JP2002193343A - Vegetable and fruit packaging bag made of lactic acid based copolymer - Google Patents

Vegetable and fruit packaging bag made of lactic acid based copolymer

Info

Publication number
JP2002193343A
JP2002193343A JP2000390441A JP2000390441A JP2002193343A JP 2002193343 A JP2002193343 A JP 2002193343A JP 2000390441 A JP2000390441 A JP 2000390441A JP 2000390441 A JP2000390441 A JP 2000390441A JP 2002193343 A JP2002193343 A JP 2002193343A
Authority
JP
Japan
Prior art keywords
lactic acid
vegetables
packaging bag
fruits
based copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000390441A
Other languages
Japanese (ja)
Inventor
Keiko Matsuki
桂子 松木
Katsuji Takahashi
勝治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2000390441A priority Critical patent/JP2002193343A/en
Publication of JP2002193343A publication Critical patent/JP2002193343A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

PROBLEM TO BE SOLVED: To provide a vegetable and fruit packaging bag made of a lactic acid based copolymer, which has appropriate moisture permeability and biodegradability, is flexible and excellent in machinability in bag-making and also has an excellent fog resistance. SOLUTION: The vegetable and fruit packaging bag made of the lactic acid based copolymer which contains 2 to 50 wt.% of a polyester structural unit comprising a dicarboxylic acid and a diol which are dehydrated and condensed and/or a polyether structural unit comprising a dicarboxylic acid and a polyether polyol which are dehydrated and condensed has appropriate moisture permeability to food, vegetable and fruit in particular and excellent fog resistance and is excellent in machinability in bag-making. Finding this fact has led to completion of the invention.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食品用に用いられ
る包装用袋として、鮮度保持、防曇性に優れ、且つ生分
解可能な乳酸系コポリマーから成る食品包装袋に関する
ものである。より詳細には青果の鮮度保持に特に優れる
生分解性の乳酸系コポリマーから成る青果用包装袋に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a food packaging bag made of a biodegradable lactic acid copolymer which is excellent in keeping freshness and antifogging property and is used as a packaging bag for food. More specifically, the present invention relates to a packaging bag for fruits and vegetables made of a biodegradable lactic acid-based copolymer which is particularly excellent in keeping freshness of fruits and vegetables.

【0002】[0002]

【従来の技術】近年、食品包装用の袋としては、例え
ば、いずれも石油製品であるポリエチレン(PE)、ポ
リプロピレン(PP)、及び延伸ポリスチレン(OP
S)からなる包装袋が用いられている。
2. Description of the Related Art In recent years, as bags for packaging food, for example, polyethylene (PE), polypropylene (PP), and expanded polystyrene (OP), all of which are petroleum products, have been used.
A packaging bag made of S) is used.

【0003】しかし、PE、及びPPは透湿度が低く、
袋内部に結露し蓄積する青果の水分により青果を痛め、
鮮度を長期間にわたり保持する事は困難であった。その
上、結露による内部曇りを抑制する為に防曇材の塗布等
の加工処理が必要であった。
[0003] However, PE and PP have low moisture permeability,
Vegetables are damaged by the moisture of fruits and vegetables that condenses and accumulates inside the bag,
It was difficult to maintain the freshness for a long time. In addition, processing such as application of an antifogging material was required to suppress internal fogging due to condensation.

【0004】また青果鮮度保持用として延伸によって透
湿度を向上させたOPSは鮮度保持には優れるが焼却処
理時の高熱や有害物の発生等の環境負荷問題を抱えてい
る。
[0004] OPS which has improved moisture permeability by stretching for keeping freshness of fruits and vegetables is excellent in keeping freshness, but suffers from environmental load such as high heat during incineration and generation of harmful substances.

【0005】これらのPE、PP及びOPSの食品包装
用袋は再利用されるものはきわめてわずかであり、ほと
んどがワンウエイで使用後、焼却処分される。このよう
な石油製品の焼却処分による有毒物の発生や大量使用に
よる資源の枯渇は、現在、大きな社会問題となってい
る。
Very little of these PE, PP and OPS food packaging bags are reused, and most of them are incinerated after one-way use. The generation of toxic substances by incineration of such petroleum products and the depletion of resources due to large-scale use have become a major social problem at present.

【0006】これらの問題を解決するために、生分解性
ポリマーを各種包装材として用いるための研究開発が盛
んに行われている。中でも乳酸系ポリマーはPE,P
P、OPS同等の高い透明性を有し、焼却発生熱も低
く、且ついずれは生分解するため、PE、PP、OPS
等主たる食品包装材料の代替として期待されている。
In order to solve these problems, research and development for using biodegradable polymers as various packaging materials have been actively conducted. Among them, lactic acid polymers are PE, P
It has the same high transparency as P and OPS, low heat generated by incineration, and eventually biodegrades, so PE, PP, OPS
It is expected as a substitute for main food packaging materials.

【0007】しかしながらニートなポリ乳酸では剛性が
高過ぎ柔軟性に欠けるため、加工性が悪く、製袋が困難
である等の問題が生じる。
However, since neat polylactic acid has too high rigidity and lacks flexibility, problems such as poor workability and difficulty in bag making arise.

【0008】またポリ乳酸は透湿度も高過ぎるため、適
度に維持されるべき青果の水分が低下し鮮度を長時間保
持できない等の問題が生じる。
[0008] In addition, since polylactic acid has too high a water vapor transmission rate, there is a problem that the moisture of fruits and vegetables which should be maintained at an appropriate level is lowered and freshness cannot be maintained for a long time.

【0009】従って、透明で、柔軟で加工性がよく、青
果保存に適した透湿度を持ち青果の鮮度保持且つ防曇性
に優れ、また、生分解性に優れた乳酸系コポリマーから
なる青果用包装袋の開発が嘱望されていた。
Therefore, for fruits and vegetables comprising a lactic acid-based copolymer which is transparent, flexible, has good processability, has good moisture permeability suitable for preserving fruits and vegetables, maintains freshness of fruits and vegetables, is excellent in antifogging properties, and is excellent in biodegradability. The development of packaging bags was expected.

【0010】[0010]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、透明で、柔軟で製袋加工性がよく、青果保
存に適した透湿度を持ち青果の鮮度保持且つ防曇性に優
れ、また、生分解性に優れた乳酸系コポリマーからなる
青果用包装袋を提供することにある。
The problems to be solved by the present invention are transparent, flexible, have good bag-making processability, have good moisture permeability suitable for preserving fruits and vegetables, and have excellent freshness retention and antifogging properties of the fruits and vegetables. Another object of the present invention is to provide a packaging bag for fruits and vegetables comprising a lactic acid-based copolymer excellent in biodegradability.

【0011】[0011]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、特定の乳酸系コポリマーからなる包装袋が、食
品、とりわけ青果に対して適度な透湿度と優れた防曇性
を有し、かつ製袋加工性に優れることを見出して本発明
を完成するに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a packaging bag made of a specific lactic acid-based copolymer has an appropriate moisture permeability and an excellent antifogging property for foods, especially fruits and vegetables. The inventors have found that the present invention has excellent bag-making processability and have completed the present invention.

【0012】即ち、本発明は、乳酸系コポリマーが、ジ
カルボン酸とジオールとを脱水縮合したポリエステル構
造単位及び/又はジカルボン酸とポリエーテルポリオー
ルを脱水縮合したポリエーテル構造単位を2〜50重量
%、好ましくは3〜40重量%含む乳酸系ポリマーであ
ることを特徴とする乳酸系コポリマーからなる青果用包
装袋を提供するものである。
That is, according to the present invention, the lactic acid-based copolymer comprises 2 to 50% by weight of a polyester structural unit obtained by dehydration-condensation of a dicarboxylic acid and a diol and / or a polyether structural unit obtained by dehydration-condensation of a dicarboxylic acid and a polyether polyol. It is an object of the present invention to provide a packaging bag for fruits and vegetables comprising a lactic acid-based copolymer, which is preferably a lactic acid-based polymer containing 3 to 40% by weight.

【0013】[0013]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明で用いられる乳酸系コポリマーとは、乳酸単位
(残基)を含むコポリマーを意味し、具体的には、乳酸
単位とグリコール酸単位とから成る乳酸系共重合体、又
は乳酸単位とポリエステル単位とから成る乳酸系ポリエ
ステル共重合体等が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The lactic acid-based copolymer used in the present invention means a copolymer containing a lactic acid unit (residue), and specifically, a lactic acid-based copolymer composed of a lactic acid unit and a glycolic acid unit, or a lactic acid unit and a polyester unit And a lactic acid-based polyester copolymer consisting of

【0014】これらの乳酸系コポリマーは、食品保存に
適度な透湿度を有するため、食品包装用袋として好まし
い。又、加工性に必須である柔軟性特性の観点から特に
乳酸単位とグリコール酸単位とから成る乳酸系共重合体
が好ましい。
[0014] These lactic acid-based copolymers have a suitable moisture permeability for preserving food, and are therefore preferred as food packaging bags. In addition, a lactic acid-based copolymer composed of a lactic acid unit and a glycolic acid unit is particularly preferable from the viewpoint of flexibility characteristics essential for processability.

【0015】乳酸単位は、乳酸1〜3000基からなる
ブロック鎖長を持つブロック単位を意味し、より好まし
くは100〜3000基からなるブロック単位である。
The lactic acid unit is a block unit having a block chain length of 1 to 3000 lactic acid units, more preferably a block unit of 100 to 3000 lactic acid units.

【0016】乳酸系コポリマーは、原料として乳酸を用
いて、ポリ乳酸又は乳酸単位を有する共重合体を重合す
る場合、通常の公知慣用の重縮合反応によって製造でき
る。即ち、溶剤の存在下もしくは非存在下において、
又、触媒の存在下もしくは非存在下に脱水重縮合を行っ
て製造する。無論、減圧下で行っても構わない。
In the case where lactic acid is used as a raw material to polymerize a polylactic acid or a copolymer having a lactic acid unit, the lactic acid-based copolymer can be produced by a commonly known polycondensation reaction. That is, in the presence or absence of a solvent,
Further, it is produced by performing dehydration polycondensation in the presence or absence of a catalyst. Of course, it may be performed under reduced pressure.

【0017】原料として、ラクタイド、グリコール酸の
環状2量体であるグリコライドを用いてポリ乳酸、グリ
コール酸単位と乳酸単位からなる共重合体を重合する場
合は、開環重合触媒の存在下開環重合により製造でき
る。ここで用いる触媒としては、一般にエステル化触
媒、開環重合触媒として知られる触媒はいずれも使用可
能であり、例えば、Sn、Ti、Zr、Zn、Ge、C
o、Fe、Al,Mn等のアルコキサイド、酢酸塩、酸
化物、塩化物等が用いられる。
When lactic acid and glycolide, which is a cyclic dimer of glycolic acid, are used as raw materials to polymerize polylactic acid or a copolymer comprising glycolic acid units and lactic acid units, the polymerization is carried out in the presence of a ring-opening polymerization catalyst. It can be produced by ring polymerization. As the catalyst used here, any catalyst generally known as an esterification catalyst or a ring-opening polymerization catalyst can be used. For example, Sn, Ti, Zr, Zn, Ge, C
Alkoxides such as o, Fe, Al and Mn, acetates, oxides, chlorides and the like are used.

【0018】中でも、オクチル酸スズ、ジブチルスズジ
ラウレート、テトライソプロピルチタネート、テトラブ
トキシチタン、チタンオキシアセチルアセトナート、鉄
(III)アセチルアセトナート、鉄(III)エトキサイ
ド、アルミニウムイソプロポキサイド、アルミニウムア
セチルアセトナートは反応が早く好ましい。触媒使用量
は反応物に対して、通常、10〜1000ppm、好ま
しくは、50〜500ppmである。
Among them, tin octylate, dibutyltin dilaurate, tetraisopropyl titanate, tetrabutoxytitanium, titanium oxyacetylacetonate, iron (III) acetylacetonate, iron (III) ethoxide, aluminum isopropoxide, and aluminum acetylacetonate The reaction is fast and preferred. The amount of the catalyst to be used is generally 10 to 1000 ppm, preferably 50 to 500 ppm, relative to the reactants.

【0019】原料であるラクタイドには、L−乳酸2分
子からなるL−ラクタイド、D−乳酸2分子からなるD
−ラクタイド及びL−乳酸及びD−乳酸からなるmes
o−ラクタイドが存在する。L−ラクタイド、又はD−
ラクタイドのみを含む共重合体は結晶化しやすく、高融
点が得られる。
Lactide as a raw material includes L-lactide composed of two molecules of L-lactic acid and D-lactide composed of two molecules of D-lactic acid.
Mes comprising lactide, L-lactic acid and D-lactic acid
o-Lactide is present. L-lactide or D-
A copolymer containing only lactide is easily crystallized, and a high melting point is obtained.

【0020】本発明の乳酸系ポリマーでは、これら3種
のラクタイドを組み合わせることにより、用途に応じた
好ましい樹脂特性を実現できる。特に本発明では高い熱
物性を発現するため、L−ラクタイドを総ラクタイド
中、75%以上含むものが好ましく、更に高い熱物性を
発現するためには、L−ラクタイドを総ラクタイド中8
0%以上含むものが好ましい。
In the lactic acid-based polymer of the present invention, by combining these three lactides, preferable resin characteristics according to the intended use can be realized. In particular, in the present invention, L-lactide is preferably contained in 75% or more of the total lactide in order to express high thermophysical properties, and in order to express higher thermophysical properties, L-lactide is preferably contained in 8% of total lactide.
Those containing 0% or more are preferred.

【0021】乳酸系ポリエステルに関しては、乳酸と多
価カルボン酸及び多価アルコールとの重縮合、乳酸とポ
リエステルの重縮合、或いはラクタイドとポリエステル
の共重合により得ることが出来る。特に、ラクタイドと
ポリエステルを開環重合触媒で共重合させると反応が早
く、分子量の制御も容易であり、物性も優れているため
望ましい。これらの重合には触媒を用いることが好まし
く、前述同様の触媒が使用できる。
The lactic acid-based polyester can be obtained by polycondensation of lactic acid with a polyhydric carboxylic acid or a polyhydric alcohol, polycondensation of lactic acid with a polyester, or copolymerization of lactide with a polyester. In particular, lactide and polyester are preferably copolymerized with a ring-opening polymerization catalyst because the reaction is quick, the molecular weight can be easily controlled, and the physical properties are excellent. It is preferable to use a catalyst for these polymerizations, and the same catalyst as described above can be used.

【0022】次にポリエステル成分の原料である多価カ
ルボン酸、多価アルコールに関して説明する。多価カル
ボン酸としては、特に限定されないが、テレフタル酸、
イソフタル酸等の芳香族カルボン酸、炭素数4〜14の
コハク酸、アジピン酸、アゼライン酸、セバシン酸、ブ
ラシル酸、シクロヘキサンジカルボン酸等の脂肪族ジカ
ルボン酸、その他にダイマー酸等が挙げられ、これを2
種類以上使用しても構わない。
Next, the polyhydric carboxylic acid and polyhydric alcohol which are the raw materials of the polyester component will be described. The polyvalent carboxylic acid is not particularly limited, but terephthalic acid,
Aromatic carboxylic acids such as isophthalic acid, succinic acid having 4 to 14 carbon atoms, adipic acid, azelaic acid, sebacic acid, brassic acid, aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid, and other dimer acids. 2
More than one kind may be used.

【0023】多価アルコールとしては、特に種類を問わ
ないが、炭素数2〜10のジオール、ポリエーテルポリ
オールが好ましい。具体的には、エチレングリコール、
1,3−プロパンジオール、プロピレングリコール、
1,4−ブチレングリコール、1,3−ブチレングリコ
ール、ペンタンジオール、ヘキサメチレングリコール、
オクタンジオール、ネオペンチルグリコール、シクロヘ
キサンジメタノール、ジエチレングリコール、トリエチ
レングリコール、ジプロピレングリコール、ポリエチレ
ングリコール、ポリプロピレングリコール、ポリエチレ
ングリコールとポリプロピレングリコールの共重合体、
ポリテトラメチレングリコールが挙げられ、これを2種
類以上使用しても構わない。
The polyhydric alcohol is not particularly limited, but is preferably a diol having 2 to 10 carbon atoms or a polyether polyol. Specifically, ethylene glycol,
1,3-propanediol, propylene glycol,
1,4-butylene glycol, 1,3-butylene glycol, pentanediol, hexamethylene glycol,
Octanediol, neopentyl glycol, cyclohexanedimethanol, diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, copolymers of polyethylene glycol and polypropylene glycol,
Polytetramethylene glycol may be used, and two or more of these may be used.

【0024】上記の多価カルボン酸及び多価アルコール
より重合されたポリエステルは、特に制限はなく、例え
ば、芳香族ポリエステル、芳香族・脂肪族ポリエステ
ル、脂肪族ポリエステル、他にはポリε−カプロラクト
ンのようなラクトン系ポリエステル等が使用できる。し
かし、生分解性を考慮した場合は、脂肪族ポリエステル
を用いることが好ましい。
The polyester polymerized from the above-mentioned polycarboxylic acids and polyhydric alcohols is not particularly limited. Examples thereof include aromatic polyesters, aromatic / aliphatic polyesters, aliphatic polyesters, and polyε-caprolactone. Such a lactone-based polyester can be used. However, in consideration of biodegradability, it is preferable to use an aliphatic polyester.

【0025】次に、ラクタイドを用いた乳酸系コポリマ
ーの具体的な製造方法を説明する。ラクタイドとポリエ
ステルとを開環共重合した乳酸系コポリマーの反応は、
混合物を加温溶融させるか、溶剤によって反応物を希釈
混合後、重合触媒を添加する。重合温度はラクタイドの
融点以上である100℃以上、かつ240℃以下の温度
が重合の平衡上望ましく、分解反応にともなう乳酸系ポ
リマーの着色も防ぐことができ、更に好ましくは、13
0〜220℃である。
Next, a specific method for producing a lactic acid-based copolymer using lactide will be described. The reaction of a lactic acid-based copolymer obtained by ring-opening copolymerization of lactide and polyester is as follows:
After heating and melting the mixture or diluting and mixing the reaction product with a solvent, a polymerization catalyst is added. The polymerization temperature is preferably 100 ° C. or higher and 240 ° C. or lower, which is higher than the melting point of lactide, in view of the equilibrium of polymerization, and can prevent coloring of the lactic acid-based polymer due to the decomposition reaction.
0-220 ° C.

【0026】またラクタイドの分解、着色を防ぐため、
全ての反応は乾燥した不活性ガス雰囲気下で行うことが
好ましい。特に窒素、アルゴンガス雰囲気下、又は不活
性ガスをバブリングした状態で行う。同時に原料となる
ポリエステルも減圧乾燥等で水分を除去しておくことが
好ましい。また、フォスファイト系化合物、フェノール
系化合物等の酸化防止剤を使用しても良い。
In order to prevent the decomposition and coloring of lactide,
It is preferable that all reactions are performed under a dry inert gas atmosphere. In particular, the etching is performed in a nitrogen or argon gas atmosphere or in a state in which an inert gas is bubbled. At the same time, it is preferable to remove moisture from the polyester as a raw material by drying under reduced pressure or the like. Further, an antioxidant such as a phosphite compound or a phenol compound may be used.

【0027】またラクタイドは溶剤に溶解できるため、
溶剤を使用して重合でき、溶剤の具体例としては、例え
ば、ベンゼン、トルエン、エチルベンゼン、キシレン、
シクロヘキサノン、メチルエチルケトン、イソプロピル
エーテル等が挙げられる。これらの溶媒も乾燥させて、
水分を除去しておくことにより、得られる乳酸系ポリマ
ー分子量のばらつきを抑えることが出来るため好まし
い。この重合反応で用いる触媒は前述したのと同様のも
のが使用できる。
Since lactide can be dissolved in a solvent,
Polymerization can be performed using a solvent. Specific examples of the solvent include, for example, benzene, toluene, ethylbenzene, xylene,
Examples include cyclohexanone, methyl ethyl ketone, and isopropyl ether. These solvents are also dried,
It is preferable to remove the water because variation in the molecular weight of the obtained lactic acid-based polymer can be suppressed. As the catalyst used in this polymerization reaction, the same catalyst as described above can be used.

【0028】本発明で使用する乳酸系コポリマーは、製
造後の保存安定性を保持するために、グリコライド、ラ
クタイド等の残留モノマーを減圧下で脱揮或いは溶媒に
より洗浄除去するのが好ましく、これら残留モノマー量
は0.5重量%以下、更に好ましくは0.2重量%以下
である。熱履歴により乳酸系コポリマーがバックバイト
を起こし、グリコライドやラクタイド等のモノマーが再
発生するのを抑制するために、重合触媒を失活させる能
力を持つ触媒失活剤を含有させても良い。
The lactic acid copolymer used in the present invention is preferably devolatilized under a reduced pressure or washed and removed with a solvent in order to maintain the storage stability after the production, and to remove residual monomers such as glycolide and lactide. The residual monomer content is 0.5% by weight or less, more preferably 0.2% by weight or less. A quenching agent having the ability to deactivate the polymerization catalyst may be contained in order to suppress back-bitting of the lactic acid-based copolymer due to heat history and re-generation of monomers such as glycolide and lactide.

【0029】また、本発明に用いる乳酸系コポリマーの
重量平均分子量は、フィルムにした際の樹脂強度等を充
分に発揮する為に、20,000〜600,000が適
しており、好ましくは50,000〜400,000で
ある。重量平均分子量が20,000未満であるとフィ
ルム加工後の強度が保持できない。逆に重量平均分子量
が600,000を越えると、フィルム加工が困難とな
る。
The weight-average molecular weight of the lactic acid-based copolymer used in the present invention is suitably from 20,000 to 600,000, and preferably from 50,000 to 600,000, in order to sufficiently exhibit resin strength and the like when formed into a film. 000 to 400,000. If the weight average molecular weight is less than 20,000, the strength after film processing cannot be maintained. Conversely, if the weight average molecular weight exceeds 600,000, film processing becomes difficult.

【0030】本発明における乳酸系コポリマーからなる
青果用包装袋のフィルムの厚さは、従来の包装袋と同様
に10μm〜100μmが好ましく、より好ましくは、
35μm〜50μmである。
The thickness of the film of the packaging bag for fruits and vegetables comprising the lactic acid-based copolymer in the present invention is preferably 10 μm to 100 μm, as in the conventional packaging bag, and more preferably,
It is 35 μm to 50 μm.

【0031】ここで用いられる乳酸系コポリマーとして
は、上で述べたように乳酸単位を持つポリマーであれ
ば、特に限定されないが、例えば、乳酸単位と、ジカル
ボン酸とジオールとを脱水縮合したポリエステル構造単
位及び/又はジカルボン酸とポリエーテルポリオールを
脱水縮合したポリエーテルエステル構造単位との割合
は、乳酸単位が50〜98重量%、好ましくは60〜9
0重量%、更に好ましくは60〜85重量%、該ポリエ
ステル単位及び/又は該ポリエーテルポリエステル単位
が、2〜50重量%、好ましくは10〜40重量%、更
に好ましくは15〜40重量%である。
The lactic acid-based copolymer used herein is not particularly limited as long as it has a lactic acid unit as described above. For example, a polyester structure obtained by dehydrating and condensing a lactic acid unit, a dicarboxylic acid and a diol is used. The ratio of units and / or polyetherester structural units obtained by dehydrating and condensing dicarboxylic acid and polyether polyol is such that the lactic acid unit is 50 to 98% by weight, preferably 60 to 9% by weight.
0% by weight, more preferably 60 to 85% by weight, the polyester unit and / or the polyether polyester unit is 2 to 50% by weight, preferably 10 to 40% by weight, more preferably 15 to 40% by weight. .

【0032】本発明の乳酸系コポリマーからなる青果用
包装袋には、本発明の目的を損なわない範囲で、無機質
充填剤、アンチブロッキング剤、帯電防止剤、可塑剤、
紫外線吸収剤、光安定剤、酸化防止剤、熱安定剤、着色
防止剤、顔料等の他の添加剤を配合しても良い。
In the packaging bag for fruits and vegetables made of the lactic acid copolymer of the present invention, an inorganic filler, an antiblocking agent, an antistatic agent, a plasticizer,
Other additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, a heat stabilizer, a coloring inhibitor, and a pigment may be added.

【0033】これらの無機質充填剤は、平均粒子径が
0.01〜10μmの範囲にあるもの、特に0.1〜5
μmの範囲にあるものが好ましい。これらの無機質充填
剤は単独で用いても良いし、2種類以上組み合わせて用
いても良い。無機質充填剤の配合量は、乳酸系ポリマー
100重量%に対して、0.5〜20重量%、好ましく
は1〜15重量%である。この配合量が0.5重量%未
満では保温効果が十分に発揮されないし、20重量%を
越えるとフィルムに成形した際、引張強度や引裂強度が
低下する原因になる。
These inorganic fillers have an average particle diameter in the range of 0.01 to 10 μm, especially 0.1 to 5 μm.
Those having a range of μm are preferred. These inorganic fillers may be used alone or in combination of two or more. The compounding amount of the inorganic filler is 0.5 to 20% by weight, preferably 1 to 15% by weight, based on 100% by weight of the lactic acid-based polymer. If the amount is less than 0.5% by weight, the heat-retaining effect is not sufficiently exhibited, and if it exceeds 20% by weight, when formed into a film, the tensile strength and the tear strength are reduced.

【0034】アンチブロッキング剤の具体例としては、
シリカ炭酸カルシウム、チタニア、マイカ、タルク等が
挙げられる。これらの内、得られるフィルムの透明性の
観点から平均粒径7〜50nmのシリカが好ましい。平
均粒径が7nm未満の場合は粒子が凝集しやすくなり、
50nmを越えるとフィルム表面に微細な凸凹が生じ外
観が不透明になる。
Specific examples of the anti-blocking agent include:
Silica calcium carbonate, titania, mica, talc and the like can be mentioned. Among them, silica having an average particle diameter of 7 to 50 nm is preferable from the viewpoint of transparency of the obtained film. If the average particle size is less than 7 nm, the particles are likely to aggregate,
If it exceeds 50 nm, fine irregularities are formed on the film surface, and the appearance becomes opaque.

【0035】また、そのシリカはSiO2を95%以上
含むものが好ましく、更にSiO2が無水シリカである
とより好ましい。その使用量は乳酸系ポリマー100重
量%に対して0.1〜5重量%、好ましくは0.1〜2
重量%である。0.1重量%未満の場合は、得られるフ
ィルムに添加効果が発現されず、2重量%を越えるとフ
ィルムの成形性が低下し、更に得られるフィルムの平板
性、透明性等が低下する。
Preferably, the silica contains 95% or more of SiO 2, and more preferably, SiO 2 is anhydrous silica. The amount used is 0.1 to 5% by weight, preferably 0.1 to 2% by weight, based on 100% by weight of the lactic acid polymer.
% By weight. When the amount is less than 0.1% by weight, the effect of addition to the obtained film is not exhibited, and when it exceeds 2% by weight, the moldability of the film is reduced, and the flatness, transparency and the like of the obtained film are further reduced.

【0036】フィルムの製造方法としては、溶融押出成
形が挙げられる。押出温度は130〜280℃、好まし
くは150〜250℃の範囲である。成形温度が低いと
成形安定性が悪くなり、逆に高いと乳酸系ポリマーが分
解を起こし、分子量低下、強度低下、着色等を起こすの
で好ましくない。
As a method for producing a film, melt extrusion molding can be mentioned. Extrusion temperatures range from 130 to 280C, preferably from 150 to 250C. If the molding temperature is low, the molding stability deteriorates. On the other hand, if the molding temperature is high, the lactic acid-based polymer is decomposed, and the molecular weight is reduced, the strength is reduced, and coloring is not preferable.

【0037】本発明である乳酸系コポリマーからなる青
果用包装袋は、未延伸のものでも延伸されたものでも良
いが、透湿度及び強度的には得られたフィルムを一軸延
伸又は二軸延伸することが好ましい。一軸延伸の場合
は、ロール法による縦延伸又はテンターによる横延伸に
より、縦方向又は横方向に1.3〜10倍延伸するのが
好ましい。
The packaging bag for fruits and vegetables comprising the lactic acid-based copolymer of the present invention may be unstretched or stretched. However, in terms of moisture permeability and strength, the obtained film is stretched uniaxially or biaxially. Is preferred. In the case of uniaxial stretching, it is preferable to stretch 1.3 to 10 times in the machine direction or the transverse direction by longitudinal stretching by a roll method or transverse stretching by a tenter.

【0038】二軸延伸の場合はロール法による縦延伸及
びテンターによる横延伸が挙げられ、その方法として
は、一軸目の延伸と二軸目の延伸を逐次的に行っても、
同時に行っても良い。延伸倍率は縦方向及び横方向にそ
れぞれ1.3〜5倍延伸するのが好ましい。延伸倍率が
これ以上低いと十分に満足し得る強度を有するフィルム
が得難く、また、高いと延伸時にフィルムが破れてしま
い良くない。
In the case of biaxial stretching, longitudinal stretching by a roll method and transverse stretching by a tenter can be mentioned. As the method, even if the uniaxial stretching and the biaxial stretching are sequentially performed,
You may go at the same time. The stretching ratio is preferably 1.3 to 5 times in the longitudinal and transverse directions, respectively. If the stretching ratio is lower than this, it is difficult to obtain a film having sufficiently satisfactory strength, and if it is high, the film is broken at the time of stretching, which is not good.

【0039】延伸温度は、乳酸系コポリマーのガラス転
移点(以後、Tgと称する)Tg〜(Tg+50)℃の
範囲が好ましく、更に好ましくはTg〜(Tg+30)
℃の範囲である。延伸温度がTg未満では延伸が困難で
あり、(Tg+50)℃を越えると延伸による強度向上
が認められないことがある。
The stretching temperature is preferably in the range of glass transition point (hereinafter referred to as Tg) Tg to (Tg + 50) ° C. of the lactic acid copolymer, and more preferably Tg to (Tg + 30).
It is in the range of ° C. If the stretching temperature is lower than Tg, stretching is difficult, and if it exceeds (Tg + 50) ° C., the strength may not be improved by stretching.

【0040】また、耐熱性を向上するために、延伸後そ
の緊張下で熱セット処理を行うと良い。熱セット処理温
度は70℃以上、乳酸ポリマーの融点未満の温度で行う
ことができ、好ましくは70〜150℃、より好ましく
は、90〜140℃で行うと耐熱性だけではなく、引張
伸び等他のフィルム物性も向上するため望ましい。熱セ
ット処理時間は通常1秒から30分間であるが、生産性
等の実用性を考えた場合、この時間は短い程良いため、
好ましくは1秒〜3分間、より好ましくは1秒〜1分間
である。
Further, in order to improve the heat resistance, it is preferable to perform a heat setting treatment under tension after stretching. The heat setting temperature can be performed at a temperature of 70 ° C. or higher and lower than the melting point of the lactic acid polymer, and is preferably 70 to 150 ° C., more preferably 90 to 140 ° C., not only for heat resistance but also for tensile elongation and the like. Is also desirable because it also improves the film physical properties. The heat setting processing time is usually 1 second to 30 minutes, but considering practicality such as productivity, the shorter the time, the better,
Preferably it is 1 second to 3 minutes, more preferably 1 second to 1 minute.

【0041】本発明の乳酸系コポリマーからなる青果用
包装袋は、延伸、もしくは延伸後熱セットを行った場合
は溶断シール法により製袋する。また未延伸の場合はヒ
ートシール法により製袋する。
The packaging bag for fruits and vegetables comprising the lactic acid-based copolymer of the present invention is made by a fusing-sealing method when stretched or heat set after stretching. If it is not stretched, it is made by heat sealing.

【0042】また本発明の乳酸系コポリマーからなる青
果用包装袋は延伸時の特殊加工処理により、微細な孔を
開ける事ができる。具体的にはシート、フィルムの延伸
時に針状の突起のあるロールを使用し、巻き取り速度、
延伸倍率調節する事によりシートもしくはフィルムに孔
を開ける事ができる。孔の開孔面積率は好ましくは袋全
体の面積に対して2×10-6から3×10-6%程度であ
る。
The packaging bag for fruits and vegetables made of the lactic acid-based copolymer of the present invention can have fine holes formed by a special processing at the time of stretching. Specifically, use a roll with needle-like projections when stretching a sheet or film, and take up the winding speed,
By adjusting the stretching ratio, a hole can be formed in the sheet or film. The open area ratio of the holes is preferably about 2 × 10 −6 to 3 × 10 −6 % based on the area of the entire bag.

【0043】本発明において青果用包装袋の「青果」と
は、葉菜類、根菜類、きのこ類、またはカット済み野菜
類等を含む野菜類全般、果実類、生花等を意味するもの
とする。これらの青果をより長く新鮮な状態で保つ為に
は適度な透湿度を有する包装袋が必要である。
In the present invention, the term "vegetables" in the packaging bag for fruits and vegetables means all kinds of vegetables including fruits and vegetables such as leafy vegetables, root vegetables, mushrooms or cut vegetables, fruits and fresh flowers. In order to keep these fruits and vegetables fresh longer, a packaging bag having a suitable moisture permeability is required.

【0044】このように本発明の青果用包装袋は、該青
果に対して適度な透湿度を保つことができ、膜厚35〜
50μmでの透湿度が120〜250g/m2・24
h、好ましくは○○〜○○g/m2・24hである。
As described above, the packaging bag for fruits and vegetables of the present invention can maintain an appropriate moisture permeability with respect to the fruits and vegetables and has a film thickness of 35 to 50%.
Moisture permeability at 50 μm is 120 to 250 g / m 2 · 24
h, preferably ○ to ○ g / m 2 · 24h.

【0045】本発明の青果用包装袋は、上記透湿度を有
することで、より長く新鮮な状態で青果を保つことがで
きる。また、本発明の青果用包装袋は、防曇性、剛性、
耐衝撃性に優れ、さらに熱加工性と柔軟性を有し製袋加
工性に優れる。
Since the packaging bag for fruits and vegetables of the present invention has the above moisture permeability, the fruits and vegetables can be kept longer and fresher. Further, the packaging bag for fruits and vegetables of the present invention has antifogging property, rigidity,
It has excellent impact resistance, and has excellent thermal processability and flexibility, and is excellent in bag making processability.

【0046】[0046]

【実施例】以下に実施例及び比較例により、本発明をさ
らに具体的に説明するが、もとより本発明はこれらの実
施例に限定されるものではない。なお、この実施例で用
いた試験方法は以下の通りである。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to these examples. The test method used in this example is as follows.

【0047】(1)分子量 ポリエーテルポリオールの分子量測定は末端基定量法で
測定し、その他の分子量測定はGPC測定装置(以下、
GPCと略す。東ソー株式会社製HLC−85020、
カラム温度40℃、テトラヒドロフラン溶媒)によりポ
リスチレン標準サンプルとの比較で測定した。
(1) Molecular Weight The molecular weight of the polyether polyol is measured by a terminal group quantification method, and the other molecular weights are measured by a GPC measuring device (hereinafter, referred to as “GPC”).
Abbreviated as GPC. HLC-85020 manufactured by Tosoh Corporation
(Column temperature: 40 ° C., tetrahydrofuran solvent).

【0048】(2)透湿度 透湿度の測定はJISZ0208に準じて実施した。温
度40±0.5℃、相対湿度 90±2%の恒温恒湿器
内にJISで定められた透湿カップに設置した各フィル
ムを放置し、所定時間経過後の透湿カップの重量を測定
し、各シートの透湿度を評価した。
(2) Moisture Permeability The moisture permeability was measured according to JISZ0208. Each film placed in a moisture-permeable cup specified by JIS is left in a thermo-hygrostat at a temperature of 40 ± 0.5 ° C. and a relative humidity of 90 ± 2%, and the weight of the moisture-permeable cup after a predetermined time is measured. Then, the moisture permeability of each sheet was evaluated.

【0049】(3)結露性 各シートを二つ折りにし、向かい合う2辺を各々ヒート
シールもしくは溶断シールによって製袋し、作成した袋
にレタス50gずつを入れ、袋の口部分をヒートシール
もしくは溶断シールし密封する。各袋を温度8℃に保持
された冷蔵庫内に放置し、所定時間経過後、総重量、袋
内部のたまった水分重量及び野菜の重量を秤量し、袋内
部の結露を確認した。なお評価基準は次の通りである。 4:全く結露の発生は認められない。 3:極わずかに結露の発生が認められる。 2:結露の発生が認めら、袋内部に水分がたまってい
る。 1:非常に多くの結露の発生が認めら、袋内部に多量の
水分がたまっている。
(3) Dew-Condensation Each sheet is folded in two, two opposing sides are made by heat sealing or fusing seal, respectively, and 50 g of lettuce is put into the prepared bag, and the mouth of the bag is heat sealed or fusing sealed. And seal. Each bag was left in a refrigerator maintained at a temperature of 8 ° C., and after a lapse of a predetermined time, the total weight, the weight of water accumulated inside the bag, and the weight of vegetables were weighed, and dew condensation inside the bag was confirmed. The evaluation criteria are as follows. 4: No dew condensation was observed. 3: The occurrence of dew condensation is recognized very slightly. 2: Dew condensation was observed, and moisture was accumulated inside the bag. 1: An extremely large amount of dew was observed, and a large amount of water had accumulated inside the bag.

【0050】(4)防曇性 (3)の試験において結露とともに包装袋内部の防曇性
を次の基準で評価した。 4:袋内部の曇りが全体の10%未満の範囲で生じてい
る。 3:袋内部の曇りが全体の20%未満の範囲で生じてい
る。 2:袋内部の曇りが全体の20%以上50%未満の範囲
で生じている。 1:袋内部の曇りが全体の50%以上の範囲で生じてい
る。
(4) Antifogging property In the test of (3), the antifogging property inside the packaging bag together with the dew was evaluated according to the following criteria. 4: Fogging inside the bag occurred in a range of less than 10% of the whole. 3: Fogging inside the bag occurred in a range of less than 20% of the whole. 2: Fogging inside the bag occurs in a range of 20% or more and less than 50% of the whole. 1: Fogging inside the bag occurred in a range of 50% or more of the whole.

【0051】(5)野菜の鮮度保持性 上記(3)の要領で作成した各試料袋を所定時間毎に取
り出し、外観の変化、手触り等で野菜の鮮度保持を評価
した。なお評価基準は次の通りである。
(5) Retention of Vegetable Freshness Each sample bag prepared in the manner of the above (3) was taken out at predetermined time intervals, and the retention of freshness of the vegetables was evaluated based on changes in appearance, touch, and the like. The evaluation criteria are as follows.

【0052】4:野菜の鮮度の低下は認められない。 3:わずかに野菜の鮮度低下が認められる。 2:野菜の鮮度の低下が認められる。 1:野菜の鮮度の大幅な低下が認められる。4: No decrease in freshness of vegetables is observed. 3: A slight decrease in freshness of vegetables is observed. 2: A decrease in freshness of vegetables is observed. 1: Significant decrease in freshness of vegetables is observed.

【0053】〔製造例1〕原料1(脂肪族ポリエステ
ル)の重縮合 撹拌機、精留塔、窒素ガス導入管を付した50L耐圧釜
(SUS316L)にダイマー酸15.4kg、アジピ
ン酸8.0kg、プロピレングリコール8.4kgを仕
込み、窒素雰囲気下、160℃、0.5時間、溶融混合
後、生成する水を留去しながら、10℃/時間で220
℃まで昇温させながら撹拌した。
[Production Example 1] Polycondensation of raw material 1 (aliphatic polyester) 15.4 kg of dimer acid and 8.0 kg of adipic acid were placed in a 50 L pressure vessel (SUS316L) equipped with a stirrer, rectification tower and nitrogen gas inlet tube. And 8.4 kg of propylene glycol, and melt-mixed at 160 ° C. for 0.5 hour in a nitrogen atmosphere.
The mixture was stirred while the temperature was raised to ° C.

【0054】8時間後、チタンテトラブトキサイドを
1.7g添加し、減圧を開始した。2時間後、0.1P
aまで減圧し、220℃、脱グリコール反応を更に5時
間行った。得られた脂肪族ポリエステルは数平均分子量
34,000、重量平均分子量67,000であった
(以後A1と略す)。
After 8 hours, 1.7 g of titanium tetrabutoxide was added, and the pressure was reduced. 2 hours later, 0.1P
The pressure was reduced to a, and the glycol removal reaction was performed at 220 ° C. for another 5 hours. The resulting aliphatic polyester had a number average molecular weight of 34,000 and a weight average molecular weight of 67,000 (hereinafter abbreviated as A1).

【0055】〔製造例2〕原料2(脂肪族ポリエステ
ル)の重縮合 撹拌機、精留塔、窒素ガス導入管を付した50L耐圧釜
(SUS316L)に、ダイマー酸7.7kg、アジピ
ン酸3.9kg、プロピレングリコール4.2kgを仕
込み、窒素雰囲気下、160℃、0.5時間、溶融混合
後、生成する水を留去しながら、10℃/時間で220
℃まで昇温させながら撹拌した。
[Production Example 2] Polycondensation of raw material 2 (aliphatic polyester) 7.7 kg of dimer acid and 3. adipic acid were placed in a 50 L pressure vessel (SUS316L) equipped with a stirrer, rectification tower and nitrogen gas inlet tube. 9 kg and 4.2 kg of propylene glycol were charged and melt-mixed at 160 ° C. for 0.5 hour under a nitrogen atmosphere.
The mixture was stirred while the temperature was raised to ° C.

【0056】7時間後、Mn=3,000のポリプロピ
レングリコール(三洋化成製)17.5kgをこの釜に
加え、チタンテトラブトキサイドを1.7g添加し、減
圧を開始した。2時間後、0.1Paまで減圧し、23
0℃、脱グリコール反応を更に5時間行った。得られた
脂肪族ポリエステルは数平均分子量31,000、重量
平均分子量62,000であった(以後A2と略す)。
After 7 hours, 17.5 kg of polypropylene glycol having a Mn of 3,000 (manufactured by Sanyo Chemical) was added to the kettle, 1.7 g of titanium tetrabutoxide was added, and the pressure was reduced. After 2 hours, the pressure was reduced to 0.1 Pa,
The glycol removal reaction was performed at 0 ° C. for another 5 hours. The resulting aliphatic polyester had a number average molecular weight of 31,000 and a weight average molecular weight of 62,000 (hereinafter abbreviated as A2).

【0057】〔製造例3〕乳酸系ポリマー1(ポリ乳
酸)の重合 撹拌機、精留塔、窒素ガス導入管を付した100L耐圧
釜(SUS316L)に、L−ラクタイド48kg、D
−ラクタイド2.0kg、イルガノックス1012(チ
バ・ガイギ社製)25g、トルエン10kgを仕込み、
窒素雰囲気下、190℃、0.5時間、溶融混合後、オ
クタン酸錫を15g添加した。
[Production Example 3] Polymerization of lactic acid-based polymer 1 (polylactic acid) In a 100 L pressure vessel (SUS316L) equipped with a stirrer, a rectification tower and a nitrogen gas inlet tube, 48 kg of L-lactide was added.
-2.0 kg of lactide, 25 g of Irganox 1012 (manufactured by Ciba-Geigy Corporation) and 10 kg of toluene were charged,
After melt-mixing at 190 ° C. for 0.5 hour in a nitrogen atmosphere, 15 g of tin octoate was added.

【0058】4時間後、得られたポリ乳酸を釜底からギ
ヤポンプで取り出し、溶融状態のまま3減圧ベント付2
軸押出機に搬送した。押出機入口から最も近いベント口
から、AP−8(大八化学工業社製)をポリ乳酸に対し
500ppmに成るよう添加しながら、0.1Pa、2
10℃、130rpmの条件下、2軸押出機で残留ラク
タイドを脱揮後、ペレット化した。得られたポリ乳酸
(以後P1と略)の分子量はMn=150,000、M
w=290,000、残留ラクタイドはGPCでは検出
されなかった(GPCの検出限界から残留ラクタイドは
0.01%以下である)。
After 4 hours, the obtained polylactic acid was taken out from the bottom of the kettle with a gear pump and kept in a molten state.
It was conveyed to a screw extruder. While adding AP-8 (manufactured by Daihachi Chemical Industry Co., Ltd.) to the polylactic acid at 500 ppm from the vent port closest to the extruder inlet, 0.1 Pa, 2 Pa
The residual lactide was devolatilized with a twin-screw extruder under conditions of 10 ° C. and 130 rpm, and then pelletized. The molecular weight of the obtained polylactic acid (hereinafter abbreviated as P1) is Mn = 150,000, M
w = 290,000, no residual lactide was detected by GPC (residual lactide is 0.01% or less from the detection limit of GPC).

【0059】〔製造例4〕乳酸系ポリマー2(乳酸系ポ
リエステル)の重合 撹拌機、精留塔、窒素ガス導入管を付した100L耐圧
釜(SUS316L)に、L−ラクタイドを46.6k
g、D−ラクタイドを1.9kg、A2を1.5kg、
イルガノックス1010(チバ・ガイギ社製)25g、
トルエンを10kg仕込み、窒素雰囲気下、190℃、
0.5時間、溶融混合後、オクタン酸錫を15g添加し
た。
[Production Example 4] Polymerization of lactic acid-based polymer 2 (lactic acid-based polyester) 46.6k of L-lactide was placed in a 100L pressure vessel (SUS316L) equipped with a stirrer, rectification tower, and nitrogen gas inlet tube.
g, 1.9 kg of D-lactide, 1.5 kg of A2,
25 g of Irganox 1010 (manufactured by Ciba Geigy),
10 kg of toluene was charged, and the temperature was 190 ° C. under a nitrogen atmosphere.
After melt mixing for 0.5 hour, 15 g of tin octoate was added.

【0060】4時間後、得られた乳酸系ポリエステルを
釜底からギヤポンプで取り出し、溶融状態のまま3減圧
ベント付2軸押出機に搬送した。押出機入口から最も近
いベント口から、AP−8(大八化学工業社製)を乳酸
系ポリエステルに対し500ppmに成るよう添加しな
がら、0.1Pa、210℃、130rpmの条件下、
2軸押出機で残留ラクタイドを脱揮後、ペレット化し
た。得られた乳酸系ポリエステル(以後P2と略)の分
子量はMn=130,000、Mw=260,000、
残留ラクタイドはGPCでは検出されなかった。
After 4 hours, the obtained lactic acid-based polyester was taken out from the bottom of the kettle by a gear pump, and transported in a molten state to a twin-screw extruder equipped with a three-pressure vent. From the vent port closest to the extruder inlet, while adding AP-8 (manufactured by Daihachi Chemical Industry Co., Ltd.) to the lactic acid-based polyester so as to be 500 ppm, under conditions of 0.1 Pa, 210 ° C. and 130 rpm.
The residual lactide was devolatilized by a twin-screw extruder and then pelletized. The molecular weight of the obtained lactic acid-based polyester (hereinafter abbreviated as P2) is Mn = 130,000, Mw = 260,000,
No residual lactide was detected by GPC.

【0061】〔製造例5〕乳酸系ポリマー3(乳酸系ポ
リエステル)の重合 撹拌機、精留塔、窒素ガス導入管を付した100L耐圧
釜(SUS316L)に、L−ラクタイドを43.6k
g、D−ラクタイドを4.9kg、A2を7.5kg、
イルガノックス1010(チバ・ガイギ社製)25g、
トルエンを10kg仕込み、窒素雰囲気下、190℃、
0.5時間、溶融混合後、オクタン酸錫を15g添加し
た。
[Production Example 5] Polymerization of lactic acid-based polymer 3 (lactic acid-based polyester) 43.6 kL-lactide was placed in a 100 L pressure vessel (SUS316L) equipped with a stirrer, rectification tower, and nitrogen gas inlet tube.
g, D-lactide 4.9 kg, A2 7.5 kg,
25 g of Irganox 1010 (manufactured by Ciba Geigy),
10 kg of toluene was charged, and the temperature was 190 ° C. under a nitrogen atmosphere.
After melt mixing for 0.5 hour, 15 g of tin octoate was added.

【0062】4時間後、得られた乳酸系ポリエステルを
釜底からギヤポンプで取り出し、溶融状態のまま3減圧
ベント付2軸押出機に搬送した。押出機入口から最も近
いベント口から、AP−8(大八化学工業社製)を乳酸
系ポリエステルに対し500ppmに成るよう添加しな
がら、0.1Pa、210℃、130rpmの条件下、
2軸押出機で残留ラクタイドを脱揮後、ペレット化し
た。得られた乳酸系ポリエステル(以後P3と略)の分
子量はMn=124,000、Mw=249,000、
残留ラクタイドはGPCでは検出されなかった。
After 4 hours, the obtained lactic acid-based polyester was taken out from the bottom of the kettle by a gear pump, and transported in a molten state to a twin-screw extruder equipped with a three-pressure vent. From the vent port closest to the extruder inlet, while adding AP-8 (manufactured by Daihachi Chemical Industry Co., Ltd.) to the lactic acid-based polyester so as to be 500 ppm, under conditions of 0.1 Pa, 210 ° C. and 130 rpm.
The residual lactide was devolatilized by a twin-screw extruder and then pelletized. The molecular weight of the obtained lactic acid-based polyester (hereinafter abbreviated as P3) is Mn = 124,000, Mw = 249,000,
No residual lactide was detected by GPC.

【0063】〔製造例6〕乳酸系ポリマー4(乳酸系ポ
リエステル)の重合 撹拌機、精留塔、窒素ガス導入管を付した100L耐圧
釜(SUS316L)に、L−ラクタイドを34.0k
g、D−ラクタイドを8.5kg、A1を7.5kg、
イルガノックス1076(チバ・ガイギ社製)を25.
0g仕込み、窒素雰囲気下、190℃、0.5時間、溶
融混合後、オクタン酸錫を15g添加した。
[Production Example 6] Polymerization of lactic acid-based polymer 4 (lactic acid-based polyester) 34.0k of L-lactide was placed in a 100L pressure vessel (SUS316L) equipped with a stirrer, a rectification tower, and a nitrogen gas inlet tube.
g, 8.5 kg of D-lactide, 7.5 kg of A1,
25. Irganox 1076 (manufactured by Ciba Geigy)
After charging 0 g and melting and mixing at 190 ° C. for 0.5 hour under a nitrogen atmosphere, 15 g of tin octoate was added.

【0064】4時間後、得られた乳酸系ポリエステルを
釜底からギヤポンプで取り出し、溶融状態のまま3減圧
ベント付2軸押出機に搬送した。押出機入口から最も近
いベント口から、AP−8(大八化学工業社製)を乳酸
系ポリエステルに対し500ppmに成るよう添加しな
がら、0.1Pa、195℃、130rpmの条件下、
2軸押出機で残留ラクタイドを脱揮後、ペレット化し
た。得られた乳酸系ポリエステル(以後P4と略)の分
子量はMn=130,000、Mw=260,000、
残留ラクタイドはGPCでは検出されなかった。
After 4 hours, the obtained lactic acid-based polyester was taken out from the bottom of the kettle with a gear pump, and conveyed in a molten state to a twin-screw extruder equipped with a three-vacuum vent. While adding AP-8 (manufactured by Daihachi Chemical Industry Co., Ltd.) to the lactic acid-based polyester at a concentration of 500 ppm from the vent port closest to the extruder inlet, under conditions of 0.1 Pa, 195 ° C., and 130 rpm.
The residual lactide was devolatilized by a twin-screw extruder and then pelletized. The molecular weight of the obtained lactic acid-based polyester (hereinafter abbreviated as P4) is Mn = 130,000, Mw = 260,000,
No residual lactide was detected by GPC.

【0065】〔製造例7〕乳酸系ポリマー5(乳酸系ポ
リエステル)の重合 撹拌機、精留塔、窒素ガス導入管を付した100L耐圧
釜(SUS316L)に、L−ラクタイドを35.0k
g、A1を15.0kg、グレッグP626(大日本イ
ンキ化学工業製)30g、トルエンを10kg仕込み、
窒素雰囲気下、190℃、0.5時間、溶融混合後、オ
クタン酸錫を15g添加した。
[Production Example 7] Polymerization of lactic acid-based polymer 5 (lactic acid-based polyester) L-lactide was charged at 35.0 k in a 100-L pressure vessel (SUS316L) equipped with a stirrer, a rectification tower, and a nitrogen gas inlet tube.
g, 15.0 kg of A1, 30 g of Greg P626 (manufactured by Dainippon Ink and Chemicals), and 10 kg of toluene,
After melt-mixing at 190 ° C. for 0.5 hour in a nitrogen atmosphere, 15 g of tin octoate was added.

【0066】4時間後、得られた乳酸系ポリエステルを
釜底からギヤポンプで取り出し、溶融状態のまま3減圧
ベント付2軸押出機に搬送した。押出機入口から最も近
いベント口から、AP−8(大八化学工業社製)を乳酸
系ポリエステルに対し500ppmに成るよう添加しな
がら、0.1Pa、210℃、130rpmの条件下、
2軸押出機で残留ラクタイドを脱揮後、ペレット化し
た。得られた乳酸系ポリエステル(以後P5と略)の分
子量はMn=82,000、Mw=159,000、残
留ラクタイドはGPCでは検出されなかった。表1に製
造した乳酸系ポリマーの組成と性状を示す。
After 4 hours, the obtained lactic acid-based polyester was taken out from the bottom of the kettle with a gear pump, and conveyed in a molten state to a twin-screw extruder equipped with a three-vacuum vent. While adding AP-8 (manufactured by Daihachi Chemical Industry Co., Ltd.) to the lactic acid-based polyester at a concentration of 500 ppm from the vent port closest to the extruder inlet, under conditions of 0.1 Pa, 210 ° C., and 130 rpm.
The residual lactide was devolatilized by a twin-screw extruder and then pelletized. The molecular weight of the obtained lactic acid-based polyester (hereinafter abbreviated as P5) was Mn = 82,000, Mw = 159,000, and residual lactide was not detected by GPC. Table 1 shows the composition and properties of the lactic acid-based polymer produced.

【0067】[0067]

【表1】 [Table 1]

【0068】実施例1〜5 〔実施例1〜3〕青果用包装袋用のフィルムとしてP
1、P2,P3のペレットを用いて押出成形し、50μ
mのフィルムを得た。得られたフィルムを各々、任意の
大きさの長方形にカットし、2つ折りにした折り目を底
にし、垂直方向の2辺をヒートシールし青果用包装袋を
得た。
Examples 1 to 5 [Examples 1 to 3] P as a film for packaging bags for fruits and vegetables
1, Extrusion molding using P2, P3 pellets, 50μ
m was obtained. Each of the obtained films was cut into a rectangle of an arbitrary size, and the folded fold was set at the bottom, and two sides in the vertical direction were heat-sealed to obtain a packaging bag for fruits and vegetables.

【0069】〔実施例4〜5〕青果用包装袋用のフィル
ムとしてP1、P2、P3のペレットを用いて押出成形
し得られた100μmのフィルムを各々、60℃に加熱
後、長さ方向にロール法で2.5倍に延伸し、更に横方
向にテンターを用いて2.5倍延伸を行い、引き続き緊
張下で140℃、2分間処理する事で厚さ約50μmの
延伸−熱セット処理フィルムを得た。得られたフィルム
を各々、任意の大きさの長方形にカットし、2つ折りに
した折り目を底にし、垂直方向の2辺を溶断シールし青
果用包装袋を得た。
[Examples 4 and 5] As a film for a packaging bag for fruits and vegetables, 100 μm films obtained by extrusion molding using P1, P2 and P3 pellets were heated to 60 ° C., and then lengthwise. The film is stretched 2.5 times by the roll method, and further stretched 2.5 times using a tenter in the lateral direction, and then is stretched at 140 ° C. for 2 minutes under tension to stretch and heat set to a thickness of about 50 μm. A film was obtained. Each of the obtained films was cut into a rectangle of an arbitrary size, and the folded fold was set at the bottom, and two sides in the vertical direction were sealed by fusing to obtain a packaging bag for fruits and vegetables.

【0070】〔実施例6〜7〕青果用包装袋用のフィル
ムとしてP4、P5のペレットを用いて押出成形し、5
0μmのフィルムを得た。得られたフィルムを各々、任
意の大きさの長方形にカットし、2つ折りにした折り目
を底にし、垂直方向の2辺をヒートシール青果用包装袋
を得た。
[Examples 6 and 7] P4 and P5 pellets were extruded as films for packaging bags for fruits and vegetables,
A 0 μm film was obtained. Each of the obtained films was cut into a rectangle of an arbitrary size, and the folded fold was used as a bottom, and two sides in the vertical direction were heat-sealed to obtain a packaging bag for fruits and vegetables.

【0071】〔実施例8〜9〕青果用包装袋用のフィル
ムとしてP4、P5のペレットを用いて押出成形し得ら
れた100μmのフィルムを各々、60℃に加熱後、長
さ方向にロール法で2.5倍に延伸し、更に横方向にテ
ンターを用いて2.5倍延伸を行い、引き続き緊張下で
140℃、2分間処理する事で厚さ約50μmの延伸−
熱セット処理フィルムを得た。得られたフィルムを各
々、任意の大きさの長方形にカットし、2つ折りにした
折り目を底にし、垂直方向の2辺を溶断シールし青果用
包装袋を得た。
Examples 8 to 9 100 μm films extruded using P4 and P5 pellets as films for packaging bags for fruits and vegetables were each heated to 60 ° C. and then rolled in the length direction. The film is stretched 2.5 times with a tenter in the transverse direction, and then stretched at a temperature of 140 ° C. for 2 minutes under tension.
A heat-set film was obtained. Each of the obtained films was cut into a rectangle of an arbitrary size, and the folded fold was set at the bottom, and two sides in the vertical direction were sealed by fusing to obtain a packaging bag for fruits and vegetables.

【0072】〔比較例1〕三菱化学製LDPEペレット
を用いて押出成形し、50μmのフィルムを得た。得ら
れたフィルムを各々、任意の大きさの長方形にカット
し、2つ折りにした折り目を底にし、垂直方向の2辺を
ヒートシールし青果用包装袋を得た。
Comparative Example 1 A 50 μm film was obtained by extrusion molding using LDPE pellets manufactured by Mitsubishi Chemical Corporation. Each of the obtained films was cut into a rectangle of an arbitrary size, and the folded fold was made the bottom, and two sides in the vertical direction were heat-sealed to obtain a packaging bag for fruits and vegetables.

【0073】〔比較例2〕出光化学製HOPPペレット
を用いて押出成形し、50μmのフィルムを得た。得ら
れたフィルムを各々、任意の大きさの長方形にカット
し、2つ折りにした折り目を底にし、垂直方向の2辺を
ヒートシールし青果用包装袋を得た。
Comparative Example 2 A 50 μm film was obtained by extrusion molding using HOPP pellets manufactured by Idemitsu Kagaku. Each of the obtained films was cut into a rectangle of an arbitrary size, and the folded fold was made the bottom, and two sides in the vertical direction were heat-sealed to obtain a packaging bag for fruits and vegetables.

【0074】〔比較例3〕市販の厚さ50μmのOPS
フィルムを任意の大きさの長方形にカットし、2つ折り
にした折り目を底にし、垂直方向の2辺を溶断シールし
青果用包装袋を得た。得られた青果用包装袋の性状を表
2〜表4に示す。
Comparative Example 3 Commercially available OPS having a thickness of 50 μm
The film was cut into a rectangle of an arbitrary size, the folded fold was made the bottom, and two sides in the vertical direction were sealed by fusing to obtain a packaging bag for fruits and vegetables. Tables 2 to 4 show the properties of the obtained packaging bag for fruits and vegetables.

【0075】[0075]

【表2】 [Table 2]

【0076】[0076]

【表3】 [Table 3]

【0077】[0077]

【表4】 [Table 4]

【0078】実施例1〜9の包装材料は、58℃に加温
した自動コンポスト機で2週間処理したところ、ほとん
ど原形を維持できないほど分解していた。
When the packaging materials of Examples 1 to 9 were treated with an automatic composting machine heated to 58 ° C. for 2 weeks, they were decomposed so that the original shape could not be maintained.

【0079】[0079]

【発明の効果】本発明により、透明で、柔軟で製袋加工
性がよく、青果保存に適した透湿度を持ち青果の鮮度保
持且つ防曇性に優れ、また、生分解性に優れた乳酸系コ
ポリマーからなる青果用包装袋を提供することができ
る。
Industrial Applicability According to the present invention, lactic acid which is transparent, flexible, has good bag-making processability, has good moisture permeability suitable for preserving fruits and vegetables, has excellent freshness retention and antifogging properties of fruits and vegetables, and has excellent biodegradability It is possible to provide a packaging bag for fruits and vegetables made of the copolymer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 67:00 B29K 67:00 B29L 7:00 B29L 7:00 C08L 67:04 C08L 67:04 Fターム(参考) 3E064 AA03 BA60 BC18 BC20 EA18 EA30 FA01 HD02 HE01 3E067 AA11 AB08 AB09 BA12A BB14A BB18A CA10 CA23 CA24 CA30 GD01 3E086 AD01 BA15 BA33 BB01 BB51 BB72 CA17 CA18 DA03 4F071 AA43 AA44 AF08 AF08Y AH04 AH05 BA01 BB07 BB08 BC01 4F210 AA24 AG01 QC01 QC05 QC06 QG01 QG18 QW21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B29K 67:00 B29K 67:00 B29L 7:00 B29L 7:00 C08L 67:04 C08L 67:04 F Term (Reference) 3E064 AA03 BA60 BC18 BC20 EA18 EA30 FA01 HD02 HE01 3E067 AA11 AB08 AB09 BA12A BB14A BB18A CA10 CA23 CA24 CA30 GD01 3E086 AD01 BA15 BA33 BB01 BB51 BB72 CA17 CA18 DA03 4F071 AA08 A44A01A44A01A44A01AA08 QC01 QC05 QC06 QG01 QG18 QW21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ジカルボン酸とジオールとを脱水縮合し
たポリエステル構造単位、及び/又はジカルボン酸とポ
リエーテルポリオールを脱水縮合したポリエーテルエス
テル構造単位を2〜50重量%含む乳酸系コポリマーか
らなる青果用包装袋。
1. Vegetables and fruits comprising a lactic acid-based copolymer containing 2 to 50% by weight of a polyester structural unit obtained by dehydration-condensation of a dicarboxylic acid and a diol and / or a polyether ester structural unit obtained by dehydration-condensation of a dicarboxylic acid and a polyether polyol. Packaging bag.
【請求項2】 膜厚35〜50μmでの透湿度が120
〜250g/m2・24hである請求項1に記載の青果
用包装袋。
2. A film having a moisture permeability of 120 at a film thickness of 35 to 50 μm.
Seika packaging bag according to claim 1 which is ~250g / m 2 · 24h.
【請求項3】 乳酸系コポリマーが、多価カルボン酸、
酸無水物、又は多価イソシアネート等の高分子量化剤を
加えることにより高分子量化した乳酸系コポリマーであ
る請求項1または2に記載の青果用包装袋。
3. The method according to claim 1, wherein the lactic acid-based copolymer is a polycarboxylic acid,
The packaging bag for fruits and vegetables according to claim 1 or 2, which is a lactic acid-based copolymer whose molecular weight has been increased by adding a polymeric agent such as an acid anhydride or a polyvalent isocyanate.
【請求項4】 袋の片面又は両面に有する孔の開孔面積
率が袋全体の面積に対して2×10-6〜3×10
-6(%)である事を特徴とする請求項1から3のいずれ
かひとつに記載の青果用包装袋。
4. The open area ratio of holes on one side or both sides of the bag is 2 × 10 -6 to 3 × 10
The packaging bag for fruits and vegetables according to any one of claims 1 to 3, characterized in that it is -6 %.
【請求項5】 一軸方向もしくは二軸方向に1.3〜1
0倍延伸された後に熱セット処理されている請求項1か
ら4のいずれかに記載の青果用包装袋。
5. The method according to claim 1, wherein the uniaxial direction or the biaxial direction is 1.3 to 1
The packaging bag for fruits and vegetables according to any one of claims 1 to 4, which is heat-set after being stretched 0 times.
JP2000390441A 2000-12-22 2000-12-22 Vegetable and fruit packaging bag made of lactic acid based copolymer Pending JP2002193343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390441A JP2002193343A (en) 2000-12-22 2000-12-22 Vegetable and fruit packaging bag made of lactic acid based copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390441A JP2002193343A (en) 2000-12-22 2000-12-22 Vegetable and fruit packaging bag made of lactic acid based copolymer

Publications (1)

Publication Number Publication Date
JP2002193343A true JP2002193343A (en) 2002-07-10

Family

ID=18856810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390441A Pending JP2002193343A (en) 2000-12-22 2000-12-22 Vegetable and fruit packaging bag made of lactic acid based copolymer

Country Status (1)

Country Link
JP (1) JP2002193343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321554A (en) * 2005-05-20 2006-11-30 Tohcello Co Ltd Bag
EP2669320A4 (en) * 2011-01-25 2017-07-05 SK Chemicals Co., Ltd. Polylactic acid resin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321554A (en) * 2005-05-20 2006-11-30 Tohcello Co Ltd Bag
EP2669320A4 (en) * 2011-01-25 2017-07-05 SK Chemicals Co., Ltd. Polylactic acid resin film

Similar Documents

Publication Publication Date Title
US20050244606A1 (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
JP4363325B2 (en) Polylactic acid polymer composition, molded article thereof, and film
JP4417216B2 (en) Biodegradable laminated sheet
US9580594B2 (en) FDCA-based polyesters
EP1577346B1 (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
WO2004007197A1 (en) Biodegradable laminate sheet and molded item from biodegradable laminate sheet
KR20010099957A (en) Biodegradable bag
WO2003037956A9 (en) Crystalline polyglycolic acid, polyglycolic acid composition and processes for production of both
JP2003147177A (en) Biodegradable sheet, fabricated article using sheet and process for fabricated sheet
JPH09157408A (en) Stretched polylactic acid film or sheet
JP4180606B2 (en) Biodegradable sheet, molded body using this sheet, and molding method thereof
JP5145695B2 (en) Method for producing polylactic acid resin film
JP2002292665A (en) Method for manufacturing lactic acid polymer sheet
JP3182077B2 (en) Biodegradable film
JP2003003052A (en) Resin composition, film and method of disposal
JP4511099B2 (en) Lactic acid-based resin composition, sheet-like product thereof, and bag-like product
JP2004143432A (en) Polylactic acid-based resin oriented film and method for producing the same
JP2002193343A (en) Vegetable and fruit packaging bag made of lactic acid based copolymer
JP2002292721A (en) Manufacturing method for lactic acid-based polymer sheet
JP2014074126A (en) Film
JP4669890B2 (en) Method for producing thermoformed body
JP4288088B2 (en) Biaxially stretched laminated film and use thereof
JP2008200860A (en) Method for producing polylactic acid resin film
JP2005219487A (en) Laminated film
JP4318440B2 (en) Biodegradable film and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050808