JP2002191984A - Photocatalyst composition and thermoplastic resin composition containing the same - Google Patents

Photocatalyst composition and thermoplastic resin composition containing the same

Info

Publication number
JP2002191984A
JP2002191984A JP2000399164A JP2000399164A JP2002191984A JP 2002191984 A JP2002191984 A JP 2002191984A JP 2000399164 A JP2000399164 A JP 2000399164A JP 2000399164 A JP2000399164 A JP 2000399164A JP 2002191984 A JP2002191984 A JP 2002191984A
Authority
JP
Japan
Prior art keywords
photocatalyst
composition
thermoplastic resin
titanium dioxide
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000399164A
Other languages
Japanese (ja)
Inventor
Kenichi Sekiguchi
謙一 関口
Takamitsu Mikuni
隆光 三国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2000399164A priority Critical patent/JP2002191984A/en
Publication of JP2002191984A publication Critical patent/JP2002191984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin material having a photocatalytically active surface excellent in photocatalytic reactivity, used on the wall surface or the like of a building and not deteriorated over a long period of time. SOLUTION: A thermoplastic resin composition is prepared by compounding a photocatalyst composition which consists of a photocatalyst and an inorganic powder inactive as the photocatalyst, with a thermoplastic resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光触媒組成物および
熱可塑性樹脂組成物に関し、詳しくは、建物の壁面など
に使われて、長期にわたり光触媒反応活性を有し、劣化
しにくい樹脂資材を製造するための光触媒組成物および
熱可塑性樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst composition and a thermoplastic resin composition, and more particularly, to a resin material which is used for a wall surface of a building, has a long term photocatalytic reaction activity, and is hardly deteriorated. To a photocatalyst composition and a thermoplastic resin composition.

【0002】[0002]

【従来の技術】最近、光触媒を、建物の外壁、道路の防
音壁、病院の内壁、あるいは青果物倉庫の内壁などに塗
布することにより、紫外線照射下での光触媒反応を利用
して、例えば、アンモニア、メルカプタンなどの悪臭物
質の除去、スス汚れの防止、NOなどの有害物質の
除去、青果物から発生するエチレンなどの植物成長(腐
敗)促進物質の除去、殺菌または防黴などが図られてい
る(例えば、特開平9−277463号公報、特開平1
1−1659号公報など)。光触媒は、二酸化チタンな
どの0.5〜5eVの禁止帯幅を有する半導体(光触
媒)の粉末粒子であるので、有機バインダーを用いて基
材に固定したり、樹脂に混ぜ込む等して使用される。し
かし、光触媒の光触媒機能により有機バインダーや基材
を分解してしまう問題がある。これに対して、例えば、
油中水滴型エマルジョン調製法によって光触媒を内包し
た多孔質マイクロカプセルを製造し、これを不飽和ポリ
エステル樹脂に配合する方法(特開平9−225320
号公報)、チタニア粒子の表面にセラミックスを島状に
担持させる方法(特開平9−225319号公報)等が
提案された。しかしこれらの方法を用いて有機バインダ
ーや基材を分解しない光触媒粒子を調製するには複雑な
工程が必要であり、操作が煩雑である。
2. Description of the Related Art Recently, by applying a photocatalyst to an outer wall of a building, a soundproof wall of a road, an inner wall of a hospital, or an inner wall of a vegetable store, for example, ammonia is applied by utilizing a photocatalytic reaction under ultraviolet irradiation. , removal of malodor substances such as mercaptans, prevention of soot stains, removal of harmful substances such as NO X, the removal of plant growth (spoilage) promoting substances such as ethylene generated from fruit and vegetables, such as sterilization or antifungal is achieved (For example, JP-A-9-277463, JP-A-9-277463)
1-11659). Since the photocatalyst is powder particles of a semiconductor (photocatalyst) having a band gap of 0.5 to 5 eV such as titanium dioxide, the photocatalyst is used by being fixed to a base material using an organic binder or mixed with a resin. You. However, there is a problem that the organic binder and the base material are decomposed by the photocatalytic function of the photocatalyst. In contrast, for example,
A method of preparing a porous microcapsule containing a photocatalyst by a water-in-oil type emulsion preparation method and blending it with an unsaturated polyester resin (JP-A-9-225320)
Japanese Patent Application Laid-Open No. 9-225319), and a method of supporting ceramics in the form of islands on the surface of titania particles has been proposed. However, using these methods to prepare photocatalyst particles that do not decompose an organic binder or a substrate requires a complicated process, and the operation is complicated.

【0003】[0003]

【発明が解決しようとする課題】このような状況下にあ
って本発明の目的は、建物の壁面などに使用され、長期
にわたって劣化することがなく、しかも光触媒反応性に
優れた光触媒活性表面を有する樹脂資材を提供すること
である。本発明者らは、鋭意研究した結果、アナターゼ
型二酸化チタン粉末を多量のルチル型二酸化チタン粉末
と混合したものを樹脂に練り込むと、長期的に樹脂成形
品の光劣化なしに高い光触媒反応性を持続できることを
見出し、この知見に基づいて本発明を完成するに至っ
た。
SUMMARY OF THE INVENTION Under such circumstances, an object of the present invention is to provide a photocatalytically active surface which is used for a building wall or the like and which does not deteriorate for a long period of time and which has excellent photocatalytic reactivity. It is to provide a resin material having. The present inventors have conducted intensive studies and found that when a mixture of anatase-type titanium dioxide powder and a large amount of rutile-type titanium dioxide powder was kneaded into a resin, high photocatalytic reactivity was obtained over a long period of time without photodeterioration of the resin molded product. Have been found, and the present invention has been completed based on this finding.

【0004】[0004]

【課題を解決するための手段】かくして本発明によれ
ば、(1)光触媒と、光触媒として不活性な無機粉末か
らなる光触媒組成物、(2)熱可塑性樹脂に、上記
(1)に記載された光触媒組成物を配合してなる熱可塑
性樹脂組成物、および、(3)上記(2)に記載された
熱可塑性樹脂組成物からなる樹脂成形品、が提供され
る。
Thus, according to the present invention, (1) a photocatalyst composition comprising a photocatalyst and an inorganic powder which is inactive as a photocatalyst, and (2) a thermoplastic resin are described in (1) above. And (3) a resin molded article comprising the thermoplastic resin composition described in the above (2).

【0005】また、好ましい態様として、(4)前記光
触媒がアナターゼ型二酸化チタンである上記(1)に記
載の光触媒組成物、(5)前記光触媒として不活性な無
機粉末がルチル型二酸化チタンである上記(1)記載の
光触媒組成物、(6)前記光触媒と、前記光触媒として
不活性な無機粉末との重量比が5/95〜20/80で
ある上記(1)に記載の光触媒組成物、および、(7)
前記光触媒と、前記光触媒として不活性な無機粉末とを
予め混合した後、前記熱可塑性樹脂に配合することを特
徴とする熱可塑性樹脂組成物の製造方法、が提供され
る。
In a preferred embodiment, (4) the photocatalyst composition according to the above (1), wherein the photocatalyst is an anatase type titanium dioxide, and (5) the inorganic powder inactive as the photocatalyst is rutile type titanium dioxide. (6) The photocatalyst composition according to (1), wherein the weight ratio of the photocatalyst to the inorganic powder inert as the photocatalyst is 5/95 to 20/80. And (7)
A method for producing a thermoplastic resin composition is provided, wherein the photocatalyst and an inorganic powder which is inert as the photocatalyst are mixed in advance and then mixed with the thermoplastic resin.

【0006】[0006]

【発明の実施の態様】以下、本発明について詳述する。
本発明で使用する光触媒は、0.5〜5eVの禁止帯幅
を有する半導体であって、半導体に禁止帯幅以上のエネ
ルギーを有する光を照射することにより、光触媒反応を
生じる半導体である。かかる半導体に光を照射すると、
価電子帯から伝導帯への電子励起が生じ、価電子帯に正
孔、伝導帯に電子が生成し、これらの正孔および電子が
半導体表面でそれと接する気相や水相で光触媒反応を行
うことが知られている。なお、禁止帯幅は2〜4eVで
あることが好ましい。前記光触媒としては、例えば、ア
ナターゼ型二酸化チタン、二酸化スズ、酸化亜鉛、三酸
化タングステン、酸化セリウム、チタン酸バリウム、酸
化第二鉄などの金属酸化物;硫化亜鉛、硫化カドミウ
ム、硫化鉛、セレン化亜鉛、セレン化カドミウムなどの
金属カルコゲナイド;シリコン、ゲルマニウムなどの第
IV族元素;ガリウムリン、ガリウムヒ素、インジウム
リンなどの第III族元素と第V族元素との化合物;ポ
リアセチレン、ポリピロール、ポリチオフェン、ポリア
ニリン、ポリビニルカルバゾールなどの有機半導体など
が挙げられる。これらの中でアナターゼ型二酸化チタ
ン、酸化亜塩、三酸化タングステン、酸化セリウムなど
の金属酸化物が好ましく、特にアナターゼ型二酸化チタ
ンが好適である。また、半導体に白金、銀などの貴金属
を担持させて触媒作用を高めることもできる。前記光触
媒は、通常、粉末状のものが使用される。光触媒の粉末
粒子は、一次粒子が1〜1000nmのものが表面積が
大きいので光触媒反応には有利である。一次粒子を顆粒
状に凝集させて粒径10〜200μmの二次粒子にした
ものを使用する場合は、後述の光触媒組成物を調製する
過程で大部分を一次粒子にほぐすことが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The photocatalyst used in the present invention is a semiconductor having a band gap of 0.5 to 5 eV, and a semiconductor that generates a photocatalytic reaction by irradiating the semiconductor with light having energy equal to or larger than the band gap. When such a semiconductor is irradiated with light,
Electron excitation from the valence band to the conduction band occurs, holes are generated in the valence band, and electrons are generated in the conduction band. These holes and electrons undergo photocatalytic reactions in the gas phase or aqueous phase where they come into contact with the semiconductor surface. It is known. Note that the forbidden band width is preferably 2 to 4 eV. Examples of the photocatalyst include metal oxides such as anatase type titanium dioxide, tin dioxide, zinc oxide, tungsten trioxide, cerium oxide, barium titanate, and ferric oxide; zinc sulfide, cadmium sulfide, lead sulfide, and selenide. Metal chalcogenides such as zinc and cadmium selenide; group IV elements such as silicon and germanium; compounds of group III and group V elements such as gallium phosphide, gallium arsenide and indium phosphide; polyacetylene, polypyrrole, polythiophene, polyaniline And organic semiconductors such as polyvinyl carbazole. Among these, metal oxides such as anatase-type titanium dioxide, suboxide, tungsten trioxide, and cerium oxide are preferable, and anatase-type titanium dioxide is particularly preferable. In addition, a noble metal such as platinum or silver can be carried on the semiconductor to enhance the catalytic action. The photocatalyst is usually in the form of a powder. The powder particles of the photocatalyst having primary particles of 1 to 1000 nm have a large surface area, which is advantageous for the photocatalytic reaction. When the primary particles are aggregated into granules to form secondary particles having a particle size of 10 to 200 μm, it is preferable that most of the particles are loosened into the primary particles in the process of preparing the photocatalyst composition described below.

【0007】なお、二酸化チタンには、3種の結晶構
造、アナターゼ型、ルチル型およびブルッカイト型があ
るが、光触媒活性のあるのは、アナターゼ型およびブル
ッカイト型のものである。アナターゼ型の結晶は正方晶
系で、a:c=1:1.771であり、比重は3.84
である。アナターゼ型二酸化チタンを800〜1000
℃に加熱するとルチル型二酸化チタンに変わる。ルチル
型二酸化チタンは、結晶が正方晶系で、a:c=1:
0.6442で、比重は4.26であり、光触媒として
は不活性である。結晶構造は、X線回折測定で区別がつ
けられる。
[0007] Titanium dioxide has three crystal structures, anatase type, rutile type and brookite type, but the anatase type and brookite type have photocatalytic activity. The crystals of the anatase type are tetragonal, a: c = 1: 1.771, and the specific gravity is 3.84.
It is. 800-1000 anatase type titanium dioxide
Converts to rutile titanium dioxide when heated to ° C. The rutile type titanium dioxide has a tetragonal crystal system, and a: c = 1:
At 0.6442, the specific gravity is 4.26, which is inactive as a photocatalyst. The crystal structure is distinguished by X-ray diffraction measurements.

【0008】本発明で使用する光触媒として不活性な無
機粉末(以下、「光不活性無機粉末」と記す。)とは、
光触媒反応を呈さないか、もしくはほとんど呈さない無
機粉末である。光不活性無機粉末の例としては、上記の
ルチル型二酸化チタンの他、ハイドロタルサイト、ベン
トナイト、ゼオライト、タルク、マイカ、クレー、カオ
リン、雲母、モンモリロナイト、シリカ、炭酸カルシウ
ム、リン酸カルシウム、ケイ酸カルシウム、酸化アルミ
ニウム、水酸化アルミニウム、硫酸アルミニウム、リン
酸アルミニウム、アルミナセメント、ポルトランドセメ
ントなどが挙げられる。なかでも、ルチル型二酸化チタ
ン、ハイドロタルサイト、有機処理したベントナイトが
好ましく、特にルチル型二酸化チタンが好ましい。光不
活性無機粉末の一次粒子径は、好ましくは1〜1000
nm、より好ましくは10〜200nmで、前記半導体
の粒子径より小さいものが好ましい。
The inorganic powder that is inert as a photocatalyst used in the present invention (hereinafter referred to as “photoinert inorganic powder”) is
It is an inorganic powder that does not or hardly exhibits a photocatalytic reaction. Examples of the photoinert inorganic powder, in addition to the above rutile titanium dioxide, hydrotalcite, bentonite, zeolite, talc, mica, clay, kaolin, mica, montmorillonite, silica, calcium carbonate, calcium phosphate, calcium silicate, Examples include aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum phosphate, alumina cement, Portland cement and the like. Among them, rutile-type titanium dioxide, hydrotalcite, and bentonite treated with an organic substance are preferable, and rutile-type titanium dioxide is particularly preferable. The primary particle diameter of the photo-inert inorganic powder is preferably 1 to 1000.
nm, more preferably 10 to 200 nm, which is smaller than the particle size of the semiconductor.

【0009】本発明の光触媒組成物は、光触媒粉末と光
不活性無機粉末とを重量比で、通常、5/95〜20/
80、好ましくは8/92〜15/85の範囲で混合し
てなるものである。両者の混合の方法には、通常、粉体
の混合に使用される装置を用いる方法であれば制限がな
い。好ましい混合装置としては、タンブラーミキサー、
ユニバーサルミキサー、ホバートミキサー、リボンブレ
ンダー、ヘンシェルミキサーなどが挙げられる。上記光
触媒組成物の好ましい態様として、光触媒粉末にアナタ
ーゼ型二酸化チタンを、また、光不活性無機粉末にルチ
ル型ニ酸化チタンを用いる態様が挙げられる。この場合
に、両粉末を上記のような混合装置で混合する方法の他
に、アナターゼ型ニ酸化チタン粉末を温度800〜13
00℃にて1〜5時間焼成することにより、アナターゼ
型二酸化チタン粒子とルチル型二酸化チタンとが混在し
たものを調製する方法を採ることもできる。この場合
も、アナターゼ型とルチル型の重量比は、上記の範囲に
あることが必要である。
The photocatalyst composition of the present invention comprises a photocatalyst powder and a photoinert inorganic powder in a weight ratio of usually 5/95 to 20 /.
80, preferably in the range of 8/92 to 15/85. The method of mixing the two is not particularly limited as long as it is a method using a device used for mixing powders. Preferred mixing devices include a tumbler mixer,
Universal mixers, Hobart mixers, ribbon blenders, Henschel mixers and the like can be mentioned. As a preferred embodiment of the photocatalyst composition, there is an embodiment in which an anatase type titanium dioxide is used as a photocatalyst powder and a rutile type titanium dioxide is used as a photoinert inorganic powder. In this case, in addition to the method of mixing both powders with the above-described mixing device, anatase-type titanium dioxide powder at a temperature of 800 to 13 is used.
By baking at 00 ° C. for 1 to 5 hours, a method of preparing a mixture of anatase-type titanium dioxide particles and rutile-type titanium dioxide can be adopted. Also in this case, the weight ratio between the anatase type and the rutile type needs to be within the above range.

【0010】本発明の光触媒組成物の利用方法として
は、光触媒組成物を熱可塑性樹脂に配合して成形品とす
る方法;生コンクリートに配合してコンクリート成形物
とする方法などが挙げられる。
Examples of the method of using the photocatalyst composition of the present invention include a method in which the photocatalyst composition is mixed with a thermoplastic resin to obtain a molded product; a method in which the photocatalyst composition is mixed with ready-mixed concrete to obtain a concrete molded product.

【0011】本発明で使用する熱可塑性樹脂は特に限定
されない。このような熱可塑性樹脂の具体例としては、
例えば、ポリテトラフルオロエチレン、ポリフッ化ビニ
リデン、ポリフッ化ビニル、エチレン−テトラフルオロ
エチレンコポリマー等のフッ素樹脂;ポリアミド6,ポ
リアミド66,ポリアミド12等のポリアミド;ポリエ
チレン、ポリプロピレン、ポリメチルペンテン等のポリ
オレフィン;ポリスチレン、ポリα−メチルスチレン等
の芳香族ビニル樹脂;ポリエチレンテレフタレート、ポ
リブチレンテレフタレート等のポリエステル;塩化ビニ
ル樹脂、ポリ塩化ビニリデン等の塩素系樹脂;アクリル
樹脂、ABS樹脂、エチレン−酢酸ビニルコポリマー、
ノルボルネン樹脂、ポリアセタール、ポリエーテルイミ
ド、ポリカーボネート、ポリ酢酸ビニル、ポリビニルア
ルコール等が挙げられる。本発明の光触媒組成物を配合
した熱可塑性樹脂組成物は、光触媒の光触媒機能によっ
て、基材である熱可塑性樹脂が分解されにくいので、長
期間その効果を持続することができる。特に、光触媒に
よって分解されやすい性質のある塩化ビニル樹脂等の塩
素系樹脂に配合した場合は、長期間基材が分解しないの
で、塩化水素ガスが発生する等の弊害を防止することが
できる。
[0011] The thermoplastic resin used in the present invention is not particularly limited. As a specific example of such a thermoplastic resin,
For example, fluorine resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, and ethylene-tetrafluoroethylene copolymer; polyamides such as polyamide 6, polyamide 66 and polyamide 12; polyolefins such as polyethylene, polypropylene and polymethylpentene; polystyrene , Aromatic vinyl resins such as poly-α-methylstyrene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; chlorine resins such as vinyl chloride resins and polyvinylidene chloride; acrylic resins, ABS resins, ethylene-vinyl acetate copolymers,
Norbornene resin, polyacetal, polyetherimide, polycarbonate, polyvinyl acetate, polyvinyl alcohol and the like can be mentioned. The thermoplastic resin composition containing the photocatalyst composition of the present invention can maintain its effect for a long time because the thermoplastic resin as the base material is hardly decomposed by the photocatalytic function of the photocatalyst. In particular, when compounded with a chlorine-based resin such as a vinyl chloride resin having a property of being easily decomposed by a photocatalyst, the base material does not decompose for a long period of time, so that adverse effects such as generation of hydrogen chloride gas can be prevented.

【0012】熱可塑性樹脂に光触媒組成物を配合するに
は、タンブラーミキサー、ユニバーサルミキサー、ホバ
ートミキサー、リボンブレンダー、ヘンシェルミキサ
ー、バンバリーミキサー、加圧ニーダーなどを使用すれ
ばよい。熱可塑性樹脂組成物の配合割合は、熱可塑性樹
脂100重量部に対して、上記光触媒組成物を、通常、
1〜100重量部、好ましくは5〜50重量部である。
光触媒組成物が過度に少ないと樹脂成形品の光触媒反応
が少ないおそそれがあり、逆に、光触媒組成物が過度に
多いと、熱可塑性樹脂が分解する可能性がある。上記樹
脂組成物を調製する際、樹脂加工の際に通常配合される
熱安定剤、滑剤、耐衝撃強化剤、可塑剤、帯電防止剤、
難燃剤、酸化防止剤、紫外線吸収剤、顔料、カップリン
グ剤、防黴剤なども配合して混合するとよい。
To mix the photocatalyst composition with the thermoplastic resin, a tumbler mixer, a universal mixer, a Hobart mixer, a ribbon blender, a Henschel mixer, a Banbury mixer, a pressure kneader or the like may be used. The mixing ratio of the thermoplastic resin composition is, with respect to 100 parts by weight of the thermoplastic resin, the photocatalyst composition, usually,
It is 1 to 100 parts by weight, preferably 5 to 50 parts by weight.
If the amount of the photocatalyst composition is too small, the photocatalytic reaction of the resin molded article may be small. Conversely, if the amount of the photocatalyst composition is too large, the thermoplastic resin may be decomposed. When preparing the above resin composition, a heat stabilizer, a lubricant, an impact resistance enhancer, a plasticizer, an antistatic agent, which are usually compounded during resin processing,
It is preferable that a flame retardant, an antioxidant, an ultraviolet absorber, a pigment, a coupling agent, a fungicide and the like are also blended and mixed.

【0013】熱可塑性樹脂に光触媒組成物を配合するに
際しては、光触媒組成物を予め同種の少量の樹脂に配合
したマスターバッチとし、これを多量の樹脂に配合する
方法を採ってもよいし、光触媒組成物を直接多量の樹脂
に配合する方法を採ってもよい。マスターバッチは、光
触媒組成物を適用しようとする樹脂と同種類の少量の樹
脂に予め十分に均一に分散、調合した樹脂組成物であ
り、このマスターバッチを多量の樹脂に配合するときは
比較的に簡略な混合でも全体的に均一な分散ができるよ
うにするものである。
When a photocatalyst composition is blended with a thermoplastic resin, a masterbatch in which the photocatalyst composition is blended in advance with a small amount of the same kind of resin, and this may be blended with a large amount of resin may be employed. A method in which the composition is directly mixed with a large amount of resin may be adopted. A masterbatch is a resin composition which is sufficiently and uniformly dispersed and prepared in advance in a small amount of the same kind of resin as the resin to which the photocatalyst composition is to be applied. This enables uniform dispersion to be achieved even with simple mixing.

【0014】光触媒組成物を配合した熱可塑性樹脂組成
物は押出機などで溶融混練してペレット化してもよい。
また、熱可塑性樹脂組成物が、例えば塩化ビニル樹脂組
成物やオレフィン系樹脂組成物などの場合で、粉体加工
するときは、熱可塑性樹脂組成物は粉末状とする必要が
ある。本発明の光触媒組成物が配合された熱可塑性樹脂
組成物の成形方法は特に制限はなく、押出成形法、カレ
ンダーロール成形法、射出成形法、圧縮成形法、真空成
形法、粉体成形法などにより成形することができる。
The thermoplastic resin composition containing the photocatalyst composition may be melt-kneaded with an extruder or the like to form pellets.
Further, when the thermoplastic resin composition is, for example, a vinyl chloride resin composition or an olefin-based resin composition, and the powder is processed, the thermoplastic resin composition needs to be in a powder form. The molding method of the thermoplastic resin composition containing the photocatalyst composition of the present invention is not particularly limited, and includes an extrusion molding method, a calender roll molding method, an injection molding method, a compression molding method, a vacuum molding method, a powder molding method, and the like. Can be molded.

【0015】本発明の光触媒組成物を使用した樹脂成形
品の表面には、特に、波長400nm〜200nmの紫
外線が光触媒反応を活発に起こすので光源として好適で
ある。紫外線の他に可視光線、赤外線が同時に照射され
てもよい。紫外線の光源としては、太陽光、超高圧水銀
灯、キセノン灯、低圧水銀灯、ケミカルランプ、レーザ
ー、ブラックライト、殺菌灯、LED、蛍光灯などが挙
げられる。
The surface of a resin molded article using the photocatalyst composition of the present invention is particularly suitable as a light source because ultraviolet rays having a wavelength of 400 nm to 200 nm actively activate a photocatalytic reaction. Visible light and infrared light may be simultaneously irradiated in addition to ultraviolet light. Examples of the ultraviolet light source include sunlight, ultrahigh-pressure mercury lamp, xenon lamp, low-pressure mercury lamp, chemical lamp, laser, black light, germicidal lamp, LED, and fluorescent lamp.

【0016】本発明の光触媒組成物を使用した樹脂成形
品の表面は、紫外線を受けて汚れ防止、殺菌、防黴、悪
臭除去、有害ガス除去、鮮度保持などの各種の光触媒反
応を起こす効果を有する。具体的な用法としては、例え
ば、自動車の排ガス中のススなどによる汚れの防止のた
めの家屋や車庫の壁面;殺菌のための病院の内壁;殺菌
のためのボールペンやふでばこ;防黴のための浴室の壁
面;ホルマリンなどによるシックハウス症候群の予防の
ための家屋の内壁;アンモニア、アミン、メチルメルカ
プタン、硫化水素、イソ吉草酸など悪臭物質の除去のた
めの家屋の内壁;自動車の排ガス中のNO、SO
などの有害ガス除去のための駐車場やトンネルの内
壁;エチレン、アセトアルデヒドなどの植物成長促進物
質を除去して鮮度保持するための青果物倉庫の内壁など
が挙げられる。
The surface of a resin molded article using the photocatalyst composition of the present invention is exposed to ultraviolet rays and has the effect of causing various photocatalytic reactions such as stain prevention, sterilization, mold prevention, odor removal, harmful gas removal and freshness maintenance. Have. Specific usages include, for example, walls of houses and garages for prevention of dirt due to soot and the like in exhaust gas of automobiles; inner walls of hospitals for sterilization; ball-point pens and blowers for sterilization; Wall of bathroom for bathroom; inner wall of house for prevention of sick house syndrome caused by formalin etc .; inner wall of house for removal of malodorous substances such as ammonia, amine, methyl mercaptan, hydrogen sulfide, isovaleric acid; of NO X, SO
Inner walls of parking lots and tunnels for removing harmful gases such as X ; inner walls of vegetable stores for removing plant growth promoting substances such as ethylene and acetaldehyde to maintain freshness.

【0017】[0017]

【実施例】以下に、実施例を挙げて本発明を説明する
が、本発明はこれらにより限定されるものではない。な
お、部数および%は特に表記しない限り、重量基準であ
る。光触媒として、アナターゼ型二酸化チタン(A−1
00、多木化学株式会社製、結晶子サイズ8nm)を使
用した。試験法は以下によった。(1)光触媒反応試験 内容積1500mlのパイレックス(登録商標)製セパ
ラブルフラスコに試料片1枚を置き、内部の空気をエア
ポンプにて3リットル/分で循環しつつ、同フラスコ上
方にあるケミカルランプ(FL10BL、東芝株式会社
製)より石英製の蓋を通して紫外線を強度1mW/cm
で照射する。この系内にエチレンをガスタイトシリ
ンジで初期濃度100ppmとなる量添加し、光触媒に
より分解して減少するエチレン濃度を時間の経過につれ
て測定する。エチレン濃度の測定は、水素炎イオン化検
出器(FID)型ガスクロマトグラフィーによる。数値
が小さいほど光触媒反応の効果が大きい。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, parts and% are based on weight. As a photocatalyst, anatase type titanium dioxide (A-1)
00, manufactured by Taki Chemical Co., Ltd., crystallite size: 8 nm). The test method was as follows. (1) Photocatalytic reaction test One sample piece was placed in a 1500 ml separable flask made of Pyrex (registered trademark), and a chemical lamp was placed above the flask while circulating the air at 3 liters / minute with an air pump. (FL10BL, manufactured by Toshiba Corporation) UV light intensity 1 mW / cm through quartz lid
Irradiate at 2 . Ethylene is added to this system by a gas-tight syringe in such an amount that the initial concentration becomes 100 ppm, and the ethylene concentration which is decomposed and reduced by the photocatalyst is measured over time. The measurement of the ethylene concentration is based on a flame ionization detector (FID) type gas chromatography. The smaller the value, the greater the effect of the photocatalytic reaction.

【0018】(2)耐光性試験 UVテスター{SUV−W13、岩崎電気(株)製}に
同一種類の試験片3枚を設置し、水冷式メタルハライド
ランプ、波長295〜450nm、UV強度50mW/
cm、温度50℃、相対湿度70%の条件で50,
100および200時間経過時点で試験片各1枚を取り
出して表面状態を観察し、下記基準で評価する。 ○:割れまたは欠けが無い。 △:割れまたは欠けがわずか見られる。 ×:半分以上の面積に割れまたは欠けが見られる。
(2) A light resistance test UV tester (SUV-W13, manufactured by Iwasaki Electric Co., Ltd.) was equipped with three test pieces of the same type, and was provided with a water-cooled metal halide lamp, a wavelength of 295 to 450 nm, and a UV intensity of 50 mW /
cm 2 , temperature 50 ° C., and relative humidity 70%.
After 100 and 200 hours, one test piece is taken out, the surface state is observed, and the evaluation is made according to the following criteria. :: No crack or chipping. Δ: Cracks or chips were slightly observed. ×: Cracks or chips are seen in more than half the area.

【0019】実施例1 アナターゼ型二酸化チタン(A−100)とルチル型二
酸化チタン(R−820、石原産業株式会社製)とを重
量比1/9の割合で混合して光触媒組成物Aを調製し
た。次に、塩化ビニル樹脂〔ZEST 1000Z、新
第一塩ビ(株)製、塩化ビニル単独重合体、平均重合度
1050〕100部、前記光触媒組成物Aを10部およ
び三塩基性硫酸鉛/ステアリン酸鉛複合熱安定剤3部を
ヘンシェルミキサーで高速混合して得た粉末状の混合物
を、シリンダー径40mmの二軸異方向押出機により、
バレル温度175℃で3mmφ×60穴のホットカット
ダイスにてペレット化して塩化ビニル樹脂組成物Aを作
製した。得られた塩化ビニル樹脂組成物Aのペレットを
用いて、シリンダー径40mmの一軸押出機(L/D=
24、圧縮比2.5、25rpm、バレル温度170
℃、厚み1mm×幅45mmベルトダイス)により、幅
45mm、厚み1mm、長さ500mmの硬質塩化ビニ
ル樹脂製ベルトを押出成形した。これより、縦75m
m、横45mm、厚さ1mmの塩化ビニル樹脂の試験片
を5枚作製した。得られた試験片の紫外線照射下での光
触媒反応試験および耐光性試験を行った結果を表1に記
す。
Example 1 Photocatalytic composition A was prepared by mixing anatase type titanium dioxide (A-100) and rutile type titanium dioxide (R-820, manufactured by Ishihara Sangyo Co., Ltd.) at a weight ratio of 1/9. did. Next, 100 parts of a vinyl chloride resin [ZEST 1000Z, manufactured by Shin-Daiichi PVC Co., Ltd., vinyl chloride homopolymer, average degree of polymerization 1050], 10 parts of the photocatalyst composition A, and tribasic lead sulfate / stearic acid A powdery mixture obtained by high-speed mixing of 3 parts of the lead composite heat stabilizer with a Henschel mixer is subjected to a biaxially different-direction extruder having a cylinder diameter of 40 mm.
Pellets were formed at a barrel temperature of 175 ° C. with a hot cut die of 3 mmφ × 60 holes to prepare a vinyl chloride resin composition A. Using the pellets of the obtained vinyl chloride resin composition A, a single screw extruder (L / D = 40 mm in cylinder diameter) was used.
24, compression ratio 2.5, 25 rpm, barrel temperature 170
C., a 1 mm thick × 45 mm wide belt die) was used to extrude a 45 mm wide, 1 mm thick, 500 mm long belt made of a hard vinyl chloride resin. From this, height 75m
Five test pieces of vinyl chloride resin having a length of 45 mm, a width of 45 mm and a thickness of 1 mm were prepared. Table 1 shows the results of a photocatalytic reaction test and a light resistance test of the obtained test piece under ultraviolet irradiation.

【0020】比較例1 実施例1において、塩化ビニル樹脂に、光触媒組成物A
に代えてアナターゼ型ニ酸化チタン(A−100)10
部を添加した他は実施例1と同様な方法で塩化ビニル樹
脂組成物を作製したが、その直後から塩化ビニル樹脂が
分解を始め、試験片を作製することができなかった。
Comparative Example 1 In Example 1, a vinyl chloride resin was added to the photocatalyst composition A.
Anatase type titanium dioxide (A-100) 10
A vinyl chloride resin composition was prepared in the same manner as in Example 1 except that the parts were added. Immediately thereafter, the vinyl chloride resin began to decompose, and a test piece could not be prepared.

【0021】実施例2 アナターゼ型二酸化チタン(A−100)の粉末を、温
度1000℃で3時間焼成し、アナターゼ型二酸化チタ
ン/ルチル型二酸化チタンの重量比が13/87で混在
する光触媒組成物Bを調製した。次に、前記光触媒組成
物Bを使用して、実施例1と同様にして塩化ビニル樹脂
組成物Bを作製し、光触媒反応試験および耐光性試験を
行った。結果を表1に記す。
EXAMPLE 2 A powder of anatase type titanium dioxide (A-100) was calcined at a temperature of 1000 ° C. for 3 hours, and a photocatalyst composition in which the weight ratio of anatase type titanium dioxide / rutile type titanium dioxide was 13/87 was mixed. B was prepared. Next, using the photocatalyst composition B, a vinyl chloride resin composition B was prepared in the same manner as in Example 1, and a photocatalytic reaction test and a light resistance test were performed. The results are shown in Table 1.

【0022】実施例3 攪拌機および冷却ジャケットを備えた耐圧反応器に、メ
チルメタクリレート80部、n−ブチルアクリレート2
0部、連鎖移動剤t−ドデシルメルカプタン0.5部、
重合開始剤ラウロイルパーオキサイド0.1部およびメ
チルエチルケトン150部を入れ、攪拌しつつ温度75
℃にて重合反応を行った。重合転化率98%で冷却して
反応を終了した。得られたアクリル樹脂のMwは75,
000、Tgは74℃であった。重合反応終了後の反応
溶液25部を採取してロータリーエバポレーターに入
れ、50℃にて減圧下でメチルエチルケトンを一部留去
してアクリル樹脂溶液の粘度が6500mPa・sのと
き、この濃厚溶液中のアクリル樹脂100部に対して、
実施例1で調製した光触媒組成物Aを10部添加して均
一に混合した。この分散液をステンレス製の、縦75m
m、横45mm、深さ2mmの皿状容器に入れ、温度6
0℃で減圧乾燥し、縦75mm、横45mm、厚み1m
mの試験片5枚を得た。得られた試験片で光触媒反応試
験および耐光性試験を行った結果を表1に記す。
Example 3 A pressure-resistant reactor equipped with a stirrer and a cooling jacket was charged with 80 parts of methyl methacrylate and n-butyl acrylate 2
0 parts, chain transfer agent t-dodecyl mercaptan 0.5 part,
0.1 part of the polymerization initiator lauroyl peroxide and 150 parts of methyl ethyl ketone are added, and the mixture is stirred at a temperature of 75 parts.
The polymerization reaction was carried out at ℃. The reaction was terminated by cooling at a polymerization conversion of 98%. Mw of the obtained acrylic resin is 75,
000 and Tg were 74 ° C. After the polymerization reaction was completed, 25 parts of the reaction solution was collected and put into a rotary evaporator, and methyl ethyl ketone was partially distilled off under reduced pressure at 50 ° C., and when the viscosity of the acrylic resin solution was 6500 mPa · s, For 100 parts of acrylic resin,
10 parts of the photocatalyst composition A prepared in Example 1 was added and uniformly mixed. This dispersion is made of stainless steel, 75 m long
m, 45 mm wide and 2 mm deep in a dish-shaped container at a temperature of 6
Dry under reduced pressure at 0 ° C, length 75mm, width 45mm, thickness 1m
m test pieces were obtained. Table 1 shows the results of a photocatalytic reaction test and a light fastness test performed on the obtained test pieces.

【0023】比較例2 特開平9−225319号公報の記載に従い、粒子の表
面に水を吸着させたアナターゼ型二酸化チタンの表面で
シリコンテトラエトキシドを加水分解し、光触媒として
不活性なセラミックスを粒子表面に島状に付着させた光
触媒粒子(光触媒C)を調製した。次に、実施例1と同
様な操作を行って塩化ビニル樹脂組成物Cを得た。実施
例1と同様にして作製した試験片で光触媒反応試験およ
び耐光性試験を行った結果を表1に記す。
Comparative Example 2 In accordance with the description in JP-A-9-225319, silicon tetraethoxide was hydrolyzed on the surface of anatase-type titanium dioxide having water adsorbed on the surface of the particles, and the particles of inert ceramics were used as a photocatalyst. Photocatalyst particles (photocatalyst C) attached to the surface in an island shape were prepared. Next, the same operation as in Example 1 was performed to obtain a vinyl chloride resin composition C. Table 1 shows the results of the photocatalytic reaction test and the light resistance test performed on the test pieces prepared in the same manner as in Example 1.

【0024】[0024]

【表1】 [Table 1]

【0025】本発明の光触媒組成物は簡単に調製するこ
とができ、表1が示すように、これを用いた熱可塑性樹
脂組成物は紫外線照射下でエチレン濃度は低下し、か
つ、長期間光照射した成形品表面は損傷が生じていない
(実施例1〜3)。これに対し、アナターゼ型ニ酸化チ
タンのみを配合した塩化ビニル樹脂組成物は、塩化ビニ
ル樹脂が分解して成形品が得られなかった(比較例
1)。また、光触媒として不活性なセラミックスを粒子
表面に島状に付着させた光触媒粒子を使用した場合、塩
化ビニル樹脂成形品は光触媒反応活性は実施例1と同等
であるが、耐光性試験で表面に劣化が見られた(比較例
2)。
The photocatalyst composition of the present invention can be easily prepared. As shown in Table 1, a thermoplastic resin composition using the photocatalyst composition has a low ethylene concentration under ultraviolet irradiation and a long-term The irradiated molded product surface is not damaged (Examples 1 to 3). On the other hand, in the case of the vinyl chloride resin composition containing only the anatase type titanium dioxide, the vinyl chloride resin was decomposed and a molded article was not obtained (Comparative Example 1). When photocatalyst particles in which inactive ceramics are attached to the particle surface in the form of islands are used as the photocatalyst, the vinyl chloride resin molded article has the same photocatalytic reaction activity as that of Example 1, but the surface shows a light resistance test. Deterioration was observed (Comparative Example 2).

【0026】[0026]

【発明の効果】本発明により、建物の壁面などに使用さ
れ、長期にわたって劣化することがなく、しかも光触媒
反応性に優れた光触媒活性表面を有する樹脂資材が提供
される。
According to the present invention, there is provided a resin material having a photocatalytically active surface which is not deteriorated for a long time and has excellent photocatalytic reactivity, which is used for a wall surface of a building or the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // E04F 13/02 E04F 13/02 A Fターム(参考) 4F071 AA24 AA33 AB18 AB24 AB31 BC17 4G069 AA08 BA04B BA48A CA17 CD10 DA05 EA01Y EC22Y ED04 FA01 FB07 4J002 AA011 BD031 BG031 DE096 DE106 DE116 DE136 DE137 DE147 DE287 DG047 DJ007 DJ047 DJ057 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // E04F 13/02 E04F 13/02 A F term (Reference) 4F071 AA24 AA33 AB18 AB24 AB31 BC17 4G069 AA08 BA04B BA48A CA17 CD10 DA05 EA01Y EC22Y ED04 FA01 FB07 4J002 AA011 BD031 BG031 DE096 DE106 DE116 DE136 DE137 DE147 DE287 DG047 DJ007 DJ047 DJ057

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光触媒と、光触媒として不活性な無機粉
末からなる光触媒組成物。
1. A photocatalyst composition comprising a photocatalyst and an inorganic powder inert as a photocatalyst.
【請求項2】 熱可塑性樹脂に、請求項1に記載された
光触媒組成物を配合してなる熱可塑性樹脂組成物。
2. A thermoplastic resin composition obtained by blending the photocatalyst composition according to claim 1 with a thermoplastic resin.
【請求項3】 請求項2に記載された熱可塑性樹脂組成
物からなる樹脂成形品。
3. A resin molded article comprising the thermoplastic resin composition according to claim 2.
JP2000399164A 2000-12-27 2000-12-27 Photocatalyst composition and thermoplastic resin composition containing the same Pending JP2002191984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000399164A JP2002191984A (en) 2000-12-27 2000-12-27 Photocatalyst composition and thermoplastic resin composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000399164A JP2002191984A (en) 2000-12-27 2000-12-27 Photocatalyst composition and thermoplastic resin composition containing the same

Publications (1)

Publication Number Publication Date
JP2002191984A true JP2002191984A (en) 2002-07-10

Family

ID=18863995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000399164A Pending JP2002191984A (en) 2000-12-27 2000-12-27 Photocatalyst composition and thermoplastic resin composition containing the same

Country Status (1)

Country Link
JP (1) JP2002191984A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300514B2 (en) * 2002-10-03 2007-11-27 Ciments Francais Photocatalytic granular mixture for mortar and concrete and its use
JP2009221362A (en) * 2008-03-17 2009-10-01 Asahi Kasei Chemicals Corp Photocatalyst coating film and photocatalyst composition
CN112439456A (en) * 2020-11-19 2021-03-05 西安理工大学 Preparation of floatable porous BaTiO3Method for preparing/Ag/PVDF composite piezoelectric photocatalytic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300514B2 (en) * 2002-10-03 2007-11-27 Ciments Francais Photocatalytic granular mixture for mortar and concrete and its use
US7556683B2 (en) 2002-10-03 2009-07-07 Ciments Francais Photocatalytic granular mixture for mortar and concrete and its use
JP2009221362A (en) * 2008-03-17 2009-10-01 Asahi Kasei Chemicals Corp Photocatalyst coating film and photocatalyst composition
CN112439456A (en) * 2020-11-19 2021-03-05 西安理工大学 Preparation of floatable porous BaTiO3Method for preparing/Ag/PVDF composite piezoelectric photocatalytic material

Similar Documents

Publication Publication Date Title
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
CN1116932C (en) Photochemical catalyst complex and its prepn.
KR101550233B1 (en) Visible light-responsive photocatalyst coating material, coated article, allergen inactivation method
JP4883912B2 (en) Visible light responsive photocatalyst and method for producing the same
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
CN1732235A (en) Titanium dioxide coated with silicon dioxide
US6407156B1 (en) Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
JP2008212841A (en) Decomposition method
JP4140770B2 (en) Titanium dioxide fine particles, method for producing the same, and method for producing visible light active photocatalyst
EP1147812A1 (en) Photocatalytic powder, photocatalytic slurry, and polymer composition, coating agent, photocatalytic functional molded article and photocatalytic functional structure using the powder
JP2009166022A (en) Photocatalytic agent having titanium oxide-iron titanate joint structure, and its producing method
EP3670469A1 (en) A cementitious composition with photocatalytic activity under visible light
JP2002191984A (en) Photocatalyst composition and thermoplastic resin composition containing the same
JP2011079713A (en) Copper ion-modified titanium oxide, method for producing the same, and photocatalyst
JP4883913B2 (en) Photocatalyst and method for producing the same
JP2010075898A (en) Photocatalyst, method of manufacturing the same, and composition having photocatalytic function
JP2009131756A (en) Method for producing titanium oxide-based deodorant
JP2004244608A (en) Hydrolytic polycondensation product solution, method for producing the same and transparent film forming composition given by using the same
US11906157B2 (en) Photocatalyst formulations and coatings
JP4103324B2 (en) Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same
KR100631337B1 (en) Preparation of Visible Light Responding Photocatalytic Coating Solution
JP5130206B2 (en) Visible light responsive titanium oxide photocatalyst dispersion composition and method for producing the same
JP2015131282A (en) Photocatalyst, coating agent and interior material
JP2003340289A (en) Photocatalyst composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224