the structure 1 is not distorted is measured in advance. The reference emission wavelength may be measured immediately after the strain / stress sensor 10 is installed on the structure 1 or before the strain / stress sensor 10 is installed on the structure 1. Then, after the strain / stress sensor 10 is installed on the structure 1, when the wavelength of the fluorescence emission 12 is measured at an arbitrary timing (after an arbitrary time has elapsed), if the structure 1 is distorted, the fluorescence emission The wavelength of 12 is different from the reference emission wavelength. Therefore, by measuring the emission wavelength change (shift amount) with respect to the reference emission wavelength, the strain generated in the structure 1 can be measured. At this time, depending on the direction of strain, that is, tensile strain or compression strain, the direction of emission wavelength change is reversed (shift to short wavelength side or shift to long wavelength side). Whether the strain is in the tensile direction or the strain in the compression direction can also be determined based on the directionality. Of course, if the structure 1 is not distorted, there is no change in the emission wavelength. Further, since the strain and the stress are in a proportional relationship with the Young's modulus as a proportional constant, the stress can be obtained from the measured strain value. At the same time, it can be determined whether it is tensile stress or compressive stress. It is efficient that the reference emission wavelength is stored in an information processing apparatus connected to the wavelength measuring means, and the reference emission wavelength and the emission wavelength are also compared by the information processing apparatus.

計測対象としては、応力が作用し得る構造物であれば特に限定されず、大型の構造物から小型の構造部位まで、種々の構造体が含まれる。特に、本発明の歪・応力計測方法は非接触式の計測方法なので、ダムやトンネルなどの診断範囲が広範囲にわたる大型構造体における多点計測、電波塔や送電塔などの鉄塔、高層ビル、発電所構造物など、高所や立入り管理区域などの危険箇所における計測、タービンやモータなど高速回転体における計測、真空中など密閉空間における計測など、接触式のセンサでは困難もしくは不可能な計測に好適である。   The measurement object is not particularly limited as long as it is a structure on which stress can act, and includes various structures from large structures to small structure parts. In particular, since the strain / stress measurement method of the present invention is a non-contact measurement method, multipoint measurement in large structures with a wide diagnostic range such as dams and tunnels, steel towers such as radio towers and power transmission towers, high-rise buildings, power generation Suitable for measurements that are difficult or impossible with contact-type sensors, such as measurements in hazardous places such as high places and access control areas, measurements in high-speed rotating bodies such as turbines and motors, and measurements in sealed spaces such as in vacuum. It is.

歪・応力センサ用の試料として、Al23にMnを0.5at%添加したもの(実施例1)、5.0at%添加したもの(実施例2)、の2種類を使用した。さらに従来との比較対象として特許文献4のEu添加SrAl24(比較例1)の結果と比較した。 As a sample for a strain / stress sensor, two types of Al 2 O 3 added with 0.5 at% Mn (Example 1) and 5.0 at% added (Example 2) were used. Was further compared with the results of Eu added SrAl 2 O 4 in Patent Document 4 (Comparative Example 1) as compared with the conventional.

出発原料として、a−Al23(高純度化学製、99.99%>、ALO12PB)と、MnO(高純度化学製、99.9%>、MNO01PB)の粉体を化学量論組成に合致するよう秤量した。また、ホウ酸H3BO3(関東化学製、99.9999%>、765−1M)を2.0at%加えた。エタノールを分散媒体としてこれらの原料をZrO2ボールとともにPET容器にて1時間混合した。混合後のスラリーに対して、130℃雰囲気中にてエタノールを飛散させて混合粉を抽出し、乳鉢にて粉砕しつつメッシュサイズ250μmのふるいにて整粒した。その後、20mmφ×2mmtの形状に500kgf/mm2の圧力にて一軸プレス成形した。さらに、この成形体に対してCIP処理によって2500kgf/mm2の静水圧を加えた。この成形体について仮焼の工程を経ずに直接焼成するプロセスとし、その焼成では、昇温速度を200℃/hとして1400℃まで加熱し、その温度を12時間保持してから、炉冷速度にて降温させるプロセスとした。この本焼成のプロセスにおける雰囲気として、実施例1ではArとし、実施例2ではAr+4%H2とした。最後に、得られた焼結体を厚み0.5mmtの薄片状に加工して、歪・応力センサとした。 As starting materials, a-Al 2 O 3 (high purity chemical, 99.99%>, ALO12PB) and MnO (high purity chemical, 99.9%>, MNO01PB) powder in stoichiometric composition Weighed to match. Further, 2.0 at% of boric acid H 3 BO 3 (manufactured by Kanto Chemical Co., 99.9999%>, 765-1M) was added. These raw materials were mixed with a ZrO 2 ball in a PET container for 1 hour using ethanol as a dispersion medium. The mixed slurry was extracted from the mixed slurry by dispersing ethanol in an atmosphere at 130 ° C., and sized with a sieve having a mesh size of 250 μm while being pulverized in a mortar. Then, uniaxial press molding was performed at a pressure of 500 kgf / mm 2 into a shape of 20 mmφ × 2 mmt. Furthermore, a hydrostatic pressure of 2500 kgf / mm 2 was applied to the molded body by CIP treatment. The molded body was directly fired without going through the calcination step. In the firing, the temperature was raised to 1400 ° C. at a rate of temperature rise of 200 ° C./h, the temperature was maintained for 12 hours, and then the furnace cooling rate. The process of lowering the temperature. The atmosphere in this main firing process was Ar in Example 1 and Ar + 4% H 2 in Example 2. Finally, the obtained sintered body was processed into a thin piece having a thickness of 0.5 mm to obtain a strain / stress sensor.

そのうえで、歪・応力センサに圧縮・引張歪を加えて、PL発光スペクトルの波長シフトについて検討した。具体的には、圧縮歪を与える場合には、図2に示すように、模擬構造物としてのステンレス板1にて歪・応力センサ10を上下から挟み、その上下方向から圧縮応力を与えることで変形させ、このときの発光波長を計測した。一方、引張歪を与える場合には、図3に示すように、模擬構造物としての長さ150mm×幅25mm×厚み2mmのステンレス板1に歪・応力センサ10を接着させ、そのステンレス板1を上下から掴んで引っ張ることで、歪・応力センサ10にも引張歪を作用させ、このときの発光波長を計測した。なお、発光波長を計測する分光器には、CCDリニアイメージセンサにより200〜950nmの波長を一度に分光検出可能な分光器(浜松ホトニクス製、C10027−1)を採用した。各試験片100に照射する励起光源としては、365nmに発光波長をもつUV−LED光源(浜松ホトニクス製、L9610)を使用した。   Then, compressive / tensile strain was applied to the strain / stress sensor to examine the wavelength shift of the PL emission spectrum. Specifically, when compressive strain is applied, as shown in FIG. 2, a strain / stress sensor 10 is sandwiched from above and below by a stainless steel plate 1 as a simulated structure, and compressive stress is applied from above and below. The emission wavelength at this time was measured. On the other hand, when tensile strain is applied, as shown in FIG. 3, a strain / stress sensor 10 is bonded to a stainless steel plate 1 having a length of 150 mm, a width of 25 mm, and a thickness of 2 mm as a simulated structure. By grasping and pulling from above and below, tensile strain was also applied to the strain / stress sensor 10, and the emission wavelength at this time was measured. A spectroscope capable of spectrally detecting a wavelength of 200 to 950 nm with a CCD linear image sensor at a time (C10027-1 manufactured by Hamamatsu Photonics) was used as a spectroscope for measuring the emission wavelength. As an excitation light source for irradiating each test piece 100, a UV-LED light source (manufactured by Hamamatsu Photonics, L9610) having an emission wavelength of 365 nm was used.

歪・応力センサの作動状況を示す例として、実施例1の歪・応力センサに圧縮歪を増加(マイナス側へ増大)させた場合、図4に示されるように、PL発光スペクトルのピーク波長は長波長側へ増加した。図示していないが、実施例2及び比較例1においても同様の傾向を示した。   As an example showing the operating state of the strain / stress sensor, when the compressive strain is increased (increase to the minus side) in the strain / stress sensor of Example 1, the peak wavelength of the PL emission spectrum is as shown in FIG. It increased to the long wavelength side. Although not shown, the same tendency was shown in Example 2 and Comparative Example 1.

続いて、実施例1,2及び比較例1における上記PL発光スペクトルのシフト量を定量的に評価するために、圧縮歪の大きさに応じたPL発光スペクトルの波長をエネルギーに変換してガウス分布を仮定したフィッティングを行い、ガウス分布の中心波長としてピーク位置(波長)を同定した。そのピーク波長のシフト量(縦軸)と圧縮歪の大きさ(横軸)との関係をまとめた結果が図5である。   Subsequently, in order to quantitatively evaluate the shift amount of the PL emission spectrum in Examples 1 and 2 and Comparative Example 1, the wavelength of the PL emission spectrum corresponding to the magnitude of the compressive strain is converted into energy and Gaussian distribution. And the peak position (wavelength) was identified as the central wavelength of the Gaussian distribution. FIG. 5 shows a summary of the relationship between the shift amount of the peak wavelength (vertical axis) and the magnitude of the compressive strain (horizontal axis).

図5の結果の傾きから、実施例1における単位歪(1%歪)あたりの波長変化は−9.1nm/%、実施例2における単位歪(1%歪)あたりの波長変化は−14.7nm/%、比較例1における単位歪(1%歪)あたりの波長変化は−2.1nm/%と見積もることができ、従来のEu添加SrAl24からなる比較例1では歪感度が低いのに対して、Al23にMnを所定量添加した実施例1,2は歪感度が高いことが確認された。 From the slope of the result of FIG. 5, the wavelength change per unit strain (1% strain) in Example 1 is −9.1 nm /%, and the wavelength change per unit strain (1% strain) in Example 2 is −14. 7 nm /%, wavelength change per unit strain (1% strain) in Comparative Example 1 can be estimated as -2.1 nm /%, and Comparative Example 1 made of conventional Eu-added SrAl 2 O 4 has low strain sensitivity. On the other hand, it was confirmed that Examples 1 and 2 in which a predetermined amount of Mn was added to Al 2 O 3 had high strain sensitivity.

次に、歪・応力センサに引張歪を与えた場合のPL発光スペクトルのシフト量を定量的に評価するために、実施例1および比較例1の歪・応力センサに引張歪を作用させ、上記圧縮歪の場合と同様にしてPL発光スペクトルのピーク波長のシフト量(縦軸)と圧縮歪の大きさ(横軸)との関係をまとめた。その結果を図6に示す。   Next, in order to quantitatively evaluate the shift amount of the PL emission spectrum when tensile strain is applied to the strain / stress sensor, tensile strain is applied to the strain / stress sensor of Example 1 and Comparative Example 1, Similar to the case of compressive strain, the relationship between the shift amount of the peak wavelength of the PL emission spectrum (vertical axis) and the magnitude of the compressive strain (horizontal axis) is summarized. The result is shown in FIG.

図6の結果より、歪・応力センサへ引張歪を与えると、PL発光スペクトルは圧縮歪を与えた場合とは逆の方向にシフトしていた。すなわち、歪・応力センサへ引張歪が作用すると、圧縮歪の場合とは逆にPL発光スペクトルは短波長側へシフトすることが確認された。これにより、与えられる歪が引張であるのか圧縮であるのかという判定を、波長シフトの方向性から的確に検出できることを見出した。実際の構造体においては、診断対象面が平面だけとは限らず局率をもった面も多く存在し、そういった環境では曲げ変形による引張や圧縮歪の作用を想定する必要がある。そういった環境でもこの蛍光材料の波長シフトによる方法では的確な検出が可能であるという点は適用性という観点からも非常に有利である。   From the results of FIG. 6, when tensile strain was applied to the strain / stress sensor, the PL emission spectrum was shifted in the opposite direction to that when compressive strain was applied. That is, it was confirmed that when tensile strain acts on the strain / stress sensor, the PL emission spectrum shifts to the short wavelength side, contrary to the case of compressive strain. As a result, it has been found that the determination of whether the applied strain is tensile or compression can be accurately detected from the directionality of the wavelength shift. In an actual structure, there are not only a plane to be diagnosed but also a plane having a local ratio, and in such an environment, it is necessary to assume the action of tensile or compressive strain due to bending deformation. Even in such an environment, the fact that the method based on the wavelength shift of the fluorescent material enables accurate detection is very advantageous from the viewpoint of applicability.

また、図6の結果の傾きから、実施例1における単位歪(1%歪)あたりの波長変化は−7.9nm/%、比較例1における単位歪(1%歪)あたりの波長変化は−1.6nm/%と見積もることができ、圧縮歪の場合と同様に、従来のEu添加SrAl24からなる比較例1では歪感度が低いのに対して、Al23にMnを所定量添加した実施例1は歪感度が高いことが確認された。 Further, from the slope of the result of FIG. 6, the wavelength change per unit strain (1% strain) in Example 1 is −7.9 nm /%, and the wavelength change per unit strain (1% strain) in Comparative Example 1 is − As in the case of compressive strain, in Comparative Example 1 made of conventional Eu-added SrAl 2 O 4 , the strain sensitivity is low, whereas M 2 is included in Al 2 O 3. It was confirmed that Example 1 added quantitatively had high strain sensitivity.

1 構造物
10 歪・応力センサ
11 励起光
12 蛍光発光


DESCRIPTION OF SYMBOLS 1 Structure 10 Strain / stress sensor 11 Excitation light 12 Fluorescence emission


Claims (6)

構造物に、歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、Al23にMnを0.1〜10at%添加した酸化物系セラミックスからなる歪・応力センサを設置し、
前記歪・応力センサに励起光を照射して蛍光発光させ、該発光波長を波長計測手段によって計測し、前記構造物に歪・応力が作用していない状態における基準発光波長に対する発光波長変化量とその変化の方向を計測することで、構造物に生じた静的および動的な歪ないし応力の計測とその方向性の判定を行う、構造物の歪・応力計測方法。
The structure, the emission wavelength when irradiated with excitation light is varied depending on the magnitude of the distortion-stress and variation direction of the emission wavelengths differ depending on the direction of the strain and stress, Mn in Al 2 O 3 A strain / stress sensor made of oxide ceramics with 0.1 to 10 at% added,
The strain / stress sensor is irradiated with excitation light to emit fluorescence, the emission wavelength is measured by a wavelength measuring means, and the emission wavelength change amount with respect to a reference emission wavelength in a state in which no strain / stress acts on the structure; A structure strain / stress measurement method for measuring static and dynamic strain or stress generated in a structure and determining its direction by measuring the direction of the change.
前記Mnの添加量が0.3〜6.0at%である、請求項1に記載の歪・応力計測方法。   The strain / stress measurement method according to claim 1, wherein the amount of Mn added is 0.3 to 6.0 at%. 前記歪・応力センサが、前記酸化物系セラミックスを焼結したバルク体からなる、請求項1に記載の構造物の歪・応力計測方法。   The strain / stress measurement method for a structure according to claim 1, wherein the strain / stress sensor is formed of a bulk body obtained by sintering the oxide ceramic. 構造物に設置して該構造物に生じた引張及び圧縮方向の歪ないし応力を計測するための歪・応力センサであって、
歪・応力の大きさに応じて励起光を照射したときの発光波長が変動し、且つ歪・応力の方向性に応じて発光波長の変動方向が異なる、Al23にMnを0.1〜10at%添加した酸化物系セラミックスからなる、歪・応力センサ。
A strain / stress sensor for measuring strain or stress in the tensile and compression directions generated in the structure when installed in the structure,
Emission wavelength when irradiated with excitation light is varied depending on the magnitude of the distortion-stress and variation direction of the emission wavelengths differ depending on the direction of the strain and stress, the Mn in the Al 2 O 3 0.1 Strain / stress sensor made of oxide ceramics with 10at% added.
前記Mnの添加量が0.3〜6.0at%である、請求項4に記載の歪・応力センサ。   The strain / stress sensor according to claim 4, wherein the amount of Mn added is 0.3 to 6.0 at%. 前記酸化物系セラミックスを焼結したバルク体からなる、請求項4または請求項5に記載の歪・応力センサ。

The strain / stress sensor according to claim 4 or 5, comprising a bulk body obtained by sintering the oxide-based ceramic.

JP2012270369A 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor Expired - Fee Related JP6000837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270369A JP6000837B2 (en) 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270369A JP6000837B2 (en) 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor

Publications (2)

Publication Number Publication Date
JP2014115219A true JP2014115219A (en) 2014-06-26
JP6000837B2 JP6000837B2 (en) 2016-10-05

Family

ID=51171366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270369A Expired - Fee Related JP6000837B2 (en) 2012-12-11 2012-12-11 Strain / stress measurement method of structure and strain / stress sensor

Country Status (1)

Country Link
JP (1) JP6000837B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018163084A (en) * 2017-03-27 2018-10-18 株式会社トヨタプロダクションエンジニアリング Measuring system, method for measurement, and measuring program
EP3600012B1 (en) * 2017-03-23 2024-09-18 The General Hospital Corporation Apparatus for in situ three-dimensional reconstruction of luminal structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263970A (en) * 1997-11-28 1999-09-28 Agency Of Ind Science & Technol Luminous material, its production and light emission using the same
US6072568A (en) * 1997-03-03 2000-06-06 Howmet Research Corporation Thermal barrier coating stress measurement
JP2003262558A (en) * 2002-03-11 2003-09-19 Railway Technical Res Inst Method and apparatus for detecting external force of structure body
JP2007145991A (en) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology High-luminance emission particle and method for producing the same
JP2007284275A (en) * 2006-04-14 2007-11-01 National Institute Of Advanced Industrial & Technology Nanoparticle and method for producing the same
JP2011127992A (en) * 2009-12-17 2011-06-30 Japan Fine Ceramics Center Strain/stress measuring method of structure, strain/stress sensor, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072568A (en) * 1997-03-03 2000-06-06 Howmet Research Corporation Thermal barrier coating stress measurement
JPH11263970A (en) * 1997-11-28 1999-09-28 Agency Of Ind Science & Technol Luminous material, its production and light emission using the same
JP2003262558A (en) * 2002-03-11 2003-09-19 Railway Technical Res Inst Method and apparatus for detecting external force of structure body
JP2007145991A (en) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology High-luminance emission particle and method for producing the same
JP2007284275A (en) * 2006-04-14 2007-11-01 National Institute Of Advanced Industrial & Technology Nanoparticle and method for producing the same
JP2011127992A (en) * 2009-12-17 2011-06-30 Japan Fine Ceramics Center Strain/stress measuring method of structure, strain/stress sensor, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3600012B1 (en) * 2017-03-23 2024-09-18 The General Hospital Corporation Apparatus for in situ three-dimensional reconstruction of luminal structures
JP2018163084A (en) * 2017-03-27 2018-10-18 株式会社トヨタプロダクションエンジニアリング Measuring system, method for measurement, and measuring program

Also Published As

Publication number Publication date
JP6000837B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
Tu et al. LiNbO3: Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence
JP5627882B2 (en) Strain / stress measurement method of structure, strain / stress sensor, and manufacturing method thereof
JP6029962B2 (en) Strain / stress measurement method of structure and strain / stress sensor
Back et al. Effective ratiometric luminescent thermal sensor by Cr3+‐doped mullite Bi2Al4O9 with robust and reliable performances
Xu et al. Dynamic visualization of stress distribution by mechanoluminescence image
Nikolić et al. Temperature sensing with Eu3+ doped TiO2 nanoparticles
Xu et al. Direct view of stress distribution in solid by mechanoluminescence
Lojpur et al. Luminescence thermometry below room temperature via up-conversion emission of Y2O3: Yb3+, Er3+ nanophosphors
Zhang et al. An intense elastico-mechanoluminescence material CaZnOS: Mn 2+ for sensing and imaging multiple mechanical stresses
Qiu et al. Cr 3+-Doped InTaO 4 phosphor for multi-mode temperature sensing with high sensitivity in a physiological temperature range
Chandra et al. Suitable materials for elastico mechanoluminescence-based stress sensors
Timilsina et al. Review of state-of-the-art sensor applications using mechanoluminescence microparticles
Lojpur et al. Temperature sensing from the emission rise times of Eu 3+ in SrY 2 O 4
CN105203041B (en) A kind of method of broadband fluorescence integrated intensity than measuring strain
Finley et al. Optimizing blue persistent luminescence in (Sr1− δBaδ) 2MgSi2O7: Eu2+, Dy3+ via solid solution for use in point-of-care diagnostics
JP6000837B2 (en) Strain / stress measurement method of structure and strain / stress sensor
Zhou et al. Optical properties of Nd3+ ions doped GdTaO4 for pressure and temperature sensing
Cai et al. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model
Rakov et al. Highly sensitive optical thermometry operation using Eu3+: Y2O3 powders excited under low-intensity LED light source at 395 nm
CN105181016A (en) Broadband fluorescence spectrum strain sensing method
Szymczak et al. Highly‐Sensitive, Tri‐Modal Luminescent Manometer Utilizing Band‐Shift, Ratiometric and Lifetime‐Based Sensing Parameters
Ilatovskii et al. Stimuli-responsive mechanoluminescence in different matrices
Iguchi et al. Study of Raman peak shift under applied isostatic pressure in rare-earth-doped ceria for evaluation of quantitative stress conditions in SOFCs
Szymczak et al. A highly sensitive lifetime-based luminescent manometer and bi-functional pressure–temperature sensor based on a spectral shift of the R-line of Mn 4+ in K 2 Ge 4 O 9
CN109945987B (en) Method for realizing high-sensitivity temperature measurement in higher temperature range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160831

R150 Certificate of patent or registration of utility model

Ref document number: 6000837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees