WO2011030671A1 - Method for producing zn-al-oxide fluorescent material - Google Patents

Method for producing zn-al-oxide fluorescent material Download PDF

Info

Publication number
WO2011030671A1
WO2011030671A1 PCT/JP2010/064448 JP2010064448W WO2011030671A1 WO 2011030671 A1 WO2011030671 A1 WO 2011030671A1 JP 2010064448 W JP2010064448 W JP 2010064448W WO 2011030671 A1 WO2011030671 A1 WO 2011030671A1
Authority
WO
WIPO (PCT)
Prior art keywords
znal
based oxide
water
organic compound
raw material
Prior art date
Application number
PCT/JP2010/064448
Other languages
French (fr)
Japanese (ja)
Inventor
躍進 単
諒仁 山口
慶太郎 手塚
英夫 井本
Original Assignee
国立大学法人宇都宮大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人宇都宮大学 filed Critical 国立大学法人宇都宮大学
Publication of WO2011030671A1 publication Critical patent/WO2011030671A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium

Definitions

  • the present invention relates to a method for producing a ZnAl-based oxide phosphor.
  • Spinel is derived from the mineral name of MgAl 2 O 4 (Japanese name: spinel), and its structure is based on a diamond structure, and its general chemical formula is represented as AB 2 X 4 .
  • the A site forms an isolated tetrahedron surrounded by four X site anions (eg, oxide ions), and the B site is an octahedron surrounded by six anions and sharing sides. It is represented by the structure formed.
  • ZnGa 2 O 4 which is a spinel-type ZnGa-based oxide, has been reported as an oxygen-deficient (matrix emission) blue phosphor (see, for example, Non-Patent Document 1 below).
  • B site uses inexpensive Al
  • ZnAl 2 O 4 having the same structure as ZnGa 2 O 4 is known not to emit fluorescence because oxygen deficiency cannot be introduced.
  • the following Non-Patent Document 2 reports ZnAl 2 O 4 doped with Dy 3+ as the emission center, but using an oxygen-deficient phosphor that emits as a host light like ZnGa 2 O 4. is not.
  • ZnAl-based oxide phosphor typified by ZnAl 2 O 4
  • ZnAl 2 O 4 does not emit light from the host body, and does not emit light unless doped with other elements. Therefore, the development of ZnAl-based oxide phosphors that emit inexpensive ZnAl 2 O 4 as a host without performing such doping has been an issue.
  • development of a production method capable of industrial production of such ZnAl-based oxide phosphors by a simple method is also an issue.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a ZnAl-based oxide phosphor that can be industrially produced by a simple method without using expensive Ga. There is.
  • ZnAl 2 O 4 In order to cause ZnAl 2 O 4 to emit light as a host, it is considered necessary to introduce oxygen vacancies (also referred to as oxygen vacancies; hereinafter the same) in the crystal.
  • oxygen vacancies also referred to as oxygen vacancies; hereinafter the same
  • ZnAl 2 O 4 is an oxide having a very stable spinel structure, and it is difficult to introduce defects, and it is difficult to form oxygen vacancies serving as emission centers.
  • the present inventors have controlled the type and amount of water-soluble organic compounds used in the raw material solution in the production of oxides, and The inventors have found that oxygen vacancies can be introduced into ZnAl 2 O 4 by crystallization by firing in a reducing atmosphere after making it amorphous, and the present invention has been completed.
  • a method for producing a ZnAl-based oxide phosphor comprises mixing a raw material containing at least a zinc salt and an aluminum salt with a solvent comprising an aqueous solution containing a water-soluble organic compound that dissolves the raw material.
  • an oxygen deficiency is introduced by a simple process because it includes a calcination step for obtaining amorphous powder and a firing step for obtaining ZnAl-based oxide by firing amorphous powder in an inert gas atmosphere. hard to typical oxide ZnAl 2 O 4 in it is possible to introduce the oxygen deficiency, resulting in providing child a manufacturing method of industrial production possible ZnAl based oxide phosphor in a simple way Can.
  • the water-soluble organic compound is glycerin.
  • the water-soluble organic compound is glycerin, it becomes easy to introduce oxygen deficiency into the ZnAl-based oxide in the firing step, and it becomes easy to produce a ZnAl-based oxide phosphor having better light emission characteristics. .
  • the inert gas is nitrogen gas, argon gas, helium gas or a mixed gas thereof.
  • the inert gas is nitrogen gas, argon gas, helium gas or a mixed gas thereof, the oxide is baked in a non-oxidizing atmosphere. It becomes easier to introduce oxygen deficiency.
  • the method for producing a ZnAl-based oxide phosphor of the present invention it is possible to provide a method for producing a phosphor that can be industrially produced by a simple method. Since the produced ZnAl-based oxide emits fluorescence, a novel ZnAl-based oxide phosphor can be produced without using expensive Ga, and can be preferably used as a fluorescent material for displays such as fluorescent lamps and PDPs. .
  • Changing the molar ratio of glycerin and ZnAl 2 O 4 is a powder X-ray diffraction measurement results of the ZnAl based oxide. They are the measurement result of the fluorescence spectrum which measured the ZnAl type oxide fluorescent substance obtained by changing baking temperature with the excitation wavelength of 370 nm, and the measurement result of an excitation spectrum. The measurement result of the fluorescence spectra of ZnAl based oxide phosphor obtained by the molar ratio was varied was measured at excitation wavelength 370nm of glycerin and ZnAl 2 O 4, the measurement results of the excitation spectrum.
  • ZnAl based oxide phosphor and serving standard the measurement results of the fluorescence spectrum of the (CaWO 4). It is a measurement result of cathodoluminescence of the obtained ZnAl system oxide. It is a measurement result of the fluorescence spectrum (excitation wavelength of 370 nm) of the obtained ZnAl-type oxide. It is a TG-DTA measurement result of the obtained ZnAl-based oxide. It is an ESR measurement result of each ZnAl-based oxide.
  • the ZnAl-based oxide phosphor obtained by the production method of the present invention is made of a ZnAl-based oxide having oxygen vacancies.
  • Al which is an inexpensive material can be used, and as a result, a ZnAl-based oxide phosphor can be provided without using expensive Ga. That is, by introducing oxygen vacancies into the ZnAl-based oxide, for example, ZnAl 2 O 4 that has been considered not to emit light can be emitted.
  • the ZnAl-based oxide phosphor is, in principle, a compound composed of Zn, Al, and O elements and has oxygen vacancies.
  • the degree of oxygen deficiency in the ZnAl-based oxide phosphor is not easy to quantify, but if the composition formula of the ZnAl-based oxide is expressed by ZnAl 2 O 4-x , x is usually larger than 0, Preferably it is 0.000001 or more and usually 0.001 or less. If it is the said range, it will become easy to ensure the light emission characteristic of ZnAl type oxide fluorescent substance.
  • the ZnAl-based oxide phosphor has oxygen vacancies can be confirmed using an electron spin resonance (ESR) method. That is, the ESR method can detect free electrons in a substance, so that a signal appears if there is an oxygen deficiency.
  • ESR electron spin resonance
  • carbon may be contained in the ZnAl-based oxide, so that a signal due to carbon may be detected by the ESR method. In this case, it becomes difficult to confirm the signal of oxygen deficiency due to the signal from carbon. Therefore, in the case where carbon is contained in the ZnAl-based oxide, for example, the carbon may be removed by firing in air and then analysis by the ESR method may be performed.
  • the firing temperature for removing the carbon is, for example, by analyzing the sample before firing by the differential thermal-thermogravimetric simultaneous measurement (TG-DTA) method, and referring to the temperature at which weight loss due to carbon is observed. I can decide.
  • TG-DTA differential thermal-thermogravimetric simultaneous measurement
  • ZnAl-based oxide phosphors are usually powder at normal temperature / normal humidity (25 ⁇ 5 ° C./50 ⁇ 10% RH). From the viewpoint of ensuring the light emission characteristics, it is preferable to use a white powder.
  • the average particle size is usually 1 nm or more and 50 nm or less.
  • the particle diameter can be measured, for example, by a small angle scattering X-ray method, and as a measuring device, for example, SmartLab manufactured by Rigaku Corporation can be used.
  • the specific surface area is usually 10 m 2 / g or more and 200 m 2 / g or less.
  • the specific surface area can be measured using the BET method.
  • a measuring device for example, Yuasa Ionics Co., Ltd. NOVA1200 can be used.
  • the ZnAl-based oxide thus configured can be confirmed to exhibit sufficient fluorescence even when inexpensive Al is used, and a novel ZnAl-based oxide without using expensive Ga.
  • a phosphor can be provided.
  • This ZnAl-based oxide phosphor preferably has an excitation wavelength of 350 nm or more. This makes it possible to excite with light close to visible light.
  • this ZnAl-based oxide phosphor is not a light emitter whose emission center is a dopant, but an oxygen-deficient light emitter that emits a base light.
  • a dopant may be appropriately introduced when higher light emission intensity is required depending on the practical application.
  • any ZnAl-based oxide that emits light based on oxygen vacancies can be a ZnAl-based oxide phosphor here, even when elements other than Zn, AL, and O are included.
  • Such a ZnAl-based oxide phosphor can be obtained by the production method according to the present invention described later.
  • a novel ZnAl-based oxide phosphor can be manufactured without using expensive Ga, and it can be used for displays such as fluorescent lamps and PDPs. It can be preferably used as a fluorescent material.
  • the method for producing a ZnAl-based oxide phosphor of the present invention provides a raw material solution prepared by mixing a raw material containing at least a zinc salt and an aluminum salt and a solvent comprising an aqueous solution containing a water-soluble organic compound that dissolves the raw material.
  • a method can be provided. Hereinafter, each step will be described.
  • the raw material solution preparation step is a step of preparing a raw material solution obtained by mixing a raw material containing at least a zinc salt and an aluminum salt and a solvent composed of an aqueous solution containing a water-soluble organic compound that dissolves the raw material.
  • the ZnAl-based oxide is finally obtained. Therefore, even in this raw material solution preparation step, the blending amount of each salt is adjusted so that the oxide has a desired stoichiometric composition.
  • the amount of each salt is adjusted so that the B site of AB 2 X 4 is composed of Al and the A site is composed of Zn. Good.
  • other elements other than Al may be added to the B site, and other elements other than Zn may be added to the A site.
  • such other salts can be blended in any amount.
  • the salt examples include acetate, nitrate, carbonate, hydrochloride and the like.
  • water-soluble salts are preferable.
  • zinc acetate or the like can be used as the zinc salt
  • aluminum nitrate or the like can be used as the aluminum salt.
  • Zinc salts and aluminum salts may be used as hydrates.
  • a solvent made of an aqueous solution containing a water-soluble organic compound is used as a solvent for dissolving the raw material made of such salt.
  • the water-soluble organic compound means an organic compound having a property of being dissolved in water and carbonized by heat treatment.
  • a water-soluble organic compound is not particularly limited, and examples thereof include polyhydric alcohols, monosaccharides, disaccharides, and the like. From the viewpoint of easy introduction of oxygen deficiency, polyhydric alcohols may be used. preferable.
  • the water-soluble organic compound is at least one selected from the group consisting of ethylene glycol, propylene glycol, 1,2-butylene glycol, 2,3-butylene glycol, trimethylene glycol, glycerin, erythritol, xylitol, and sorbitol. Is more preferable.
  • glycerin is more preferably used as the water-soluble organic compound.
  • the water-soluble organic compound may be used by mixing any two or more of them in an arbitrary ratio within the scope of the present invention.
  • a water-soluble organic compound having a boiling point or decomposition temperature higher than that of water It is preferable to use a water-soluble organic compound having a boiling point or decomposition temperature higher than that of water. This is because, as will be described later, it is assumed that moisture is removed in the heating and concentration step, and at least a part of the water-soluble organic compound is removed in the subsequent calcination step. To explain this by taking the above preferred water-soluble organic compound as an example, the boiling point of water is 100 ° C., ethylene glycol (C2) is 197.6 ° C., and propylene glycol (C3) is 188 at 1 atm.
  • 1,2-butylene glycol (C4) is 192-194 ° C
  • 2,3-butylene glycol (C3) is 177 ° C
  • trimethylene glycol (C3) is 210-211 ° C.
  • glycerin (C3) is 290 ° C
  • erythritol (C4) is 330 ° C
  • xylitol (C5) is 216 ° C
  • sorbitol (C6) is 296 ° C. That is, all the water-soluble organic compounds that are considered preferable have a boiling point higher than that of water.
  • the water-soluble organic compound is preferably a substance that coordinates with the elements constituting each salt.
  • a water-soluble organic compound coordinated with an element constituting each salt as a solvent species, such a water-soluble organic compound is an element that constitutes each salt even after heat treatment in the calcining step described later.
  • a water-soluble organic compound coordinated with an element constituting each salt is an element that constitutes each salt even after heat treatment in the calcining step described later.
  • a water-soluble organic compound C (carbon) of the water-soluble organic compound is coordinated by firing in the subsequent firing step. This is because it is presumed that a ZnAl-based oxide having oxygen deficiency can be obtained by performing a reducing action so as to partially extract oxygen.
  • the water-soluble organic compound here is a water-soluble organic compound having a higher boiling point than water in which each salt is mainly dissolved and capable of coordinating with the elements constituting the salt.
  • it is an organic compound having such characteristics, it may be the same organic compound as the above propylene glycol, ethylene glycol or the like, or another organic compound, but in the present invention, an OH group is present as shown in the examples described later.
  • a glycerin having three a ZnAl-based oxide having an oxygen deficiency is obtained. Therefore, it is preferable to use a polyhydric alcohol such as glycerin.
  • a solvent composed of an aqueous solution containing a water-soluble organic compound is usually formed by dissolving a water-soluble organic compound in water.
  • a material other than water and the water-soluble organic compound is prescribed. You may make it contain by content of.
  • the content of water in the solvent is usually an amount that can sufficiently dissolve the raw materials.
  • the content of the water-soluble organic compound in the same solvent is usually an amount that can reliably form a coordinate bond with the element constituting each salt in the raw material. It is preferable to make it contain excessively with respect to a salt and aluminum salt.
  • the ratio is expressed by the ratio (molar ratio) of the amount of water-soluble organic compound to the amount of ZnAl-based oxide produced, the amount of water-soluble organic compound when the amount of ZnAl-based oxide is 1.
  • the ratio is usually 1 or more, preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, particularly preferably 9 or more, and usually 50 or less, preferably 40 or less, more preferably 35 or less, still more preferably 30.
  • it is particularly preferably 20 or less, most preferably 15 or less.
  • the mixing ratio of the solvent composed of the aqueous solution containing the water-soluble organic compound and the raw material is the above-described fluorescence characteristics, the solubility of the raw material, the coordinate bond between the element constituting each salt in the raw material and the water-soluble organic compound, which will be described later. What is necessary is just to determine suitably, considering each conditions, such as the temperature and time of heat concentration in the heating concentration process to perform, and the temperature and time of heat processing in a calcination process.
  • the heating concentration step is a step of heating and concentrating the raw material solution obtained in the raw material solution preparation step to remove water in the raw material solution to obtain a highly viscous solution.
  • the heating temperature is usually 100 ° C. or higher and 150 ° C. or lower.
  • the atmosphere for the heat treatment is not particularly limited, and may be any of an air atmosphere, an inert atmosphere such as a nitrogen atmosphere and argon.
  • the removal of water in the raw material solution preferably means that the water in the raw material solution is almost completely removed, and more preferably that the water in the raw material solution is completely removed. In the case where the light emission characteristics of the obtained ZnAl-based oxide phosphor are not impaired, moisture may remain in the raw material solution.
  • the properties of the highly viscous solution obtained through the heat concentration step are usually sol.
  • the calcination step is a step of further heating the high-viscosity solution obtained by heat concentration to remove at least a part of the water-soluble organic compound in the high-viscosity solution to obtain an amorphous powder. At least a part of the water-soluble organic compound is removed by the heat treatment.
  • the water-soluble organic compound is excessively contained in the raw material solution with respect to the zinc salt and the aluminum salt in the raw material solution preparation step, the water-soluble organic compound is excessive. It is preferable to remove a water-soluble organic compound (for example, an organic solvent such as glycerin). More specifically, it is preferable to remove “remaining water-soluble organic compound” other than the necessary and sufficient water-soluble organic compound coordinated to the element constituting the salt by heat treatment.
  • the heat treatment temperature in the calcining step varies depending on the type of the water-soluble organic compound.
  • the boiling point (188.2 ° C.) is about 60 ° C. (about 40 ° C. to 80 ° C.).
  • the range is preferably about 250 ° C. (a range of about 230 ° C. to 270 ° C.).
  • the boiling point (290 ° C.) is about 60 ° C.
  • the range is preferably about 350 ° C. (range of about 330 ° C. to 370 ° C.).
  • the atmosphere for the heat treatment is not particularly limited, and may be any of an air atmosphere, an inert atmosphere such as a nitrogen atmosphere and argon.
  • the amorphous powder can be confirmed by measuring the powder after the heat treatment with a powder X-ray diffractometer, so that a crystalline peak does not appear, and a so-called amorphous peak or microcrystalline peak is obtained. It is such a powder.
  • the obtained amorphous powder is usually not white when a water-soluble organic compound or its carbide remains.
  • the firing step is a step of obtaining a ZnAl-based oxide having oxygen deficiency by firing amorphous powder in an inert gas atmosphere.
  • This step can be called a reduction step because oxygen deficiency is generated.
  • a desired ZnAl-based oxide exhibiting a white color can be obtained by firing in an inert gas atmosphere.
  • the firing temperature in the firing step is usually 800 ° C. or higher, preferably 850 ° C. or higher, more preferably 900 ° C. or higher, and usually 1500 ° C. or lower from the viewpoint of forming oxygen deficiency while removing the carbonized water-soluble organic compound.
  • the temperature is preferably 1200 ° C. or lower, more preferably 1000 ° C. or lower.
  • the amorphous powder is fired in an inert gas atmosphere.
  • the inert gas is preferably nitrogen gas, argon gas, helium gas or a mixed gas thereof.
  • the oxide is fired in a non-oxidizing atmosphere, and as a result, oxygen vacancies are more easily introduced into the ZnAl-based oxide.
  • a ZnAl-based oxide having oxygen deficiency can be obtained by performing a reducing action so that a part of C (carbon) extracts oxygen.
  • C (carbon) of the carbonized water-soluble organic compound probably remains coordinate-bonded to the oxide constituent element in the amorphous state or the microcrystalline state, and does not coordinate-bond.
  • Excess water-soluble organic compound is removed by heat treatment to produce an amorphous powder, but in the subsequent firing step, C (carbon) in the water-soluble organic compound that is probably coordinated to the oxide constituent element by firing. It is presumed that oxygen deficiency is given to the ZnAl-based oxide by reducing the oxygen so that a part of it extracts oxygen.
  • Example preparation The sample was synthesized by the solution method.
  • the substance amount (molar ratio) of glycerin with respect to the substance amount of ZnAl 2 O 4 finally obtained is such that (substance quantity of glycerin) / (substance quantity of ZnAl 2 O 4 ) is 3 times, 9 times,
  • the raw material solution was prepared so as to be 15 times and 36 times (raw material solution preparation step).
  • the raw material solution was heated and concentrated at about 120 ° C. to remove water in the raw material solution to obtain a sol (high viscosity solution) (heat concentration step).
  • the sol was heated at 350 ° C. to obtain an amorphous powder (calcination step). After removing excess glycerin by calcination process, a brown powder was obtained. When powder X-ray diffraction measurement was performed, a broad amorphous or microcrystalline diffraction pattern that did not exhibit a crystalline peak was obtained. Indicated. This is considered to be based on the fact that glycerin is coordinated to Zn and Al constituting each salt.
  • this amorphous powder is further heated in an inert atmosphere (in a nitrogen atmosphere) at 800 ° C., 900 ° C., and 1000 ° C. for 7 hours, respectively, thereby introducing oxygen defects to obtain a target substance. (Firing process).
  • the nitrogen atmosphere at this time was performed while constantly flowing nitrogen gas at a rate of 40 ml / min in the heating furnace, and after cooling to 200 ° C., the atmosphere was released to the atmosphere.
  • the X-ray diffraction measurement was performed using a RINT2200 type manufactured by Rigaku Corporation as a powder X-ray diffractometer under the conditions of CuK ⁇ rays, applied voltage of 40 kV, and applied current of 40 mA.
  • FIG. 1 shows the result of powder X-ray diffraction measurement of ZnAl-based oxide obtained by changing the firing temperature.
  • the X-ray diffraction measurement result indicated by “800 ° C.” is obtained by firing at 800 ° C.
  • the X-ray diffraction measurement result indicated by “900 ° C.” is fired at 900 ° C.
  • This is a sample obtained
  • the X-ray diffraction measurement result indicated by “1000 ° C.” is obtained by baking at 1000 ° C.
  • FIG. 2 is a powder X-ray diffraction measurement result of a ZnAl-based oxide obtained by changing the molar ratio of glycerin and ZnAl 2 O 4 .
  • fluorescence / excitation spectrum measurement was performed on the sample subjected to powder X-ray diffraction measurement.
  • a spectrofluorometer manufactured by JASCO Corporation, FP-6300 type
  • a sharp cut filter L-37 manufactured by HOYA Glass Co., Ltd.
  • the sample was packed in a powder measurement folder and set in a spectrofluorometer for measurement.
  • the detection of the double wave was eliminated by attaching a filter to the spectrofluorometer.
  • the fluorescence spectrum was expressed by the result obtained by fixing the wavelength on the excitation side and scanning the wavelength on the fluorescence side. Specifically, the fluorescence wavelength measurement was performed by fixing the wavelength ( ⁇ ex) on the excitation side to 370 nm and scanning the wavelength on the fluorescence side. Moreover, the excitation spectrum was expressed as a result of plotting the fluorescence intensity against the excitation light wavelength by fixing the wavelength on the fluorescence side to the maximum wavelength, scanning the wavelength on the excitation side.
  • FIG. 3 shows a measurement result of a fluorescence spectrum obtained by measuring a ZnAl-based oxide phosphor obtained by changing a firing temperature at an excitation wavelength of 370 nm, and a measurement result of an excitation spectrum.
  • a spectrum indicated by “PL” is a fluorescence (emission) spectrum
  • a spectrum indicated by “PLE” is an excitation spectrum.
  • the measurement result of the fluorescence spectrum indicated by “800 ° C.” in the figure is a sample obtained by firing at 800 ° C.
  • the measurement result of the fluorescence spectrum indicated by “900 ° C.” is fired at 900 ° C.
  • the measurement result of the fluorescence spectrum indicated by “1000 ° C.” is that of the sample obtained by baking at 1000 ° C. It can be seen from the figure that the sample fired at 900 ° C. exhibits the strongest fluorescence. When the sample was irradiated with 365 nm ultraviolet light and the emission color was observed, both ZnAl-based oxide phosphors fired at 800 ° C. and 900 ° C. emitted blue (475 nm).
  • FIG. 4 shows a measurement result of a fluorescence spectrum obtained by measuring a ZnAl-based oxide phosphor obtained by changing a molar ratio of glycerin and ZnAl 2 O 4 at an excitation wavelength of 370 nm, and a measurement result of an excitation spectrum.
  • a spectrum indicated by “PL” is a fluorescence (emission) spectrum
  • a spectrum indicated by “PLE” is an excitation spectrum.
  • FIG. 5 shows the measurement results of the fluorescence spectra of the ZnAl-based oxide phosphor and the standard material (CaWO 4 ).
  • the excitation wavelength is measured at 370 nm.
  • the measurement results of the fluorescence spectra shown in "CaWO 4" is of CaWO 4 sample as a standard. The excitation wavelength is measured at 256 nm. From the figure, it can be seen that a ZnAl 2 O 4 phosphor exhibiting fluorescence stronger than that of CaWO 4 as a standard substance can be obtained depending on manufacturing conditions.
  • the excitation wavelength can be set to 370 nm in the ZnAl 2 O 4 phosphor compared to CaWO 4 that uses an excitation wavelength of 256 nm, and light close to visible light. It can be seen that it is possible to emit light.
  • the particle size was measured by a small angle scattering X-ray method, and a SmartLab manufactured by Rigaku Corporation was used as a measuring device.
  • Spectrometer entrance / exit slit 1000 nm / 1000 nm Measurement wavelength range: 200-800nm Measurement wavelength interval: 1 nm 1 wavelength integration time / time: 500 ⁇ S 1 wavelength twice average
  • FIG. 6 shows the measurement results of the cathodoluminescence of the obtained ZnAl-based oxide. As can be seen from the figure, light emission by electron beam irradiation was confirmed for the sample obtained in this experimental example.
  • FIG. 7 shows the measurement results of the fluorescence spectrum (excitation wavelength: 370 nm) of the obtained ZnAl-based oxide.
  • the measurement result of the fluorescence spectrum indicated by “900 ° C., in N 2 ” in the figure is that of the sample obtained in Experimental Example 2.
  • fluorescence was also confirmed for the sample obtained in Experimental Example 2.
  • thermogravimetric analysis The sample (ZnAl-based oxide) was subjected to thermogravimetric analysis.
  • thermogravimetric analysis a differential thermothermal gravimetric simultaneous measurement apparatus (model: TG-DTA / 2020S) manufactured by Bruker AXS Co., Ltd. was used.
  • FIG. 8 shows a TG-DTA measurement result of the obtained ZnAl-based oxide.
  • the first stage weight reduction is due to adsorbed moisture
  • the second and third stage weight reduction is due to adsorbed carbon. From this result, it is understood that carbon is adsorbed (residual) in the ZnAl-based oxide (ZnAl 2 O 4 ) obtained in Experimental Example 2.
  • ESR measurement From the results of FIG. 8, carbon adsorption was observed in the ZnAl-based oxide phosphor obtained in Experimental Example 2. From these results, it is considered that it is not the oxygen deficiency but the adsorbed carbon that is involved in the light emission of the ZnAl-based oxide phosphor. Therefore, ESR measurement was performed on the separately prepared black ZnAl-based oxide powder (ZnAl 2 O 4 , a sample considered to have excessive carbon attached because of black) and the ZnAl-based oxide obtained in Experimental Example 2. went. Furthermore, for the ZnAl-based oxide obtained in Experimental Example 2, a sample subjected to additional firing (in the atmosphere at 800 ° C. for 1 hour) was prepared, and ESR measurement was also performed on this sample.
  • the reason why the additional baking is performed here is to remove carbon adhering to the ZnAl-based oxide obtained in Experimental Example 2 by performing high-temperature baking in the air.
  • the additional baking temperature of 800 ° C. is determined with reference to the temperature range in which the weight loss of the adsorbed carbon in FIG. 8 occurs.
  • the ESR measurement was performed using an electron spin resonance apparatus (manufactured by JEOL Ltd., model: JES-TE100).
  • FIG. 9 shows the ESR measurement result of each ZnAl-based oxide.
  • the signal indicated by “excess-carbon” in the upper part of the figure is the ESR measurement result of the black ZnAl-based oxide, and the signal indicated by “900 ° C. in N 2 ” in the upper part of the figure is obtained in Experimental Example 2.
  • the signal shown by “900 ° C. in N 2 + 800 ° C. in air 1h” in the lower part of the figure is the result of additional firing of the ZnAl-based oxide obtained in Experimental Example 2 ( It is an ESR measurement result of a sample obtained by performing at 800 ° C. for 1 hour in the air.
  • the lower part of FIG. 9 is an ESR measurement result of a sample obtained by additionally firing the ZnAl-based oxide obtained in Experimental Example 2 (in the atmosphere at 800 ° C. for 1 hour) as described above.
  • This signal is similar to the ESR signal of ZnGa 2 O 4 introduced with oxygen deficiency reported in Non-Patent Document 1.

Abstract

Disclosed is a production method wherein industrial production is possible of a low-cost Zn-Al-oxide fluorescent material via a simple method. The production method includes a starting material solution preparation step wherein a starting material solution is prepared by mixing a starting material containing at least a zinc salt and an aluminum salt with a solvent comprising an aqueous solution containing a water-soluble organic compound that can dissolve said starting material; a heat-concentrating step wherein the starting material solution is heat concentrated causing the water in the starting material solution to be eliminated, resulting in a highly viscous solution; a calcination step wherein the highly viscous solution is heat treated, eliminating at least a portion of the water-soluble organic compound in the highly viscous solution, resulting in an amorphous powder; and a roasting step wherein the amorphous powder is roasted in an inert gas ambient, resulting in a Zn-Al-oxide.

Description

ZnAl系酸化物蛍光体の製造方法Method for producing ZnAl-based oxide phosphor
 本発明は、ZnAl系酸化物蛍光体の製造方法に関する。 The present invention relates to a method for producing a ZnAl-based oxide phosphor.
 スピネルはMgAlの鉱物名(和名:尖晶石)に由来し、その構造は、ダイヤモンド構造を基調とした構造で、一般化学式はABのように表されている。この化学式において、Aサイトは4つのXサイトの陰イオン(例えば酸化物イオン)に囲まれた孤立した四面体を形成し、Bサイトは6つの陰イオンに囲まれて辺を共有した八面体を形成した構造で表されている。 Spinel is derived from the mineral name of MgAl 2 O 4 (Japanese name: spinel), and its structure is based on a diamond structure, and its general chemical formula is represented as AB 2 X 4 . In this chemical formula, the A site forms an isolated tetrahedron surrounded by four X site anions (eg, oxide ions), and the B site is an octahedron surrounded by six anions and sharing sides. It is represented by the structure formed.
 スピネル型ZnGa系酸化物であるZnGaは、酸素欠損型(母体発光)の青色蛍光体として報告されている(例えば、下記非特許文献1を参照)。しかしながら、ZnGaのBサイトを構成するGaの価格が高く、全体として高価になるという難点がある。コストダウンのために、Bサイトが安価なAlを用いることが考えられるが、ZnGaと同じ構造であるZnAlは、酸素欠損の導入ができないので、蛍光発光しないことが知られている。実際に、下記非特許文献2には、Dy3+を発光中心としてドープしたZnAlについて報告されているが、ZnGaのように母体発光する酸素欠損型の蛍光体を用いたものではない。 ZnGa 2 O 4, which is a spinel-type ZnGa-based oxide, has been reported as an oxygen-deficient (matrix emission) blue phosphor (see, for example, Non-Patent Document 1 below). However, there is a problem that the price of Ga constituting the B site of ZnGa 2 O 4 is high and the cost is high as a whole. In order to reduce the cost, it is conceivable that B site uses inexpensive Al, but ZnAl 2 O 4 having the same structure as ZnGa 2 O 4 is known not to emit fluorescence because oxygen deficiency cannot be introduced. ing. Actually, the following Non-Patent Document 2 reports ZnAl 2 O 4 doped with Dy 3+ as the emission center, but using an oxygen-deficient phosphor that emits as a host light like ZnGa 2 O 4. is not.
 ZnGa系酸化物におけるGaは高価な材料ゆえ、それに代わる安価な材料としてZnAlに代表されるZnAl系酸化物蛍光体の開発が望まれるところである。しかしながら、ZnAlは母体発光せず、他元素をドープしなければ発光しないのが現状である。そこで、こうしたドープを行うことなく、安価なZnAlを母体発光させたZnAl系の酸化物蛍光体の開発が課題となっている。また、こうしたZnAl系酸化物蛍光体を簡易な方法で工業生産可能な製造方法の開発も課題となっている。 Since Ga in the ZnGa-based oxide is an expensive material, development of a ZnAl-based oxide phosphor typified by ZnAl 2 O 4 is desired as an inexpensive material instead. However, at present, ZnAl 2 O 4 does not emit light from the host body, and does not emit light unless doped with other elements. Therefore, the development of ZnAl-based oxide phosphors that emit inexpensive ZnAl 2 O 4 as a host without performing such doping has been an issue. In addition, development of a production method capable of industrial production of such ZnAl-based oxide phosphors by a simple method is also an issue.
 本発明は、上記課題を解決するためになされたものであって、その目的は、高価なGaを用いずに、簡易な方法で工業生産可能なZnAl系酸化物蛍光体の製造方法を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a ZnAl-based oxide phosphor that can be industrially produced by a simple method without using expensive Ga. There is.
 ZnAlを母体発光させるためには、結晶中に酸素欠損(酸素欠陥ともいう。以下同じ。)を導入することが必要となると考えられる。しかしながら、ZnAlは非常に安定なスピネル構造をとる酸化物であって欠陥の導入がしにくく、発光中心となる酸素欠損を形成することが難しい。そこで、本発明者等は、ZnAlへの酸素欠損の導入につき鋭意検討をした結果、酸化物の製造において、原料溶液に用いる水溶性有機化合物の種類及び添加量を制御し、かつ一旦アモルファス化させた後に還元雰囲気下での焼成により結晶化することによって、ZnAlに酸素欠損を導入できることを見出し、本発明を完成させた。 In order to cause ZnAl 2 O 4 to emit light as a host, it is considered necessary to introduce oxygen vacancies (also referred to as oxygen vacancies; hereinafter the same) in the crystal. However, ZnAl 2 O 4 is an oxide having a very stable spinel structure, and it is difficult to introduce defects, and it is difficult to form oxygen vacancies serving as emission centers. Therefore, as a result of intensive studies on the introduction of oxygen vacancies into ZnAl 2 O 4 , the present inventors have controlled the type and amount of water-soluble organic compounds used in the raw material solution in the production of oxides, and The inventors have found that oxygen vacancies can be introduced into ZnAl 2 O 4 by crystallization by firing in a reducing atmosphere after making it amorphous, and the present invention has been completed.
 上記課題を解決するための本発明のZnAl系酸化物蛍光体の製造方法は、亜鉛塩及びアルミニウム塩を少なくとも含む原材料と、該原材料を溶解する水溶性有機化合物を含む水溶液からなる溶媒とを混合してなる原料溶液を準備する原料溶液準備工程と、前記原料溶液を加熱濃縮して該原料溶液中の水を除去して高粘性溶液にする加熱濃縮工程と、前記高粘性溶液を加熱処理して該高粘性溶液中の水溶性有機化合物の少なくとも一部を除去してアモルファス状の粉末を得る仮焼工程と、前記アモルファス状の粉末を不活性ガス雰囲気中で焼成してZnAl系酸化物を得る焼成工程と、を含むことを特徴とする。 In order to solve the above problems, a method for producing a ZnAl-based oxide phosphor according to the present invention comprises mixing a raw material containing at least a zinc salt and an aluminum salt with a solvent comprising an aqueous solution containing a water-soluble organic compound that dissolves the raw material. A raw material solution preparing step for preparing a raw material solution, a heating and concentrating step for heating and concentrating the raw material solution to remove water in the raw material solution to obtain a high viscous solution, and a heat treatment for the high viscous solution. A calcining step of obtaining an amorphous powder by removing at least part of the water-soluble organic compound in the highly viscous solution, and firing the amorphous powder in an inert gas atmosphere to obtain a ZnAl-based oxide. And a firing step to be obtained.
 この発明によれば、亜鉛塩及びアルミニウム塩を少なくとも含む原材料と、この原材料を溶解する水溶性有機化合物を含む水溶液からなる溶媒とを混合してなる原料溶液を準備する原料溶液準備工程と、原料溶液を加熱濃縮してこの原料溶液中の水を除去して高粘性溶液にする加熱濃縮工程と、高粘性溶液を加熱処理してこの高粘性溶液中の水溶性有機化合物の少なくとも一部を除去してアモルファス状の粉末を得る仮焼工程と、アモルファス状の粉末を不活性ガス雰囲気中で焼成してZnAl系酸化物を得る焼成工程と、を含むので、簡易な工程によって酸素欠損を導入しにくい代表酸化物ZnAlに酸素欠損を導入することが可能となり、その結果、簡易な方法で工業生産可能なZnAl系酸化物蛍光体の製造方法を提供することができる。 According to this invention, a raw material solution preparation step of preparing a raw material solution prepared by mixing a raw material containing at least a zinc salt and an aluminum salt and a solvent comprising an aqueous solution containing a water-soluble organic compound that dissolves the raw material; Concentrate the solution by heating to remove the water in the raw material solution to make a highly viscous solution, and heat treat the highly viscous solution to remove at least part of the water-soluble organic compounds in the highly viscous solution Thus, an oxygen deficiency is introduced by a simple process because it includes a calcination step for obtaining amorphous powder and a firing step for obtaining ZnAl-based oxide by firing amorphous powder in an inert gas atmosphere. hard to typical oxide ZnAl 2 O 4 in it is possible to introduce the oxygen deficiency, resulting in providing child a manufacturing method of industrial production possible ZnAl based oxide phosphor in a simple way Can.
 本発明のZnAl系酸化物蛍光体の製造方法の好ましい態様においては、前記水溶性有機化合物がグリセリンである。 In a preferred embodiment of the method for producing a ZnAl-based oxide phosphor of the present invention, the water-soluble organic compound is glycerin.
 この発明によれば、水溶性有機化合物がグリセリンであるので、焼成工程においてZnAl系酸化物に酸素欠損を導入しやすくなり、より良好な発光特性を有するZnAl系酸化物蛍光体を製造しやすくなる。 According to this invention, since the water-soluble organic compound is glycerin, it becomes easy to introduce oxygen deficiency into the ZnAl-based oxide in the firing step, and it becomes easy to produce a ZnAl-based oxide phosphor having better light emission characteristics. .
 本発明のZnAl系酸化物蛍光体の製造方法の好ましい態様においては、前記不活性ガスが、窒素ガス、アルゴンガス、ヘリウムガス又はその混合ガスである。 In a preferred embodiment of the method for producing a ZnAl-based oxide phosphor of the present invention, the inert gas is nitrogen gas, argon gas, helium gas or a mixed gas thereof.
 この発明によれば、不活性ガスが、窒素ガス、アルゴンガス、ヘリウムガス又はその混合ガスであるので、酸化物の焼成が非酸化雰囲気下で行われることとなり、その結果、ZnAl系酸化物に酸素欠損をより導入しやすくなる。 According to the present invention, since the inert gas is nitrogen gas, argon gas, helium gas or a mixed gas thereof, the oxide is baked in a non-oxidizing atmosphere. It becomes easier to introduce oxygen deficiency.
 本発明のZnAl系酸化物蛍光体の製造方法によれば、簡易な方法で工業生産可能な蛍光体の製造方法を提供することができる。そして、製造されるZnAl系酸化物は蛍光発光するので、高価なGaを用いずに新規ZnAl系酸化物蛍光体を製造でき、蛍光灯やPDP等のディスプレー用途の蛍光材料として好ましく利用可能である。 According to the method for producing a ZnAl-based oxide phosphor of the present invention, it is possible to provide a method for producing a phosphor that can be industrially produced by a simple method. Since the produced ZnAl-based oxide emits fluorescence, a novel ZnAl-based oxide phosphor can be produced without using expensive Ga, and can be preferably used as a fluorescent material for displays such as fluorescent lamps and PDPs. .
焼成温度を変化させて得られたZnAl系酸化物の粉末X線回折測定結果である。It is a powder X-ray-diffraction measurement result of the ZnAl type oxide obtained by changing baking temperature. グリセリンとZnAlとのモル比を変化させて得られたZnAl系酸化物の粉末X線回折測定結果である。Changing the molar ratio of glycerin and ZnAl 2 O 4 is a powder X-ray diffraction measurement results of the ZnAl based oxide. 焼成温度を変化させて得られたZnAl系酸化物蛍光体を励起波長370nmで測定した蛍光スペクトルの測定結果と、励起スペクトルの測定結果である。They are the measurement result of the fluorescence spectrum which measured the ZnAl type oxide fluorescent substance obtained by changing baking temperature with the excitation wavelength of 370 nm, and the measurement result of an excitation spectrum. グリセリンとZnAlとのモル比を変化させて得られたZnAl系酸化物蛍光体を励起波長370nmで測定した蛍光スペクトルの測定結果と、励起スペクトルの測定結果である。The measurement result of the fluorescence spectra of ZnAl based oxide phosphor obtained by the molar ratio was varied was measured at excitation wavelength 370nm of glycerin and ZnAl 2 O 4, the measurement results of the excitation spectrum. ZnAl系酸化物蛍光体と標準物質たる(CaWO)との蛍光スペクトルの測定結果である。ZnAl based oxide phosphor and serving standard the measurement results of the fluorescence spectrum of the (CaWO 4). 得られたZnAl系酸化物のカソードルミネッセンスの測定結果である。It is a measurement result of cathodoluminescence of the obtained ZnAl system oxide. 得られたZnAl系酸化物の蛍光スペクトル(励起波長370nm)の測定結果である。It is a measurement result of the fluorescence spectrum (excitation wavelength of 370 nm) of the obtained ZnAl-type oxide. 得られたZnAl系酸化物のTG-DTA測定結果である。It is a TG-DTA measurement result of the obtained ZnAl-based oxide. 各ZnAl系酸化物のESR測定結果である。It is an ESR measurement result of each ZnAl-based oxide.
 次に、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Next, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
 [ZnAl系酸化物蛍光体]
 本発明の製造方法で得られるZnAl系酸化物蛍光体は、酸素欠損を有するZnAl系酸化物からなる。これにより、安価な材料であるAlを利用することができ、その結果、高価なGaを用いずにZnAl系酸化物蛍光体を提供することができる。すなわち、ZnAl系酸化物に酸素欠損を導入することにより、例えば、従来発光しないと考えられてきたZnAlを発光させることができるようになる。
[ZnAl-based oxide phosphor]
The ZnAl-based oxide phosphor obtained by the production method of the present invention is made of a ZnAl-based oxide having oxygen vacancies. Thereby, Al which is an inexpensive material can be used, and as a result, a ZnAl-based oxide phosphor can be provided without using expensive Ga. That is, by introducing oxygen vacancies into the ZnAl-based oxide, for example, ZnAl 2 O 4 that has been considered not to emit light can be emitted.
 ZnAl系酸化物蛍光体は、原則的には、Zn,Al,Oの元素で構成される化合物であって、酸素欠損を有するものである。ZnAl系酸化物蛍光体における酸素欠損の程度については、定量化することは容易ではないが、ZnAl系酸化物の組成式をZnAl4-xで表せば、xは、通常0より大きく、好ましくは0.000001以上であり、通常0.001以下となる。上記範囲とすれば、ZnAl系酸化物蛍光体の発光特性を確保しやすくなる。 The ZnAl-based oxide phosphor is, in principle, a compound composed of Zn, Al, and O elements and has oxygen vacancies. The degree of oxygen deficiency in the ZnAl-based oxide phosphor is not easy to quantify, but if the composition formula of the ZnAl-based oxide is expressed by ZnAl 2 O 4-x , x is usually larger than 0, Preferably it is 0.000001 or more and usually 0.001 or less. If it is the said range, it will become easy to ensure the light emission characteristic of ZnAl type oxide fluorescent substance.
 ZnAl系酸化物蛍光体が、酸素欠損を有するか否かは、電子スピン共鳴(ESR)法を利用して確認することができる。すなわち、ESR法は、物質中の自由電子を検出することができるので、酸素欠損が存在すればシグナルが現れる。もっとも、製造方法によっては、ZnAl系酸化物に炭素が含まれる場合があるので、ESR法で炭素によるシグナルが検出される可能性がある。この場合、炭素によるシグナルによって酸素欠損のシグナルの確認が難しくなる。そこで、ZnAl系酸化物に炭素が含まれている場合には、例えば、空気中で焼成をすることによって炭素を取り除いてからESR法による分析を行えばよい。そして、炭素を除去するための焼成温度は、例えば、焼成前の試料を示差熱-熱重量同時測定(TG-DTA)法によって分析を行い、炭素による重量減少がみられた温度を参考にして決めることができる。 Whether the ZnAl-based oxide phosphor has oxygen vacancies can be confirmed using an electron spin resonance (ESR) method. That is, the ESR method can detect free electrons in a substance, so that a signal appears if there is an oxygen deficiency. However, depending on the manufacturing method, carbon may be contained in the ZnAl-based oxide, so that a signal due to carbon may be detected by the ESR method. In this case, it becomes difficult to confirm the signal of oxygen deficiency due to the signal from carbon. Therefore, in the case where carbon is contained in the ZnAl-based oxide, for example, the carbon may be removed by firing in air and then analysis by the ESR method may be performed. The firing temperature for removing the carbon is, for example, by analyzing the sample before firing by the differential thermal-thermogravimetric simultaneous measurement (TG-DTA) method, and referring to the temperature at which weight loss due to carbon is observed. I can decide.
 ZnAl系酸化物蛍光体の性状は、常温/常湿(25±5℃/50±10%RH)において、粉末であるのが通常である。発光特性を確保する見地からは、白色の粉末とすることが好ましい。 The properties of ZnAl-based oxide phosphors are usually powder at normal temperature / normal humidity (25 ± 5 ° C./50±10% RH). From the viewpoint of ensuring the light emission characteristics, it is preferable to use a white powder.
 ZnAl系酸化物蛍光体が粉末状(粒子状)である場合には、その平均粒径は、通常1nm以上、50nm以下である。粒子径の測定は、例えば、小角散乱X線法で測定することができ、測定装置としては、例えば、リガク株式会社製のSmartLabを用いることができる。 When the ZnAl-based oxide phosphor is powdery (particulate), the average particle size is usually 1 nm or more and 50 nm or less. The particle diameter can be measured, for example, by a small angle scattering X-ray method, and as a measuring device, for example, SmartLab manufactured by Rigaku Corporation can be used.
 ZnAl系酸化物蛍光体が粉末状(粒子状)である場合には、その比表面積は、通常10m/g以上、200m/g以下である。比表面積の測定はBET法を用いて行うことができ、測定装置としては、例えば、ユアサ アイオニクス株式会社 NOVA1200を用いることができる。 When the ZnAl-based oxide phosphor is in a powder form (particulate form), the specific surface area is usually 10 m 2 / g or more and 200 m 2 / g or less. The specific surface area can be measured using the BET method. As a measuring device, for example, Yuasa Ionics Co., Ltd. NOVA1200 can be used.
 こうして構成されたZnAl系酸化物は、後述の実施例に示すように、安価なAlを使用しても十分な蛍光発光を示すことが確認でき、高価なGaを用いずに新規ZnAl系酸化物蛍光体を提供することができる。このZnAl系酸化物蛍光体は、励起波長が350nm以上となることが好ましい。これにより、可視光に近い光で励起することができるようになる。なお、このZnAl系酸化物蛍光体は、ドーパントが発光中心となる発光体ではなく、母体発光する酸素欠損型の発光体である。もっとも、このZnAl系酸化物蛍光体においては、実用化される用途によってより高い発光強度が求められるような場合等には、適宜ドーパントを導入してもよい。換言すれば、酸素欠損に基づく発光を示すZnAl系酸化物であれば、Zn,AL,O以外の元素が含まれている場合であっても、ここでいうZnAl系酸化物蛍光体となる。 As shown in the examples described later, the ZnAl-based oxide thus configured can be confirmed to exhibit sufficient fluorescence even when inexpensive Al is used, and a novel ZnAl-based oxide without using expensive Ga. A phosphor can be provided. This ZnAl-based oxide phosphor preferably has an excitation wavelength of 350 nm or more. This makes it possible to excite with light close to visible light. Note that this ZnAl-based oxide phosphor is not a light emitter whose emission center is a dopant, but an oxygen-deficient light emitter that emits a base light. However, in this ZnAl-based oxide phosphor, a dopant may be appropriately introduced when higher light emission intensity is required depending on the practical application. In other words, any ZnAl-based oxide that emits light based on oxygen vacancies can be a ZnAl-based oxide phosphor here, even when elements other than Zn, AL, and O are included.
 こうしたZnAl系酸化物蛍光体は、後述する本発明に係る製造方法で得られる。 Such a ZnAl-based oxide phosphor can be obtained by the production method according to the present invention described later.
 得られたZnAl系酸化物蛍光体は、後述のような蛍光発光が確認されたので、高価なGaを用いずに新規ZnAl系酸化物蛍光体を製造でき、蛍光灯やPDP等のディスプレー用途の蛍光材料として好ましく利用可能である。 Since the obtained ZnAl-based oxide phosphor was confirmed to emit fluorescence as described later, a novel ZnAl-based oxide phosphor can be manufactured without using expensive Ga, and it can be used for displays such as fluorescent lamps and PDPs. It can be preferably used as a fluorescent material.
 [製造方法]
 本発明のZnAl系酸化物蛍光体の製造方法は、亜鉛塩及びアルミニウム塩を少なくとも含む原材料と、この原材料を溶解する水溶性有機化合物を含む水溶液からなる溶媒とを混合してなる原料溶液を準備する原料溶液準備工程と、原料溶液を加熱濃縮してこの原料溶液中の水を除去して高粘性溶液にする加熱濃縮工程と、高粘性溶液を加熱処理してこの高粘性溶液中の水溶性有機化合物の少なくとも一部を除去してアモルファス状の粉末を得る仮焼工程と、アモルファス状の粉末を不活性ガス雰囲気中で焼成して酸素欠損を有するZnAl系酸化物を得る焼成工程と、を含む。これにより、簡易な工程によって酸素欠損を導入しにくい代表酸化物ZnAlに酸素欠損を導入することが可能となり、その結果、簡易な方法で工業生産可能なZnAl系酸化物蛍光体の製造方法を提供することができる。以下、各工程について説明する。
[Production method]
The method for producing a ZnAl-based oxide phosphor of the present invention provides a raw material solution prepared by mixing a raw material containing at least a zinc salt and an aluminum salt and a solvent comprising an aqueous solution containing a water-soluble organic compound that dissolves the raw material. A raw material solution preparation step, a heat concentration step for heating and concentrating the raw material solution to remove water in the raw material solution to make a highly viscous solution, and a heat treatment of the highly viscous solution to dissolve the water in the highly viscous solution. A calcining step of obtaining an amorphous powder by removing at least part of the organic compound; and a calcining step of calcining the amorphous powder in an inert gas atmosphere to obtain a ZnAl-based oxide having oxygen deficiency. Including. This makes it possible to introduce oxygen vacancies into the representative oxide ZnAl 2 O 4, which is difficult to introduce oxygen vacancies by a simple process, and as a result, manufacture of a ZnAl-based oxide phosphor that can be industrially produced by a simple method. A method can be provided. Hereinafter, each step will be described.
 原料溶液準備工程は、亜鉛塩及びアルミニウム塩を少なくとも含む原材料と、この原材料を溶解する水溶性有機化合物を含む水溶液からなる溶媒とを混合してなる原料溶液を準備する工程である。本発明では、最終的にZnAl系酸化物を得ようとしているので、この原料溶液準備工程でも、所望の化学量論組成の酸化物になるように各塩の配合量が調整される。例えば、スピネル型のZnAl系酸化物を得ようとする場合には、ABのBサイトがAlで構成され、AサイトがZnで構成されるように各塩の配合量を調整すればよい。なお、酸素欠損型の蛍光発光をする限りにおいて、BサイトにAl以外の他の元素を配合させてもよいし、AサイトにZn以外の他の元素を配合させてもよく、それらの場合には、原料溶液にそうした他の塩を任意の量で配合することができる。 The raw material solution preparation step is a step of preparing a raw material solution obtained by mixing a raw material containing at least a zinc salt and an aluminum salt and a solvent composed of an aqueous solution containing a water-soluble organic compound that dissolves the raw material. In the present invention, the ZnAl-based oxide is finally obtained. Therefore, even in this raw material solution preparation step, the blending amount of each salt is adjusted so that the oxide has a desired stoichiometric composition. For example, in order to obtain a spinel-type ZnAl-based oxide, the amount of each salt is adjusted so that the B site of AB 2 X 4 is composed of Al and the A site is composed of Zn. Good. As long as oxygen deficient fluorescence is emitted, other elements other than Al may be added to the B site, and other elements other than Zn may be added to the A site. In the raw material solution, such other salts can be blended in any amount.
 塩としては、酢酸塩、硝酸塩、炭酸塩、塩酸塩等を挙げることができる。塩としては水溶性のものが好ましく、例えば、後述の実験例で示すように、亜鉛塩として酢酸亜鉛等を、アルミニウム塩として硝酸アルミニウム等をそれぞれ用いることができる。亜鉛塩及びアルミニウム塩は水和物として用いてもよい。 Examples of the salt include acetate, nitrate, carbonate, hydrochloride and the like. As the salt, water-soluble salts are preferable. For example, as shown in the following experimental examples, zinc acetate or the like can be used as the zinc salt, and aluminum nitrate or the like can be used as the aluminum salt. Zinc salts and aluminum salts may be used as hydrates.
 一方、そうした塩からなる原材料を溶解する溶媒としては、水溶性有機化合物を含む水溶液からなる溶媒を用いる。 On the other hand, a solvent made of an aqueous solution containing a water-soluble organic compound is used as a solvent for dissolving the raw material made of such salt.
 水溶性有機化合物とは、水に溶解する性質を有し、熱処理によって炭化する性質を有する有機化合物をいう。こうした水溶性有機化合物としては、特に制限はなく、例えば、多価アルコール、単糖、二糖等を挙げることができるが、酸素欠損を導入しやすくなるという見地から、多価アルコールを用いることが好ましい。水溶性有機化合物は、エチレングリコール、プロピレングリコール、1,2-ブチレングリコール、2,3-ブチレングリコール、トリメチレングリコール、グリセリン、エリスリトール、キシリトール、及びソルビトールからなる群から選ばれる少なくとも一つを用いることがより好ましい。これら材料のうち、水溶性有機化合物としてグリセリンを用いることがさらに好ましい。これにより、焼成工程においてZnAl系酸化物に酸素欠損を導入しやすくなり、より良好な発光特性を有するZnAl系酸化物蛍光体を製造しやすくなる。より具体的には、後述するようにグリセリンのような多価アルコールを用いることにより酸素欠損を有するZnAl系酸化物を得やすくなる。なお、水溶性有機化合物は、本発明の要旨の範囲内において、任意の二種類以上を任意の割合で混合して用いてもよい。 The water-soluble organic compound means an organic compound having a property of being dissolved in water and carbonized by heat treatment. Such a water-soluble organic compound is not particularly limited, and examples thereof include polyhydric alcohols, monosaccharides, disaccharides, and the like. From the viewpoint of easy introduction of oxygen deficiency, polyhydric alcohols may be used. preferable. The water-soluble organic compound is at least one selected from the group consisting of ethylene glycol, propylene glycol, 1,2-butylene glycol, 2,3-butylene glycol, trimethylene glycol, glycerin, erythritol, xylitol, and sorbitol. Is more preferable. Of these materials, glycerin is more preferably used as the water-soluble organic compound. Thereby, it becomes easy to introduce oxygen vacancies into the ZnAl-based oxide in the baking step, and it becomes easy to manufacture a ZnAl-based oxide phosphor having better light emission characteristics. More specifically, as described later, by using a polyhydric alcohol such as glycerin, it becomes easy to obtain a ZnAl-based oxide having oxygen deficiency. The water-soluble organic compound may be used by mixing any two or more of them in an arbitrary ratio within the scope of the present invention.
 水溶性有機化合物の沸点又は分解温度は、水の沸点よりも高いものを用いることが好ましい。これは、後述するように、加熱濃縮工程で水分が除去され、その後の仮焼工程で水溶性有機化合物の少なくとも一部が除去されることを想定しているためである。これを上記の好ましい水溶性有機化合物を例にとって説明すれば、1気圧下で、水の沸点は100℃であり、エチレングリコール(C2)は197.6℃であり、プロピレングリコール(C3)は188.2℃であり、1,2-ブチレングリコール(C4)は192~194℃であり、2,3-ブチレングリコール(C3)は177℃であり、トリメチレングリコール(C3)は210~211℃であり、グリセリン(C3)は290℃であり、エリスリトール(C4)は330℃であり、キシリトール(C5)は216℃であり、ソルビトール(C6)は296℃である。すなわち、好ましいとされる水溶性有機化合物はいずれも水よりも高い沸点を有している。 It is preferable to use a water-soluble organic compound having a boiling point or decomposition temperature higher than that of water. This is because, as will be described later, it is assumed that moisture is removed in the heating and concentration step, and at least a part of the water-soluble organic compound is removed in the subsequent calcination step. To explain this by taking the above preferred water-soluble organic compound as an example, the boiling point of water is 100 ° C., ethylene glycol (C2) is 197.6 ° C., and propylene glycol (C3) is 188 at 1 atm. 2 ° C, 1,2-butylene glycol (C4) is 192-194 ° C, 2,3-butylene glycol (C3) is 177 ° C, and trimethylene glycol (C3) is 210-211 ° C. Yes, glycerin (C3) is 290 ° C, erythritol (C4) is 330 ° C, xylitol (C5) is 216 ° C, and sorbitol (C6) is 296 ° C. That is, all the water-soluble organic compounds that are considered preferable have a boiling point higher than that of water.
 水溶性有機化合物は、各塩を構成する元素と配位結合する物質であることが好ましい。各塩を構成する元素と配位結合する水溶性有機化合物を溶媒種として含有させることにより、そうした水溶性有機化合物は、後述する仮焼工程での加熱処理を行っても各塩を構成する元素におそらく配位結合してアモルファス状態又は微結晶状態とするように作用し、その結果、その後の焼成工程での焼成により、配位して残存している水溶性有機化合物のC(炭素)の一部が酸素を引き抜くように還元作用し、酸素欠損を有するZnAl系酸化物を得ることができると推測されるからである。すなわち、ここでいう水溶性有機化合物は、各塩を主に溶解する水よりも高い沸点を持つとともに、塩を構成する元素に配位することができる水溶性の有機化合物であるということができる。こうした特性を有する有機化合物であれば、上記のプロピレングリコールやエチレングリコール等と同種の有機化合物や他の有機化合物であってもよいが、本発明では、後述する実施例で示すようにOH基を3つ有するグリセリンを用いた場合に、酸素欠損を有するZnAl系酸化物が得られたことから、グリセリンのような多価アルコールを用いることが好ましい。 The water-soluble organic compound is preferably a substance that coordinates with the elements constituting each salt. By including a water-soluble organic compound coordinated with an element constituting each salt as a solvent species, such a water-soluble organic compound is an element that constitutes each salt even after heat treatment in the calcining step described later. Probably coordinating to form an amorphous state or a microcrystalline state, and as a result, the remaining water-soluble organic compound C (carbon) of the water-soluble organic compound is coordinated by firing in the subsequent firing step. This is because it is presumed that a ZnAl-based oxide having oxygen deficiency can be obtained by performing a reducing action so as to partially extract oxygen. That is, it can be said that the water-soluble organic compound here is a water-soluble organic compound having a higher boiling point than water in which each salt is mainly dissolved and capable of coordinating with the elements constituting the salt. . As long as it is an organic compound having such characteristics, it may be the same organic compound as the above propylene glycol, ethylene glycol or the like, or another organic compound, but in the present invention, an OH group is present as shown in the examples described later. When a glycerin having three is used, a ZnAl-based oxide having an oxygen deficiency is obtained. Therefore, it is preferable to use a polyhydric alcohol such as glycerin.
 水溶性有機化合物を含む水溶液からなる溶媒は、通常、水に水溶性有機化合物を溶解させることによって形成されるが、本発明の要旨の範囲内において、水及び水溶性有機化合物以外の材料を所定の含有量で含有させてもよい。同溶媒中の水の含有量は、通常、原材料を十分に溶解できる量とする。また、同溶媒中の水溶性有機化合物の含有量は、通常、原材料中の各塩を構成する元素との配位結合を確実に形成できる量とするが、水溶性有機化合物を原材料中の亜鉛塩及びアルミニウム塩に対して過剰に含有させることが好ましい。これを、製造されるZnAl系酸化物の物質量に対する水溶性有機化合物の物質量の比(モル比)で表せば、ZnAl系酸化物の物質量を1とした時に水溶性有機化合物の物質量比は、通常1以上、好ましくは2以上、より好ましくは3以上、さらに好ましくは5以上、特に好ましくは9以上、また通常50以下、好ましくは40以下、より好ましくは35以下、さらに好ましくは30以下、特に好ましくは20以下、最も好ましくは15以下とする。上記範囲とすれば、良好なZnAl系酸化物蛍光体を得やすくなるが、特に、ZnAl系酸化物の物質量を1とした時に水溶性有機化合物の物質量比を9~15とした場合に、強い蛍光を示しやすくなる。 A solvent composed of an aqueous solution containing a water-soluble organic compound is usually formed by dissolving a water-soluble organic compound in water. However, within the scope of the gist of the present invention, a material other than water and the water-soluble organic compound is prescribed. You may make it contain by content of. The content of water in the solvent is usually an amount that can sufficiently dissolve the raw materials. In addition, the content of the water-soluble organic compound in the same solvent is usually an amount that can reliably form a coordinate bond with the element constituting each salt in the raw material. It is preferable to make it contain excessively with respect to a salt and aluminum salt. If this is expressed by the ratio (molar ratio) of the amount of water-soluble organic compound to the amount of ZnAl-based oxide produced, the amount of water-soluble organic compound when the amount of ZnAl-based oxide is 1. The ratio is usually 1 or more, preferably 2 or more, more preferably 3 or more, still more preferably 5 or more, particularly preferably 9 or more, and usually 50 or less, preferably 40 or less, more preferably 35 or less, still more preferably 30. Hereinafter, it is particularly preferably 20 or less, most preferably 15 or less. If it is within the above range, a good ZnAl-based oxide phosphor can be easily obtained, but particularly when the substance amount ratio of the water-soluble organic compound is 9 to 15 when the substance amount of the ZnAl-based oxide is 1. It becomes easy to show strong fluorescence.
 水溶性有機化合物を含む水溶液からなる溶媒と、原材料との混合比は、上記した蛍光特性や原材料の溶解性、原材料中の各塩を構成する元素と水溶性有機化合物との配位結合、後述する加熱濃縮工程での加熱濃縮の温度や時間、及び仮焼工程での加熱処理の温度や時間等の各条件を考慮して適宜決定すればよい。 The mixing ratio of the solvent composed of the aqueous solution containing the water-soluble organic compound and the raw material is the above-described fluorescence characteristics, the solubility of the raw material, the coordinate bond between the element constituting each salt in the raw material and the water-soluble organic compound, which will be described later. What is necessary is just to determine suitably, considering each conditions, such as the temperature and time of heat concentration in the heating concentration process to perform, and the temperature and time of heat processing in a calcination process.
 加熱濃縮工程は、原料溶液準備工程で得られた原料溶液を加熱濃縮してこの原料溶液中の水を除去して高粘性溶液にする工程である。この工程では、原料溶液中の水を除去できる程度の温度で加熱濃縮するので、加熱温度は、100℃以上、150℃以下とするのが通常である。また、加熱処理の雰囲気は、特に制限はなく、大気雰囲気、窒素雰囲気やアルゴン等の不活性雰囲気のいずれであってもよい。なお、原料溶液中の水を除去するとは、好ましくは原料溶液中の水をほぼ完全に除去することをいい、より好ましくは原料溶液中の水を完全に除去することをいうが、その後の工程や得られるZnAl系酸化物蛍光体の発光特性を阻害しない場合には、原料溶液中に水分が残留していてもよい。加熱濃縮工程を経て得られた高粘性溶液の性状は、ゾル状となるのが通常である。 The heating concentration step is a step of heating and concentrating the raw material solution obtained in the raw material solution preparation step to remove water in the raw material solution to obtain a highly viscous solution. In this step, since heat concentration is performed at a temperature that can remove water in the raw material solution, the heating temperature is usually 100 ° C. or higher and 150 ° C. or lower. The atmosphere for the heat treatment is not particularly limited, and may be any of an air atmosphere, an inert atmosphere such as a nitrogen atmosphere and argon. The removal of water in the raw material solution preferably means that the water in the raw material solution is almost completely removed, and more preferably that the water in the raw material solution is completely removed. In the case where the light emission characteristics of the obtained ZnAl-based oxide phosphor are not impaired, moisture may remain in the raw material solution. The properties of the highly viscous solution obtained through the heat concentration step are usually sol.
 仮焼工程は、加熱濃縮によって得られた高粘性溶液をさらに加熱処理してこの高粘性溶液中の水溶性有機化合物の少なくとも一部を除去してアモルファス状の粉末を得る工程である。水溶性有機化合物は、加熱処理によってその少なくとも一部が除去されるが、原料溶液準備工程において水溶性有機化合物を原材料中の亜鉛塩及びアルミニウム塩に対して過剰に含有させた場合には、過剰な水溶性有機化合物(例えばグリセリン等の有機溶媒)を除去することが好ましい。より具体的には、加熱処理によって塩を構成する元素に配位する必要十分な水溶性有機化合物以外の「余った水溶性有機化合物」が除去されることが好ましい。 The calcination step is a step of further heating the high-viscosity solution obtained by heat concentration to remove at least a part of the water-soluble organic compound in the high-viscosity solution to obtain an amorphous powder. At least a part of the water-soluble organic compound is removed by the heat treatment. However, when the water-soluble organic compound is excessively contained in the raw material solution with respect to the zinc salt and the aluminum salt in the raw material solution preparation step, the water-soluble organic compound is excessive. It is preferable to remove a water-soluble organic compound (for example, an organic solvent such as glycerin). More specifically, it is preferable to remove “remaining water-soluble organic compound” other than the necessary and sufficient water-soluble organic compound coordinated to the element constituting the salt by heat treatment.
 仮焼工程における加熱処理温度としては、水溶性有機化合物の種類によっても異なるが、例えば上記したプロピレングリコールの場合にはその沸点(188.2℃)よりも60℃程度(40℃~80℃程度の範囲)高い250℃程度(230℃~270℃程度の範囲)であることが好ましく、例えば上記したグリセリンの場合にもその沸点(290℃)よりも60℃程度(40℃~80℃程度の範囲)高い350℃程度(330℃~370℃程度の範囲)であることが好ましい。いずれにしても、加熱処理して高粘性溶液中の水溶性有機化合物の少なくとも一部を除去し、アモルファス状の粉末を得ることができればよい。また、加熱処理の雰囲気は、特に制限はなく、大気雰囲気、窒素雰囲気やアルゴン等の不活性雰囲気のいずれであってもよい。なお、アモルファス状の粉末とは、加熱処理した後の粉末を粉末X線回折装置で測定して確認でき、結晶性のピークが現れず、いわゆるアモルファス状のピーク又は微結晶状のピークが得られるような粉末のことである。得られるアモルファス状の粉末は、水溶性有機化合物やその炭化物が残留している場合には、白色とならないのが通常である。 The heat treatment temperature in the calcining step varies depending on the type of the water-soluble organic compound. For example, in the case of propylene glycol described above, the boiling point (188.2 ° C.) is about 60 ° C. (about 40 ° C. to 80 ° C.). The range is preferably about 250 ° C. (a range of about 230 ° C. to 270 ° C.). For example, in the case of the above-described glycerin, the boiling point (290 ° C.) is about 60 ° C. The range is preferably about 350 ° C. (range of about 330 ° C. to 370 ° C.). In any case, it is only necessary to remove at least a part of the water-soluble organic compound in the highly viscous solution by heat treatment to obtain an amorphous powder. The atmosphere for the heat treatment is not particularly limited, and may be any of an air atmosphere, an inert atmosphere such as a nitrogen atmosphere and argon. The amorphous powder can be confirmed by measuring the powder after the heat treatment with a powder X-ray diffractometer, so that a crystalline peak does not appear, and a so-called amorphous peak or microcrystalline peak is obtained. It is such a powder. The obtained amorphous powder is usually not white when a water-soluble organic compound or its carbide remains.
 焼成工程は、アモルファス状の粉末を不活性ガス雰囲気中で焼成して酸素欠損を有するZnAl系酸化物を得る工程である。この工程は、酸素欠損を生じさせることから還元工程ということもできる。本発明では、不活性ガス雰囲気中で焼成を行うことにより、白色を呈した所望のZnAl系酸化物を得ることができる。 The firing step is a step of obtaining a ZnAl-based oxide having oxygen deficiency by firing amorphous powder in an inert gas atmosphere. This step can be called a reduction step because oxygen deficiency is generated. In the present invention, a desired ZnAl-based oxide exhibiting a white color can be obtained by firing in an inert gas atmosphere.
 焼成工程における焼成温度は、炭化した水溶性有機化合物を除去しつつ酸素欠損を形成するという見地から、通常800℃以上、好ましくは850℃以上、より好ましくは900℃以上とし、また通常1500℃以下、好ましくは1200℃以下、より好ましくは1000℃以下とする。 The firing temperature in the firing step is usually 800 ° C. or higher, preferably 850 ° C. or higher, more preferably 900 ° C. or higher, and usually 1500 ° C. or lower from the viewpoint of forming oxygen deficiency while removing the carbonized water-soluble organic compound. The temperature is preferably 1200 ° C. or lower, more preferably 1000 ° C. or lower.
 焼成工程においては、アモルファス状の粉末を不活性ガス雰囲気中で焼成する。不活性ガスは、窒素ガス、アルゴンガス、ヘリウムガス又はその混合ガスとすることが好ましい。これにより、酸化物の焼成が非酸化雰囲気下で行われることとなり、その結果、ZnAl系酸化物に酸素欠損をより導入しやすくなる。 In the firing step, the amorphous powder is fired in an inert gas atmosphere. The inert gas is preferably nitrogen gas, argon gas, helium gas or a mixed gas thereof. As a result, the oxide is fired in a non-oxidizing atmosphere, and as a result, oxygen vacancies are more easily introduced into the ZnAl-based oxide.
 焼成工程では、C(炭素)の一部が酸素を引き抜くように還元作用し、酸素欠損を有するZnAl系酸化物を得ることができる。詳しくは、上述した仮焼工程において、アモルファス状態又は微結晶状態となった酸化物構成元素には、炭化した水溶性有機化合物のC(炭素)がおそらく配位結合して残り、配位結合しない余剰の水溶性有機化合物は熱処理で除去されてアモルファス状の粉末が作製されるが、その後の焼成工程では、焼成により酸化物構成元素におそらく配位結合した水溶性有機化合物中のC(炭素)の一部が酸素を引き抜くように還元作用することによって、ZnAl系酸化物に酸素欠損を与えることになると推測される。 In the calcination step, a ZnAl-based oxide having oxygen deficiency can be obtained by performing a reducing action so that a part of C (carbon) extracts oxygen. Specifically, in the calcination step described above, C (carbon) of the carbonized water-soluble organic compound probably remains coordinate-bonded to the oxide constituent element in the amorphous state or the microcrystalline state, and does not coordinate-bond. Excess water-soluble organic compound is removed by heat treatment to produce an amorphous powder, but in the subsequent firing step, C (carbon) in the water-soluble organic compound that is probably coordinated to the oxide constituent element by firing. It is presumed that oxygen deficiency is given to the ZnAl-based oxide by reducing the oxygen so that a part of it extracts oxygen.
 こうした製造方法によれば、特別な設備が不要でありかつ粉末焼成のような1100℃以上の高温焼成を行う必要がない。このため、比較的簡便な合成法で、酸素欠損を有するZnAl系酸化物からなる蛍光体を製造できる。 According to such a manufacturing method, no special equipment is required, and it is not necessary to perform high-temperature baking at 1100 ° C. or higher like powder baking. For this reason, a phosphor made of ZnAl-based oxide having oxygen deficiency can be manufactured by a relatively simple synthesis method.
 次に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.
 [実験例1:発光特性の確認等]
 (試料の作製)
 試料の合成は溶液法によって行った。
[Experimental example 1: Confirmation of light emission characteristics, etc.]
(Sample preparation)
The sample was synthesized by the solution method.
 硝酸アルミニウム九水和物[Al(NO・9HO]を原料、溶媒を水として調製した溶液と、酢酸亜鉛二水和物[(CHCOO)Zn・2HO]とを目的の組成となるようなモル比で混合し、水溶性有機化合物(グリセリン)を加えて原料溶液を準備した。このとき、最終的に得られるZnAlの物質量に対するグリセリンの物質量(モル比)を、(グリセリンの物質量)/(ZnAlの物質量)が、3倍、9倍、15倍、36倍となるように原料溶液の調製を行った(原料溶液準備工程)。 Aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O] a raw material, a solution prepared solvent as water, zinc acetate dihydrate [(CH 3 COO) 2 Zn · 2H 2 O] and Were mixed at a molar ratio so as to obtain the desired composition, and a water-soluble organic compound (glycerin) was added to prepare a raw material solution. At this time, the substance amount (molar ratio) of glycerin with respect to the substance amount of ZnAl 2 O 4 finally obtained is such that (substance quantity of glycerin) / (substance quantity of ZnAl 2 O 4 ) is 3 times, 9 times, The raw material solution was prepared so as to be 15 times and 36 times (raw material solution preparation step).
 次に、上記原料溶液を約120℃で加熱濃縮して該原料溶液中の水を除去してゾル(高粘性溶液)を得た(加熱濃縮工程)。 Next, the raw material solution was heated and concentrated at about 120 ° C. to remove water in the raw material solution to obtain a sol (high viscosity solution) (heat concentration step).
 次に、上記ゾルを350℃で加熱してアモルファス状の粉末とした(仮焼工程)。仮焼工程により、過剰なグリセリンを除去した後は茶色の粉末が得られたが、粉末X線回折測定したところ、結晶性のピークを表さないブロードなアモルファス状又は微結晶状の回折形態を示した。これは、グリセリンが各塩を構成するZn,Alに配位結合していることに基づいていると考えられる。 Next, the sol was heated at 350 ° C. to obtain an amorphous powder (calcination step). After removing excess glycerin by calcination process, a brown powder was obtained. When powder X-ray diffraction measurement was performed, a broad amorphous or microcrystalline diffraction pattern that did not exhibit a crystalline peak was obtained. Indicated. This is considered to be based on the fact that glycerin is coordinated to Zn and Al constituting each salt.
 その後、さらに、このアモルファス状の粉末を、不活性雰囲気(窒素雰囲気中)で、800℃、900℃、及び1000℃でそれぞれ7時間加熱することにより、酸素欠陥の導入を試みて目的物質を得た(焼成工程)。このときの窒素雰囲気は、加熱炉内に窒素ガスを40ml/minの量で常時流しながら行い、200℃まで冷却した後に大気開放した。 Thereafter, this amorphous powder is further heated in an inert atmosphere (in a nitrogen atmosphere) at 800 ° C., 900 ° C., and 1000 ° C. for 7 hours, respectively, thereby introducing oxygen defects to obtain a target substance. (Firing process). The nitrogen atmosphere at this time was performed while constantly flowing nitrogen gas at a rate of 40 ml / min in the heating furnace, and after cooling to 200 ° C., the atmosphere was released to the atmosphere.
 (X線回折測定)
 X線回折測定は、粉末X線回折装置としてリガク社製のRINT2200型を用い、CuKα線、印加電圧40kV、印加電流40mAの条件で行った。X線回折測定を行った試料は、
(ア)(グリセリンの物質量)/(ZnAlの物質量)=15(モル比)とし、焼成工程における加熱温度を、それぞれ800℃、900℃、1000℃と変化させて得た試料、
(イ)焼成工程における加熱温度を900℃とし、(グリセリンの物質量)/(ZnAlの物質量)を、それぞれ3,9,15,36(モル比)と変化させて得た試料、
である。
(X-ray diffraction measurement)
The X-ray diffraction measurement was performed using a RINT2200 type manufactured by Rigaku Corporation as a powder X-ray diffractometer under the conditions of CuKα rays, applied voltage of 40 kV, and applied current of 40 mA. The sample for which X-ray diffraction measurement was performed is
(A) Sample obtained by changing (substance amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 15 (molar ratio) and changing the heating temperature in the firing step to 800 ° C., 900 ° C., and 1000 ° C., respectively. ,
(A) Samples obtained by setting the heating temperature in the firing step to 900 ° C. and changing (amount of glycerin) / (amount of ZnAl 2 O 4 ) to 3, 9, 15, 36 (molar ratio), respectively. ,
It is.
 図1は、焼成温度を変化させて得られたZnAl系酸化物の粉末X線回折測定結果である。同図中、「800℃」で示されるX線回折測定結果が800℃で焼成して得た試料のものであり、「900℃」で示されるX線回折測定結果が900℃で焼成して得た試料のものであり、「1000℃」で示されるX線回折測定結果が1000℃で焼成して得た試料のものである。 FIG. 1 shows the result of powder X-ray diffraction measurement of ZnAl-based oxide obtained by changing the firing temperature. In the figure, the X-ray diffraction measurement result indicated by “800 ° C.” is obtained by firing at 800 ° C., and the X-ray diffraction measurement result indicated by “900 ° C.” is fired at 900 ° C. This is a sample obtained, and the X-ray diffraction measurement result indicated by “1000 ° C.” is obtained by baking at 1000 ° C.
 図2は、グリセリンとZnAlとのモル比を変化させて得られたZnAl系酸化物の粉末X線回折測定結果である。同図中、「3」で示されるX線回折測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=3とした試料のものであり、「9」で示されるX線回折測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=9とした試料のものであり、「15」で示されるX線回折測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=15とした試料のものであり、「36」で示されるX線回折測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=36とした試料のものである。 FIG. 2 is a powder X-ray diffraction measurement result of a ZnAl-based oxide obtained by changing the molar ratio of glycerin and ZnAl 2 O 4 . In the figure, the X-ray diffraction measurement result indicated by “3” is that of a sample in which (substance amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 3, and X indicated by “9”. The result of the line diffraction measurement is that of the sample with (substance amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 9, and the X-ray diffraction measurement result indicated by “15” is (substance amount of glycerin) ) / (Substance amount of ZnAl 2 O 4 ) = 15, and the X-ray diffraction measurement result indicated by “36” is (substance amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 36.
 (蛍光・励起スペクトル測定)
 次に、粉末X線回折測定を行った試料について、蛍光・励起スペクトル測定を行った。蛍光・励起スペクトル測定は、分光蛍光光度計(日本分光社製、FP-6300型)を用い、フィルターとしてシャープカットフィルターL-37(HOYAガラス社製、370nm以下の波長を遮断する。370nmでは50%遮断する。)を用い、粉末測定用のフォルダーに試料を詰め、分光蛍光光度計にセットして測定した。なお、分光蛍光光度計にフィルターを装着することで倍波の検出を無くした。蛍光スペクトルは、励起側の波長を固定し、蛍光側の波長をスキャンさせて得られた結果で表した。具体的には、励起側の波長(λex)を370nmに固定し、蛍光側の波長をスキャンさせた蛍光スペクトル測定を行った。また、励起スペクトルは、蛍光側の波長を極大波長に固定して、励起側の波長をスキャンさせ、励起光波長に対して蛍光強度をプロットした結果で表した。
(Fluorescence / excitation spectrum measurement)
Next, fluorescence / excitation spectrum measurement was performed on the sample subjected to powder X-ray diffraction measurement. For the fluorescence / excitation spectrum measurement, a spectrofluorometer (manufactured by JASCO Corporation, FP-6300 type) is used, and as a filter, a sharp cut filter L-37 (manufactured by HOYA Glass Co., Ltd.) with a wavelength of 370 nm or less is blocked. The sample was packed in a powder measurement folder and set in a spectrofluorometer for measurement. In addition, the detection of the double wave was eliminated by attaching a filter to the spectrofluorometer. The fluorescence spectrum was expressed by the result obtained by fixing the wavelength on the excitation side and scanning the wavelength on the fluorescence side. Specifically, the fluorescence wavelength measurement was performed by fixing the wavelength (λex) on the excitation side to 370 nm and scanning the wavelength on the fluorescence side. Moreover, the excitation spectrum was expressed as a result of plotting the fluorescence intensity against the excitation light wavelength by fixing the wavelength on the fluorescence side to the maximum wavelength, scanning the wavelength on the excitation side.
 図3は、焼成温度を変化させて得られたZnAl系酸化物蛍光体を励起波長370nmで測定した蛍光スペクトルの測定結果と、励起スペクトルの測定結果である。同図中「PL」で示されるスペクトルが蛍光(発光)スペクトルであり、「PLE」で示されるスペクトルが励起スペクトルである。また、同図中「800℃」で示される蛍光スペクトルの測定結果が800℃で焼成して得た試料のものであり、「900℃」で示される蛍光スペクトルの測定結果が900℃で焼成して得た試料のものであり、「1000℃」で示される蛍光スペクトルの測定結果が1000℃で焼成して得た試料のものである。同図から、900℃で焼成した試料が最も強い蛍光を示すことがわかる。なお、365nmの紫外光を試料に照射し、発光色を観察したところ、800℃、900℃焼成のいずれのZnAl系酸化物蛍光体も青色(475nm)の発光を示した。 FIG. 3 shows a measurement result of a fluorescence spectrum obtained by measuring a ZnAl-based oxide phosphor obtained by changing a firing temperature at an excitation wavelength of 370 nm, and a measurement result of an excitation spectrum. In the figure, a spectrum indicated by “PL” is a fluorescence (emission) spectrum, and a spectrum indicated by “PLE” is an excitation spectrum. In addition, the measurement result of the fluorescence spectrum indicated by “800 ° C.” in the figure is a sample obtained by firing at 800 ° C., and the measurement result of the fluorescence spectrum indicated by “900 ° C.” is fired at 900 ° C. The measurement result of the fluorescence spectrum indicated by “1000 ° C.” is that of the sample obtained by baking at 1000 ° C. It can be seen from the figure that the sample fired at 900 ° C. exhibits the strongest fluorescence. When the sample was irradiated with 365 nm ultraviolet light and the emission color was observed, both ZnAl-based oxide phosphors fired at 800 ° C. and 900 ° C. emitted blue (475 nm).
 図4は、グリセリンとZnAlとのモル比を変化させて得られたZnAl系酸化物蛍光体を励起波長370nmで測定した蛍光スペクトルの測定結果と、励起スペクトルの測定結果である。同図中「PL」で示されるスペクトルが蛍光(発光)スペクトルであり、「PLE」で示されるスペクトルが励起スペクトルである。また、同図中、「3」で示される蛍光スペクトルの測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=3とした試料のものであり、「9」で示される蛍光スペクトルの測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=9とした試料のものであり、「15」で示される蛍光スペクトルの測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=15とした試料のものであり、「36」で示される蛍光スペクトルの測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=36とした試料のものである。同図から、モル比を9~15倍としたものが強い蛍光を示す結果となっている。 FIG. 4 shows a measurement result of a fluorescence spectrum obtained by measuring a ZnAl-based oxide phosphor obtained by changing a molar ratio of glycerin and ZnAl 2 O 4 at an excitation wavelength of 370 nm, and a measurement result of an excitation spectrum. In the figure, a spectrum indicated by “PL” is a fluorescence (emission) spectrum, and a spectrum indicated by “PLE” is an excitation spectrum. Further, in the figure, the measurement result of the fluorescence spectrum indicated by “3” is that of the sample where (amount of glycerin) / (amount of ZnAl 2 O 4 ) = 3, indicated by “9”. The measurement result of the fluorescence spectrum is (sample amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 9, and the measurement result of the fluorescence spectrum indicated by “15” is Substance amount) / (substance quantity of ZnAl 2 O 4 ) = 15, and the measurement result of the fluorescence spectrum indicated by “36” is (substance quantity of glycerin) / (substance of ZnAl 2 O 4 ) Amount) = 36. From the figure, the result of strong fluorescence when the molar ratio is 9 to 15 times.
 図5は、ZnAl系酸化物蛍光体と標準物質たる(CaWO)との蛍光スペクトルの測定結果である。同図中、「ZnAl」で示される蛍光スペクトルの測定結果が、(グリセリンの物質量)/(ZnAlの物質量)=9とし、焼成温度を900℃として得た試料のものである。なお、励起波長は370nmで測定している。また、同図中、「CaWO」で示される蛍光スペクトルの測定結果が、標準物質としてのCaWO試料のものである。なお、励起波長は256nmで測定している。同図から、製造条件によっては、標準物質たるCaWOよりも強い蛍光を示すZnAl蛍光体が得られることがわかる。 FIG. 5 shows the measurement results of the fluorescence spectra of the ZnAl-based oxide phosphor and the standard material (CaWO 4 ). In the same figure, the measurement result of the fluorescence spectrum indicated by “ZnAl 2 O 4 ” is (sample substance amount of glycerin) / (substance quantity of ZnAl 2 O 4 ) = 9 and the firing temperature is 900 ° C. Is. The excitation wavelength is measured at 370 nm. Further, in the figure, the measurement results of the fluorescence spectra shown in "CaWO 4" is of CaWO 4 sample as a standard. The excitation wavelength is measured at 256 nm. From the figure, it can be seen that a ZnAl 2 O 4 phosphor exhibiting fluorescence stronger than that of CaWO 4 as a standard substance can be obtained depending on manufacturing conditions.
 また、図5の励起波長を比較してわかるように、256nmの励起波長を用いるCaWOに対して、ZnAl蛍光体では励起波長を370nmとすることが可能となり、可視光に近い光で発光させることが可能であることがわかる。 In addition, as can be seen by comparing the excitation wavelengths in FIG. 5, the excitation wavelength can be set to 370 nm in the ZnAl 2 O 4 phosphor compared to CaWO 4 that uses an excitation wavelength of 256 nm, and light close to visible light. It can be seen that it is possible to emit light.
 (粒径と比表面積の測定)
 グリセリンとZnAlとのモル比を変化させて得られたZnAl系酸化物の粉末につき、粒径と比表面積を測定した。
(Measurement of particle size and specific surface area)
The particle size and specific surface area of the ZnAl-based oxide powder obtained by changing the molar ratio of glycerin and ZnAl 2 O 4 were measured.
 粒径測定は、小角散乱X線法により行い、測定装置として、リガク株式会社製のSmartLabを用いた。その結果、焼成温度900℃、(グリセリンの物質量)/(ZnAlの物質量)=15(15倍モル比の溶媒)として得た試料の粒径は、18.206nmであり、焼成温度900℃、(グリセリンの物質量)/(ZnAlの物質量)=36(36倍モル比の溶媒)として得た試料の粒径は、16.919nmであり、焼成温度900℃、(グリセリンの物質量)/(ZnAlの物質量)=9(9倍モル比の溶媒)として得た試料の粒径は、15.785nmであった。 The particle size was measured by a small angle scattering X-ray method, and a SmartLab manufactured by Rigaku Corporation was used as a measuring device. As a result, the particle size of the sample obtained as a firing temperature of 900 ° C., (amount of glycerin) / (amount of ZnAl 2 O 4 ) = 15 (a 15-fold molar ratio solvent) is 18.206 nm, The particle size of the sample obtained as a temperature of 900 ° C., (amount of glycerin) / (amount of ZnAl 2 O 4 ) = 36 (36-fold molar ratio solvent) is 16.919 nm, a firing temperature of 900 ° C., The particle size of the sample obtained as (substance amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 9 (9-fold molar ratio solvent) was 15.785 nm.
 比表面積の測定は、BET法により行い、測定装置として、ユアサ アイオニクス株式会社製のNOVA 1200を用いた。その結果、焼成温度900℃、(グリセリンの物質量)/(ZnAlの物質量)=15(15倍モル比の溶媒)として得た試料の比表面積は、50.37m/gであり、焼成温度900℃、(グリセリンの物質量)/(ZnAlの物質量)=36(36倍モル比の溶媒)として得た試料の比表面積は、84.57m/gであった。 The specific surface area was measured by the BET method, and NOVA 1200 manufactured by Yuasa Ionics Co., Ltd. was used as a measuring device. As a result, the specific surface area of the sample obtained as calcination temperature 900 ° C., (amount of glycerin) / (amount of ZnAl 2 O 4 ) = 15 (15 times molar ratio of solvent) is 50.37 m 2 / g. The specific surface area of the sample obtained as calcination temperature 900 ° C., (amount of glycerin) / (amount of ZnAl 2 O 4 ) = 36 (36-fold molar ratio solvent) was 84.57 m 2 / g. It was.
 [実験例2:カソードルミネッセンスの測定]
 (グリセリンの物質量)/(ZnAlの物質量)=54とし、焼成温度を900℃としたこと以外は、実験例1と同様にして目的物質を得た。そして、得られた試料につきカソードルミネッセンスの測定を行った。
[Experimental Example 2: Measurement of cathodoluminescence]
(Substance amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 54 and the firing temperature was 900 ° C., and the target substance was obtained in the same manner as in Experimental Example 1. And the cathodoluminescence of the obtained sample was measured.
 (カソードルミネッセンス測定)
 カソードルミネッセンスの測定は、株式会社日立製作所製のS3000Hを用いて行った。測定条件は以下のとおりである。
(Cathodeluminescence measurement)
The measurement of cathodoluminescence was performed using S3000H manufactured by Hitachi, Ltd. The measurement conditions are as follows.
 分光器入射/出射スリット・・・1000nm/1000nm
 測定波長範囲・・・200~800nm
 測定波長間隔・・・1nm
 1波長積算時間/回・・・500μS
 1波長2回測定平均
Spectrometer entrance / exit slit: 1000 nm / 1000 nm
Measurement wavelength range: 200-800nm
Measurement wavelength interval: 1 nm
1 wavelength integration time / time: 500μS
1 wavelength twice average
 図6は、得られたZnAl系酸化物のカソードルミネッセンスの測定結果である。同図からわかるように、本実験例で得られた試料につき電子線照射による発光が確認された。 FIG. 6 shows the measurement results of the cathodoluminescence of the obtained ZnAl-based oxide. As can be seen from the figure, light emission by electron beam irradiation was confirmed for the sample obtained in this experimental example.
 [実験例3:発光メカニズムの確認]
 実験例2で得られた試料((グリセリンの物質量)/(ZnAlの物質量)=54とし、焼成温度を900℃として得た試料)を用い、本発明で得られたZnAl系酸化物蛍光体の発光メカニズム(酸素欠損に基づく発光か否か)を確認するために以下の実験を行った。
[Experimental example 3: Confirmation of light emission mechanism]
Using the sample obtained in Experimental Example 2 ((substance amount of glycerin) / (substance amount of ZnAl 2 O 4 ) = 54 and the firing temperature of 900 ° C.), the ZnAl system obtained in the present invention In order to confirm the light emission mechanism of the oxide phosphor (whether light emission is based on oxygen deficiency), the following experiment was conducted.
 (蛍光スペクトル測定)
 実験例1と同様の条件で、実験例2で得られた試料の蛍光スペクトルを測定した。図7は、得られたZnAl系酸化物の蛍光スペクトル(励起波長370nm)の測定結果である。同図中の「900℃,in N」で示される蛍光スペクトルの測定結果が、実験例2で得られた試料のものである。同図からわかるように、実験例2で得られた試料についても蛍光が確認された。
(Fluorescence spectrum measurement)
Under the same conditions as in Experimental Example 1, the fluorescence spectrum of the sample obtained in Experimental Example 2 was measured. FIG. 7 shows the measurement results of the fluorescence spectrum (excitation wavelength: 370 nm) of the obtained ZnAl-based oxide. The measurement result of the fluorescence spectrum indicated by “900 ° C., in N 2 ” in the figure is that of the sample obtained in Experimental Example 2. As can be seen from the figure, fluorescence was also confirmed for the sample obtained in Experimental Example 2.
 (TG-DTA測定)
 上記試料(ZnAl系酸化物)につき熱重量分析を行った。熱重量分析は、ブルカー・エイエックスエス株式会社製の示差熱熱重量同時測定装置(型式:TG-DTA/2020S)を用いた。図8は、得られたZnAl系酸化物のTG-DTA測定結果である。図8をみてわかるように、1段目の重量減少は吸着水分によるものであり、2段目と3段目の重量減少が吸着炭素による重量減少である。この結果から、実験例2で得られたZnAl系酸化物(ZnAl)には炭素が吸着(残留)していることがわかる。
(TG-DTA measurement)
The sample (ZnAl-based oxide) was subjected to thermogravimetric analysis. For the thermogravimetric analysis, a differential thermothermal gravimetric simultaneous measurement apparatus (model: TG-DTA / 2020S) manufactured by Bruker AXS Co., Ltd. was used. FIG. 8 shows a TG-DTA measurement result of the obtained ZnAl-based oxide. As can be seen from FIG. 8, the first stage weight reduction is due to adsorbed moisture, and the second and third stage weight reduction is due to adsorbed carbon. From this result, it is understood that carbon is adsorbed (residual) in the ZnAl-based oxide (ZnAl 2 O 4 ) obtained in Experimental Example 2.
 (ESR測定)
 図8の結果から、実験例2で得られたZnAl系酸化物蛍光体には炭素の吸着がみられた。これらの結果から、ZnAl系酸化物蛍光体の発光に関与しているのは、酸素欠損ではなく、吸着炭素である可能性も考えられる。そこで、別途用意した黒色のZnAl系酸化物粉末(ZnAl、黒色ゆえ過剰な炭素が付着していると考えられる試料)と、実験例2で得られたZnAl系酸化物につきESR測定を行った。さらに、実験例2で得られたZnAl系酸化物については、追加焼成(大気中800℃で1時間)を行った試料を準備し、この試料についてもESR測定を行った。ここで追加焼成を行った理由は、大気中で高温焼成を行うことで、実験例2で得られたZnAl系酸化物に付着している炭素を除去するためである。そして、追加焼成の温度800℃は、図8での吸着炭素の重量減少が起きる温度域を参考にして決めたものである。なお、ESR測定は、電子スピン共鳴装置(日本電子株式会社製、形式:JES-TE100)を用いて行った。
(ESR measurement)
From the results of FIG. 8, carbon adsorption was observed in the ZnAl-based oxide phosphor obtained in Experimental Example 2. From these results, it is considered that it is not the oxygen deficiency but the adsorbed carbon that is involved in the light emission of the ZnAl-based oxide phosphor. Therefore, ESR measurement was performed on the separately prepared black ZnAl-based oxide powder (ZnAl 2 O 4 , a sample considered to have excessive carbon attached because of black) and the ZnAl-based oxide obtained in Experimental Example 2. went. Furthermore, for the ZnAl-based oxide obtained in Experimental Example 2, a sample subjected to additional firing (in the atmosphere at 800 ° C. for 1 hour) was prepared, and ESR measurement was also performed on this sample. The reason why the additional baking is performed here is to remove carbon adhering to the ZnAl-based oxide obtained in Experimental Example 2 by performing high-temperature baking in the air. The additional baking temperature of 800 ° C. is determined with reference to the temperature range in which the weight loss of the adsorbed carbon in FIG. 8 occurs. The ESR measurement was performed using an electron spin resonance apparatus (manufactured by JEOL Ltd., model: JES-TE100).
 図9は、各ZnAl系酸化物のESR測定結果である。同図上段の「excess-carbon」で示されるシグナルは、黒色のZnAl系酸化物のESR測定結果であり、同図中段の「900℃ in N」で示されるシグナルは、実験例2で得られたZnAl系酸化物のESR測定結果であり、同図下段の「900℃ in N+800℃ in air 1h」で示されるシグナルは、実験例2で得られたZnAl系酸化物に追加焼成(大気中800℃で1時間)を行って得た試料のESR測定結果である。 FIG. 9 shows the ESR measurement result of each ZnAl-based oxide. The signal indicated by “excess-carbon” in the upper part of the figure is the ESR measurement result of the black ZnAl-based oxide, and the signal indicated by “900 ° C. in N 2 ” in the upper part of the figure is obtained in Experimental Example 2. The signal shown by “900 ° C. in N 2 + 800 ° C. in air 1h” in the lower part of the figure is the result of additional firing of the ZnAl-based oxide obtained in Experimental Example 2 ( It is an ESR measurement result of a sample obtained by performing at 800 ° C. for 1 hour in the air.
 図9の上段は、上述のとおり、黒色のZnAl系酸化物粉末のESR測定結果である。このZnAl系酸化物は、黒色の粉末であり炭素が過剰に付着しているため、炭素による対象性のあるシグナル(g=2.0)が強く現れている。 The upper part of FIG. 9 is the ESR measurement result of the black ZnAl-based oxide powder as described above. Since this ZnAl-based oxide is a black powder and carbon is excessively attached, a signal with an interest (g = 2.0) due to carbon appears strongly.
 図9の中段は、上述のとおり、実験例2で得られたZnAl系酸化物のESR測定結果である。このZnAl系酸化物においても、g=2.0でのシグナルが現れている。これは、上記TG-DTA測定からも確認されるとおり、試料内に残留する炭素によるものである。もっとも、図9の上段・中段ではシグナルの強さが同じようにみえるように、中段のシグナルについては縦軸を拡大して表示しており、実際には、同図の上段のシグナルの強さと比較して、中段のシグナルの強さは非常に小さいものとなっている。すなわち、実験例2で得られたZnAl系酸化物は、黒色のZnAl系酸化物と比較して、炭素の付着量は非常に少なくなっていることがわかる。これは、焼成工程において焼成温度を900℃とすることで炭素が確実に除去されるようになり、この炭素の除去に伴って酸素欠損が導入されることを示唆するものと推測される。 9 shows the ESR measurement result of the ZnAl-based oxide obtained in Experimental Example 2 as described above. Also in this ZnAl-based oxide, a signal at g = 2.0 appears. This is due to carbon remaining in the sample, as confirmed from the above TG-DTA measurement. Of course, the vertical axis is enlarged for the middle signal so that the signal strength looks the same in the upper and middle parts of FIG. In comparison, the signal intensity at the middle stage is very small. That is, it can be seen that the ZnAl-based oxide obtained in Experimental Example 2 has a very small amount of carbon deposition compared to the black ZnAl-based oxide. This is presumed to suggest that carbon is surely removed by setting the firing temperature to 900 ° C. in the firing step, and oxygen deficiency is introduced as the carbon is removed.
 図9の下段は、上述のとおり、実験例2で得られたZnAl系酸化物をさらに追加焼成(大気中800℃で1時間)した試料のESR測定結果である。同図からわかるように、g=2.0のシグナルは完全に消滅し弱いシグナルのみが残る結果となった。これは、追加焼成によって炭素がほぼ完全に除去されたことを示すものである。また、このシグナルは、非特許文献1で報告されている酸素欠損を導入したZnGaのESRシグナルと類似している。 The lower part of FIG. 9 is an ESR measurement result of a sample obtained by additionally firing the ZnAl-based oxide obtained in Experimental Example 2 (in the atmosphere at 800 ° C. for 1 hour) as described above. As can be seen from the figure, the signal with g = 2.0 was completely extinguished and only a weak signal remained. This indicates that carbon was almost completely removed by the additional firing. This signal is similar to the ESR signal of ZnGa 2 O 4 introduced with oxygen deficiency reported in Non-Patent Document 1.
 (再度の蛍光スペクトル測定)
 ESRの測定結果から、実験例2で得られたZnAl系酸化物をさらに追加焼成(大気中800℃で1時間)すると酸化物中の炭素がほとんど除去されることがわかった。この炭素がほとんど除去されたZnAl系酸化物が蛍光発光するのであれば、発光に炭素の関与はなく、酸素欠損に基づく発光であることが証明できる。そこで、追加焼成(大気中800℃で1時間)を行った試料につき蛍光スペクトル測定を行った。測定結果を図7に示す。同図中、「900℃,in N+800℃ in air,1h」で示されるスペクトルが、実験例2で得られたZnAl系酸化物に追加焼成を行った試料の蛍光スペクトルである。
(Measurement of fluorescence spectrum again)
From the measurement results of ESR, it was found that when the ZnAl-based oxide obtained in Experimental Example 2 was further baked (in the atmosphere at 800 ° C. for 1 hour), carbon in the oxide was almost removed. If the ZnAl-based oxide from which most of the carbon has been removed emits fluorescence, it can be proved that the emission does not involve carbon and the emission is based on oxygen vacancies. Then, the fluorescence spectrum measurement was performed about the sample which performed additional baking (1 hour at 800 degreeC in air | atmosphere). The measurement results are shown in FIG. In the figure, the spectrum indicated by “900 ° C., in N 2 + 800 ° C. in air, 1 h” is the fluorescence spectrum of the sample obtained by performing additional firing on the ZnAl-based oxide obtained in Experimental Example 2.
 同図からわかるように、発光強度に差はあるものの、炭素の残留がほとんどない追加焼成を行ったZnAl系酸化物でも発光が確認された。この結果から、本発明で得られたZnAl系酸化物での蛍光発光が、酸素欠損に基づくものであることが証明された。 As can be seen from the figure, although there was a difference in emission intensity, emission was confirmed even in the ZnAl-based oxide subjected to additional firing with almost no carbon residue. From this result, it was proved that the fluorescence emission in the ZnAl-based oxide obtained in the present invention was based on oxygen deficiency.

Claims (3)

  1.  亜鉛塩及びアルミニウム塩を少なくとも含む原材料と、該原材料を溶解する水溶性有機化合物を含む水溶液からなる溶媒とを混合してなる原料溶液を準備する原料溶液準備工程と、
     前記原料溶液を加熱濃縮して該原料溶液中の水を除去して高粘性溶液にする加熱濃縮工程と、
     前記高粘性溶液を加熱処理して該高粘性溶液中の水溶性有機化合物の少なくとも一部を除去してアモルファス状の粉末を得る仮焼工程と、
     前記アモルファス状の粉末を不活性ガス雰囲気中で焼成してZnAl系酸化物を得る焼成工程と、
    を含むことを特徴とするZnAl系酸化物蛍光体の製造方法。
    A raw material solution preparation step of preparing a raw material solution formed by mixing a raw material containing at least a zinc salt and an aluminum salt and a solvent comprising an aqueous solution containing a water-soluble organic compound that dissolves the raw material;
    A heating and concentration step of concentrating the raw material solution to remove water in the raw material solution to obtain a highly viscous solution;
    A calcining step of obtaining an amorphous powder by heat-treating the high-viscosity solution to remove at least a part of the water-soluble organic compound in the high-viscosity solution;
    A baking step of baking the amorphous powder in an inert gas atmosphere to obtain a ZnAl-based oxide;
    A method for producing a ZnAl-based oxide phosphor, comprising:
  2.  前記水溶性有機化合物がグリセリンである、請求項1に記載のZnAl系酸化物蛍光体の製造方法。 The method for producing a ZnAl-based oxide phosphor according to claim 1, wherein the water-soluble organic compound is glycerin.
  3.  前記不活性ガスが、窒素ガス、アルゴンガス、ヘリウムガス又はその混合ガスである、請求項1又は2に記載のZnAl系酸化物蛍光体の製造方法。 The method for producing a ZnAl-based oxide phosphor according to claim 1 or 2, wherein the inert gas is nitrogen gas, argon gas, helium gas or a mixed gas thereof.
PCT/JP2010/064448 2009-09-14 2010-08-26 Method for producing zn-al-oxide fluorescent material WO2011030671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-212129 2009-09-14
JP2009212129A JP5210272B2 (en) 2009-09-14 2009-09-14 Method for producing ZnAl-based oxide phosphor

Publications (1)

Publication Number Publication Date
WO2011030671A1 true WO2011030671A1 (en) 2011-03-17

Family

ID=43732345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064448 WO2011030671A1 (en) 2009-09-14 2010-08-26 Method for producing zn-al-oxide fluorescent material

Country Status (2)

Country Link
JP (1) JP5210272B2 (en)
WO (1) WO2011030671A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055644A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194349A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material and method for producing the same
JP2008189762A (en) * 2007-02-02 2008-08-21 Keio Gijuku Method for producing particulate fluorescent material
JP2010047742A (en) * 2008-07-23 2010-03-04 Utsunomiya Univ SPINEL TYPE ZnGaAl-BASED OXIDE PHOSPHOR AND METHOD FOR PRODUCING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194349A (en) * 2000-12-27 2002-07-10 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material and method for producing the same
JP2008189762A (en) * 2007-02-02 2008-08-21 Keio Gijuku Method for producing particulate fluorescent material
JP2010047742A (en) * 2008-07-23 2010-03-04 Utsunomiya Univ SPINEL TYPE ZnGaAl-BASED OXIDE PHOSPHOR AND METHOD FOR PRODUCING THE SAME

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKIHITO YAMAGUCHI ET AL: "Shinki Spinel-gata Koyotai,1 E4-42", THE 88TH ANNUAL MEETING OF CHEMICAL SOCIETY OF JAPAN IN SPRING - KOEN YOKOSHU I, CSJ: THE CHEMICAL SOCIETY OF JAPAN, 12 March 2008 (2008-03-12), pages 217 *
AKIHITO YAMAGUCHI ET AL: "Spinel-gata Koyotai ZnGa2-xAlxO4 no Keiko Tokusei", THE 24TH CERAMIC RESEARCH CONFERENCE OF KANTO BRANCH IN THE CERAMIC SOCIETY OF JAPAN ABSTRACT BOOK, THE CERAMIC SOCIETY OF JAPAN, 24 July 2008 (2008-07-24), pages 8 *
AKIHITO YAMAGUCHI ET AL: "Spinel-gata Koyotai ZnGa2-xAlxO4 no Keiko Tokusei", THE 47TH SYMPOSIUM ON BASIC SCIENCE OF CERAMICS ABSTRACT BOOK, IINCHO TOSHINOBU YOKOO, 8 January 2009 (2009-01-08), pages 402 - 403 *

Also Published As

Publication number Publication date
JP5210272B2 (en) 2013-06-12
JP2011057941A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
Lukić et al. Optical and structural properties of Zn2SiO4: Mn2+ green phosphor nanoparticles obtained by a polymer-assisted sol–gel method
Shi et al. Solution combustion synthesis, photoluminescence and X-ray luminescence of Eu-doped nanoceria CeO 2: Eu
Wu et al. Controlled synthesis and optimum luminescence of Sm 3+-activated nano/submicroscale ceria particles by a facile approach
Boronat et al. Cathodoluminescence emission of REE (Dy, Pr and Eu) doped LaAlO3 phosphors
Mukherjee et al. Effect of structure, particle size and relative concentration of Eu3+ and Tb3+ ions on the luminescence properties of Eu3+ co-doped Y2O3: Tb nanoparticles
Rivera-Enríquez et al. Luminescence properties of α-and β-Zn2SiO4: Mn nanoparticles prepared by a co-precipitation method
Kumar et al. Effect of co-doping metal ions (Li+, Na+ and K+) on the structural and photoluminescent properties of nano-sized Y2O3: Eu3+ synthesized by co-precipitation method
Rabasovic et al. Structural properties and luminescence kinetics of white nanophosphor YAG: Dy
US11286422B2 (en) Suspension of a magnesium silicate, method for making same and use thereof as a phosphor
Guo et al. Effect of Eu3+ contents on the structure and properties of BaLa2ZnO5: Eu3+ phosphors
Shafia et al. A critical role of pH in the combustion synthesis of nano-sized SrAl2O4: Eu2+, Dy3+ phosphor
Ahmadian et al. Preparation and characterization of Luminescent nanostructured Gd2O3-Y2O3: Eu synthesized by the solution combustion process
Rai et al. Probing a new approach for warm white light generation in lanthanide doped nanophosphors
Yamaguchi et al. Deep-ultraviolet transparent monolithic sol–gel derived silica–REPO 4 (RE= Y, La–Lu except Pm) glass-ceramics: characterization of the crystal structure and ultraviolet absorption edge, and application to narrow-band UVB phosphors
JP6501288B2 (en) Manganese-doped spinel red phosphor and method for producing the same
Nascimento et al. Effects of X-ray irradiation on the luminescent properties of Eu-doped LiSrPO4 phosphors produced using the sol-gel method with glucose
Sridhar et al. Cr-doped ZnGa2O4: Simple synthesis of intense red-NIR emitting nanoparticles with enhanced quantum efficiency
JP2013060568A (en) Upconversion phosphor
TWI448535B (en) Eu method for the production of metalloid phosphite phosphors
JP4923242B2 (en) Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal
JP5210272B2 (en) Method for producing ZnAl-based oxide phosphor
Tiwari et al. Near UV-blue emission from cerium doped zirconium dioxide phosphor for display and sensing applications
JP5739203B2 (en) Method for producing aluminum oxide phosphor
Bleier et al. Seeking the optimal LaTaO4: Eu phosphor
Yan et al. Novel red-emitting phosphor Li 2 MgZrO 4: Mn 4+, Ga 3+ for warm white LEDs based on blue-emitting chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815268

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815268

Country of ref document: EP

Kind code of ref document: A1