KR100631337B1 - Preparation of Visible Light Responding Photocatalytic Coating Solution - Google Patents

Preparation of Visible Light Responding Photocatalytic Coating Solution Download PDF

Info

Publication number
KR100631337B1
KR100631337B1 KR1020040062037A KR20040062037A KR100631337B1 KR 100631337 B1 KR100631337 B1 KR 100631337B1 KR 1020040062037 A KR1020040062037 A KR 1020040062037A KR 20040062037 A KR20040062037 A KR 20040062037A KR 100631337 B1 KR100631337 B1 KR 100631337B1
Authority
KR
South Korea
Prior art keywords
weight
titanium dioxide
photocatalyst coating
mixture
photocatalyst
Prior art date
Application number
KR1020040062037A
Other languages
Korean (ko)
Other versions
KR20060013181A (en
Inventor
이태규
김동형
윤우석
Original Assignee
(주) 나노팩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 나노팩 filed Critical (주) 나노팩
Priority to KR1020040062037A priority Critical patent/KR100631337B1/en
Publication of KR20060013181A publication Critical patent/KR20060013181A/en
Application granted granted Critical
Publication of KR100631337B1 publication Critical patent/KR100631337B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plant Pathology (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 전체 혼합물 중량당 0.1 내지 6 중량%의 암모니아수, 1 내지 10 중량%의 사염화티탄 및 84 내지 98.9중량%의 용매를 0 내지 20℃에서 혼합하는 단계; 상기 혼합물을 초음파진동기로 5 내지 30분간 분산시키는 단계; 상기 분산된 혼합물을 70 내지 100℃에서 2시간 동안 숙성시키는 단계; 상기 숙성단계가 종료된 혼합물을 실온에서 냉각시킨 후 분리막을 이용하여 pH 2 내지 5가 될 때까지 투석시켜 콜로이드 상태의 질소이온 및 염소이온이 도핑된 이산화티타늄을 제조하는 단계를 포함하는 광촉매 코팅용 졸의 제조방법을 제공한다.The present invention comprises the steps of mixing 0.1 to 6% by weight of ammonia water, 1 to 10% by weight titanium tetrachloride and 84 to 98.9% by weight of the solvent at 0 to 20 ℃ per weight of the total mixture; Dispersing the mixture with an ultrasonic vibrator for 5 to 30 minutes; Aging the dispersed mixture at 70 to 100 ° C. for 2 hours; After cooling the mixture at the end of the aging step at room temperature and dialyzed until the pH 2 to 5 using a membrane for preparing a photocatalyst coating comprising the step of preparing titanium dioxide doped with colloidal nitrogen and chlorine ions Provided are methods for preparing the sol.

본 발명에 따르면, 이산화티타늄에 질소이온 및 염소이온이 도핑되어 가시광선 영역에서 광촉매 활성을 나타낼 수 있는 효과가 있다.According to the present invention, titanium dioxide and chlorine ions are doped into titanium dioxide, thereby exhibiting photocatalytic activity in the visible light region.

가시광선, 이산화 티탄, 질소이온, 염소이온, 도핑, 광촉매Visible light, titanium dioxide, nitrogen ion, chlorine ion, doping, photocatalyst

Description

가시광선 응답형 광촉매 코팅용 졸의 제조방법{Preparation of Visible Light Responding Photocatalytic Coating Solution} Manufacturing method of sol for visible light responsive photocatalyst coating {Preparation of Visible Light Responding Photocatalytic Coating Solution}             

도 1은 본 발명에 따른 질소이온 및 염소이온이 도핑된 이산화티타늄과 이산화티타늄(P25)의 자외선/가시광선 흡광도를 비교한 그래프,1 is a graph comparing ultraviolet / visible absorbances of titanium dioxide and titanium dioxide (P25) doped with nitrogen and chlorine ions according to the present invention;

도 2는 본 발명에 따른 질소이온 및 염소이온이 도핑된 이산화티타늄의 전자현미경(TEM) 사진,2 is an electron microscope (TEM) photograph of titanium dioxide doped with nitrogen and chlorine ions according to the present invention;

도 3은 본 발명에 따른 질소이온 및 염소이온이 도핑된 이산화티타늄과 종래의 이산화티타늄의 분해능을 나타낸 그래프이다.3 is a graph showing the resolution of titanium dioxide doped with nitrogen and chlorine ions according to the present invention and conventional titanium dioxide.

본 발명은 광촉매 코팅용 졸의 제조방법에 관한 것으로서, 더욱 상세하게는 암모니아수, 사염화티탄 및 용매를 혼합하여 반응시킴으로써 질소이온 및 염소이온이 도핑된 이산화티타늄을 포함하는 광촉매 코팅용 졸의 제조방법에 관한 것이다. The present invention relates to a method for preparing a photocatalyst coating sol, and more particularly, to a method for preparing a photocatalyst coating sol comprising titanium dioxide doped with nitrogen and chlorine ions by mixing and reacting ammonia water, titanium tetrachloride and a solvent. It is about.

산업혁명이후 산업화의 가속으로 환경문제가 급속도로 심화되고 있으며, 이 로 인하여 공기오염에 대한 관심이 높아지고 있고, 건물내에서 생활하는 대부분의 재실자들은 실내환경 개선의 중요성을 인식하여 쾌적한 실내환경에서 거주하기 위해 노력하고 있다. 특히, 인간이 실내에서 생활하는 시간이 하루 중 90% 이상을 차지하고 있으며, 실내공기가 오염될 경우 쉽게 정화되지 않아 재실자들의 건강을 위협하는 원인으로 작용하기 때문에 이에 대한 대책 마련이 시급한 실정이다. After the Industrial Revolution, environmental problems are rapidly intensifying due to the acceleration of industrialization, and as a result, interest in air pollution is increasing, and most of the occupants living in buildings recognize the importance of improving the indoor environment and live in a comfortable indoor environment. I'm trying to. In particular, humans occupy more than 90% of their time indoors, and if indoor air is contaminated, it is not easy to clean, which acts as a threat to the health of inmates.

이에, 보다 쾌적한 실내환경을 조성하기 위하여 광촉매의 광활성을 이용하여 오염물질의 제거방법이 대두되고 있다.Accordingly, in order to create a more comfortable indoor environment, a method of removing contaminants has emerged by using photocatalytic photoactivity.

한편, 상기 광촉매로 사용되고 있는 대표적인 물질로는 고체 형태를 갖는 반도체인 이산화티타늄이 주로 이용되고 있는데, 상기 이산화티탄 등의 광촉매의 전자구조는 띠-이론(band-theory)으로서 설명되는 바, 그 구조는 전자에 의해 가득 채워진 가장 높은 에너지 띠인 공유 띠 (valence band)와 전자가 점유하지 않아 비어있는 전도 띠 사이에 전자가 점유할 수 없는 금지된 에너지 띠 간격(band gap, Eg)이 존재하게 된다.Meanwhile, as a representative material used as the photocatalyst, titanium dioxide, a semiconductor having a solid form, is mainly used. The electronic structure of the photocatalyst, such as titanium dioxide, is described as a band-theory, and the structure thereof. There is a forbidden energy band gap (Eg) between the valence band, which is the highest energy band filled by the electrons, and the electrons do not occupy, so that the electrons cannot occupy.

특히 상기 고체 형태는 주로 전기 전도도에 따라 전도체, 반도체, 절연체로 분류되며, 이는 근본적으로 에너지 띠의 전자 점유 양태에 의하여 점유된 경우로서 전자가 에너지 띠 내에서 자유로이 움직일 수 있다. In particular, the solid form is mainly classified into a conductor, a semiconductor, and an insulator according to the electrical conductivity, which is basically the case where the electron is occupied by the electron occupancy mode of the energy band, and the electron can move freely in the energy band.

반도체와 절연체의 전자 점유양태는 기본적으로 서로 동일한 형태로 이루어져 있지만 에너지 띠 간격의 크기에 따라 0.3 내지 3.5eV의 범위에 점유하고 있으면 반도체이고 그 이상의 범위에 점유하고 있으면 절연체로 분류된다.The electron-occupying aspects of the semiconductor and the insulator are basically the same, but are classified as insulators if they occupy a range of 0.3 to 3.5 eV depending on the size of the energy band gap, and are occupied in a higher range.

한편, 반도체는 띠 간격 이상의 에너지를 갖는 광자(hv≥Eg)를 흡수하여 공 유 띠에서 전도띠로 전자를 여기시키고, 공유 띠에는 정공(hole)을 형성시켜 상기 전도띠에는 전자가 형성되게 된다. 이때 이산화티타늄과 같이 띠 간격이 큰 반도체(3.0 내지 3.2eV)는 짧은 파장의 빛만을 흡수하고 태양에너지의 대부분을 차지하는 가시광선 영역의 빛을 흡수하지 못하게 되므로, 종래에 사용되고 있는 광촉매는 대부분 자외선 영역에서 광활성을 나타낼 뿐 가시광선 영역에서는 광촉매 활성을 나타내지 못하게 된다.On the other hand, the semiconductor absorbs photons ( hv ≥Eg) having energy above the band gap to excite electrons from the shared band to the conduction band, and form holes in the sharing band to form electrons in the conduction band. In this case, semiconductors having a large band gap (3.0 to 3.2 eV), such as titanium dioxide, absorb only light having a short wavelength and do not absorb light in the visible light region, which occupies most of the solar energy. The photocatalyst shows only photoactivity at and does not show photocatalytic activity in the visible region.

그러므로, 상기 이산화티타늄은 화학적, 광화학적으로 매우 안정하며 그 용도가 다양하여 공업적으로 대량으로 생산되어 광촉매로 가장 널리 사용되고 있지만, 앞서 설명한 바와 같이 자외선을 받지 않으면 촉매로서의 광활성을 나타내지 않는다는 제약이 있다. Therefore, the titanium dioxide is very stable chemically and photochemically and its various uses are industrially produced in large quantities and is most widely used as a photocatalyst. However, as described above, the titanium dioxide does not exhibit photoactivity as a catalyst unless subjected to ultraviolet rays. .

특히, 자외선은 태양광에 3 내지 4% 정도 포함되어 있으므로, 이산화티타늄 등의 광촉매를 광활성시키기 위해서는 인위적으로 자외선을 방출하는 광원을 별도로 구비하여야 하며, 실내등으로 주로 사용되고 있는 형광등 등의 광원에서도 소량의 자외선만이 방출되는 점을 감안하여 볼 때, 실내에 광촉매를 설치하여 사용하기 위해서는 별도로 자외선을 방출하는 광원을 구비시켜 광촉매의 효율을 증가시켜야 하는 문제점 등이 있다.In particular, since ultraviolet rays contain about 3 to 4% of sunlight, in order to photoactivate photocatalysts such as titanium dioxide, a light source that artificially emits ultraviolet rays must be separately provided. In view of the fact that only ultraviolet rays are emitted, there is a problem in that, in order to install and use a photocatalyst in a room, a light source for emitting ultraviolet rays must be separately provided to increase the efficiency of the photocatalyst.

이에, 본 발명에 따른 발명자들은 가시광선 영역에서 광활성을 나타내는 광촉매 코팅용 졸을 개발하기 위하여 연구를 거듭하던 중 이산화티타늄에 질소이온 및 염소이온을 도핑시킬 경우 가시광선영역에서 광활성을 나타낸다는 점을 착안하여 본 발명을 완성하기에 이르렀다. Accordingly, the inventors of the present invention have shown that when nitrogen dioxide and chlorine ions are doped in titanium dioxide during the research to develop a photocatalyst coating sol exhibiting photoactivity in the visible region, the photoactive region exhibits photoactivity in the visible region. With this in mind, the present invention has been completed.

본 발명은 전술한 문제점을 해결하기 위하여 도출된 것으로서, 암모니아수, 사염화티탄 및 용매를 혼합하여 반응시킴으로써 가시광선 영역에서 광활성을 나타내는 광촉매 코팅용 졸의 제조방법을 제공하는 것에 기술적 과제가 있다.The present invention has been made to solve the above problems, and there is a technical problem to provide a method for producing a photocatalyst coating sol exhibiting photoactivity in the visible light region by reacting by mixing ammonia water, titanium tetrachloride and a solvent.

또한, 본 발명은 전술한 광촉매 코팅용 졸을 코팅시킨 기재를 제공하는 것에 기술적 과제가 있다.
In addition, the present invention has a technical problem to provide a substrate coated with the above-described photocatalyst coating sol.

한가지 관점에서, 본 발명은 전체 혼합물 중량당 0.1 내지 6 중량%의 암모니아수, 1 내지 10 중량%의 사염화티탄 및 84 내지 98.9중량%의 용매를 0 내지 20℃에서 혼합하는 단계; 상기 혼합물을 초음파진동기로 5 내지 30분간 분산시키는 단계; 상기 분산된 혼합물을 70 내지 100℃에서 2시간 동안 숙성시키는 단계; 상기 숙성단계가 종료된 혼합물을 실온에서 냉각시킨 후 분리막을 이용하여 pH 2 내지 5가 될 때까지 투석시켜 콜로이드 상태의 질소이온 및 염소이온이 도핑된 이산화티타늄을 제조하는 단계를 포함하는 광촉매 코팅용 졸의 제조방법을 제공한다.In one aspect, the present invention comprises the steps of mixing at 0.1 to 6% by weight of ammonia water, 1 to 10% by weight titanium tetrachloride and 84 to 98.9% by weight of the solvent at 0 to 20 ℃ per weight of the total mixture; Dispersing the mixture with an ultrasonic vibrator for 5 to 30 minutes; Aging the dispersed mixture at 70 to 100 ° C. for 2 hours; After cooling the mixture at the end of the aging step at room temperature and dialyzed until the pH 2 to 5 using a membrane for preparing a photocatalyst coating comprising the step of preparing titanium dioxide doped with colloidal nitrogen and chlorine ions Provided are methods for preparing the sol.

다른 관점에서, 본 발명은 광촉매 코팅용 졸의 제조방법에 따라 제조된 광촉매 코팅용 졸을 코팅시킨 기재를 제공한다.In another aspect, the present invention provides a substrate coated with a photocatalyst coating sol prepared according to a method for preparing a photocatalyst coating sol.

본 발명에 따른 광촉매 코팅용 졸은 이산화티타늄에 질소이온 및 염소이온이 도핑된 형태, 바람직하게는 이산화티타늄에 콜로이드 상태의 질소이온 및 염소이온 이 도핑된 형태를 포함하며, 가시광선 영역의 빛이 조사될 경우 광촉매 활성을 나타낸다.The photocatalyst coating sol according to the present invention includes titanium dioxide doped with nitrogen and chlorine ions, and preferably titanium dioxide in the form of colloidal nitrogen and chlorine ions, and the light in the visible region When irradiated, it exhibits photocatalytic activity.

본 발명에 따른 암모니아수(NH4OH)는 광촉매 코팅용 졸에 포함되어 있는 이산화티타늄에 질소이온을 도핑하기 위해 사용되는 것으로서, 당업계에서 통상적으로 사용하고 있는 암모니아수라면 어떠한 것을 사용하여도 무방하며, 그 사용량은 전체 혼합물 중량당 0.1 내지 6중량%를 사용하는 것이 좋다.Ammonia water (NH 4 OH) according to the present invention is used to dope nitrogen ions to titanium dioxide contained in the photocatalyst coating sol, and any ammonia water commonly used in the art may be used. The amount used is preferably 0.1 to 6% by weight based on the total weight of the mixture.

본 발명에 따른 사염화티탄(TiCl4)은 광촉매 코팅용 졸을 구성하는 이산화티타늄을 형성하고 및 상기 형성된 이산화티타늄에 염소이온을 도핑하기 위해 사용되는 것으로서, 당업계에서 통상적으로 사용하고 있는 사염화티탄이라면 어떠한 것을 사용하여도 무방하며, 그 사용량은 전체 혼합물 중량당 1 내지 10중량%를 사용하는 것이 좋다.Titanium tetrachloride (TiCl 4 ) according to the present invention is used to form titanium dioxide constituting the photocatalyst coating sol and to dope chlorine ions into the formed titanium dioxide, and if titanium tetrachloride is commonly used in the art Any may be used, and the amount thereof is preferably used in an amount of 1 to 10% by weight based on the total weight of the mixture.

본 발명에 따른 용매는 상기 암모니아수 및 사염화티탄을 용해시키기 위한 것으로서, 상기 암모니아수 및 사염화티탄을 용해시킬 수 있는 것이라면 어떠한 것을 사용하여도 무방하지만, 바람직하게는 물을 사용하는 것이 좋고, 더욱 바람직하게는 증류수를 사용하는 것이 좋으며, 그 사용량은 전체 혼합물 중량당 84 내지 98.9중량%를 사용하는 것이 좋다.The solvent according to the present invention is for dissolving the ammonia water and titanium tetrachloride, and any solvent can be used as long as it can dissolve the ammonia water and titanium tetrachloride, but preferably water is used, more preferably. It is preferable to use distilled water, and the amount of use is preferably 84 to 98.9% by weight based on the total weight of the mixture.

본 발명에 따른 분리막은 상기 암모니아수, 사염화티탄 및 용매가 숙성되어 제조된 반응물을 투석시켜 pH를 2 내지 5로 조절하기 위한 것으로서, pH를 조절할 수 있도록 투석 가능한 분리막이라면 어떠한 분리막을 사용하여도 무방하지만, 바 람직하게는 이온교환막을 사용하는 것이 좋고, 특히 바람직하게는 분획 분자량(Molecular Weight Cut off, MWCO)이 6000 내지 8000Da인 이온교환막을 사용하는 것이 좋다.Separation membrane according to the present invention is to adjust the pH to 2 to 5 by dialysis of the reactant prepared by the ammonia water, titanium tetrachloride and the solvent is aged, any separation membrane can be used as long as the dialysis membrane to control the pH Preferably, it is preferable to use an ion exchange membrane, and particularly preferably an ion exchange membrane having a molecular weight cut off (MWCO) of 6000 to 8000 Da.

여기서, 상기 분리막은 통상적으로 "막" 또는 "교환막"과 동일한 의미로 사용되는 바, 본 발명에 따른 분리막은 상기 막 또는 교환막으로 지칭될 수 있다.Here, the separator is generally used in the same sense as the "membrane" or "exchange membrane", the separator according to the present invention may be referred to as the membrane or the exchange membrane.

이하, 본 발명에 따른 광촉매 코팅용 졸의 제조방법을 보다 상세히 설명하면 다음과 같다.Hereinafter, a method for preparing a photocatalyst coating sol according to the present invention will be described in detail.

먼저 전체 혼합물 중량당 0.1 내지 6 중량%의 암모니아수 및 1 내지 10 중량%의 사염화티탄을 0 내지 20℃의 온도를 갖는 84 내지 98.9중량%의 용매에 첨가하여 혼합시킨다.First, 0.1 to 6% by weight of ammonia water and 1 to 10% by weight of titanium tetrachloride are added to 84 to 98.9% by weight of a solvent having a temperature of 0 to 20 ° C, and mixed.

여기서, 상기 사염화티탄의 첨가량이 10중량%이상을 초과하게 되면 생성되는 입자들의 응집으로 인하여 최종적으로 제조되는 광촉매 코팅용 졸에 포함된 이산화티타늄을 초미세 입자크기 예를 들면, 10nm 이하로 제조하기 곤란하며, 상기 암모니아수의 첨가량이 6중량%이상을 초과하게 되면 콜로이드 상태를 갖는 광촉매 코팅용 졸의 안전성과 광촉매 효율이 감소하므로 그 첨가량을 일정하게 유지하는 것이 좋다. Here, to prepare the titanium dioxide contained in the photocatalyst coating sol finally produced due to the aggregation of particles produced when the amount of the titanium tetrachloride exceeds 10% by weight or more, for example, to prepare an ultrafine particle size, for example 10nm or less. If the amount of the ammonia water added exceeds 6% by weight or more, the safety and the photocatalytic efficiency of the photocatalyst coating sol having a colloidal state decrease, so that the amount of the ammonia water is kept constant.

그 다음, 상기 혼합물을 초음파진동기, 바람직하게는 약 40KHz를 갖는 초음파진동기로 5 내지 30분간 분산시킨다. 이때, 상기 혼합물의 용이한 분산을 위하여 필요에 따라 초음파진동기의 사용전에 교반기를 이용하여 상기 혼합물을 상온에 서 약 1시간 동안 교반할 수 있다.The mixture is then dispersed for 5-30 minutes with an ultrasonic vibrator, preferably an ultrasonic vibrator having about 40 KHz. In this case, for easy dispersion of the mixture, the mixture may be stirred for about 1 hour at room temperature using an stirrer before use of an ultrasonic vibrator as necessary.

그 다음, 분산된 혼합물을 70 내지 100℃의 온도범위에서 약 2시간 동안 숙성시킨다.The dispersed mixture is then aged for about 2 hours at a temperature in the range of 70 to 100 ° C.

이때, 상기 숙성단계는 상기 혼합물 용액을 가열하여 광촉매 코팅용 졸에 포함되는 이산화티타늄의 결정화를 높이기 위한 것으로서, 상기 숙성시간 약 2시간은 필요에 따라 가감할 수 있다.In this case, the aging step is to increase the crystallization of titanium dioxide contained in the photocatalyst coating sol by heating the mixture solution, the aging time may be added or subtracted as needed.

그 다음, 숙성된 상기 혼합물을 실온으로 냉각시킨 후 분리막, 바람직하게는 이온교환막을 이용하여 pH가 2 내지 5가 될 때가지 투석하여 콜로이드 상태의 질소이온 및 염소이온이 이산화티타늄에 도핑 되도록 한다.The aged mixture is then cooled to room temperature and then dialyzed using a separator, preferably an ion exchange membrane, until the pH is 2 to 5 so that the nitrogen and chlorine ions in the colloidal state are doped into titanium dioxide.

이때, 상기 분리막은 콜로이드의 이온강도(ionic strength)를 감소시키켜 용액의 안정성을 증가시키기 위한 것으로서, 당업계에서 통상적으로 사용되는 분리막이라면 어떠한 것을 사용하여도 무방하다.At this time, the separator is to increase the stability of the solution by reducing the ionic strength (colloidal strength) of the colloid, any separator can be used as long as it is commonly used in the art.

한편, 본 발명에 따른 광촉매 코팅용 졸은 탈취, 항균 및 유기물 분해 등을 위해 기재의 표면에 코팅하여 사용되며, 상기 광촉매 코팅용 졸을 기재에 코팅하는 방법은 당업계에서 통상적으로 사용되는 방법이라면 어떠한 방법을 사용하여도 무방하지만, 바람직하게는 스프레이법, 그라비아 코팅법 및 담금법 등을 사용하는 것이 좋고, 특히 바람직하게는 스프레이법 또는 담금법을 사용하는 것이 좋다.On the other hand, the photocatalyst coating sol according to the present invention is used to coat the surface of the substrate for deodorization, antibacterial and organic decomposition, etc., if the method of coating the photocatalyst coating sol on the substrate is a method commonly used in the art Although any method may be used, Preferably spray method, gravure coating method, immersion method, etc. are used, Especially preferably, the spray method or immersion method is used.

여기서, 상기 "기재"라 함은 상기 광촉매 코팅용 졸을 코팅하여 사용할 수 있는 대상 예컨대, 벽지, 나무, 유리, 섬유 등 인테리어소재 및 바닥재, 벽재 등의 건축내외장재, 항균, 탈취, 오염방지 등의 효과를 필요로 하는 다양한 담체나 각종 수처리용 필터 또는 공기정화용 필터류 예를 들면, 금속, 합금, 유리, 금속메쉬, 세라믹, 폴리프로필렌, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌, 부직포 등의 플라스틱류 등이라면 어느 것이라도 무방하다.Here, the term "substrate" is an object that can be used by coating the photocatalyst coating sol, for example, interior materials such as wallpaper, wood, glass, fiber and flooring materials, interior and exterior materials such as wall materials, antibacterial, deodorization, pollution prevention, etc. Various carriers requiring various effects, filters for water treatment or filters for air purification, for example, plastics such as metals, alloys, glass, metal meshes, ceramics, polypropylene, polyethylene terephthalate (PET), polyethylene, and nonwoven fabrics. Anything is OK.

그러므로 본 발명에 따른 광촉매 코팅용 졸을 상기 건축내외장재 및 오염물 처리용 필터 등에 코팅하여 사용할 경우 가시광선 영역의 빛만으로도 광촉매 활성을 나타내어 유해물질 및 오염물질 등을 제거할 수 있다.Therefore, when the photocatalyst coating sol according to the present invention is used by coating the building interior and exterior materials and the filter for treating contaminants, the photocatalytic activity can be removed only by the light in the visible light region to remove harmful substances and contaminants.

특히, 본 발명에 따른 광촉매 코팅용 졸은 일반적인 코팅용 졸에 사용되는 별도의 바인더 및 첨가제 등을 사용하지 않아도 상기 건축내외장재 및 공기정화용 필터, 수처리용 필터 등에 용이하게 코팅시킬 수 있으며, 필요에 따라 안료 등을 첨가하여 사용할 수도 있다. In particular, the photocatalyst coating sol according to the present invention can be easily coated on the building interior and exterior materials, air purification filter, water treatment filter, etc. without using a separate binder and additives used in general coating sol, if necessary A pigment etc. can also be added and used.

이하에서 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 오로지 본 발명을 구체적으로 설명하기 위한 것으로 이들 실시예에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only for illustrating the present invention in detail and are not intended to limit the scope of the present invention by these examples.

<실시예><Example>

용매로서 10℃ 증류수에 2중량%의 28% 암모니아수 수용액과 2중량%의 사염화티탄을 첨가하여 전체 부피가 1L 가 되도록 한다.As a solvent, 2% by weight of 28% aqueous ammonia solution and 2% by weight of titanium tetrachloride are added to 10 ° C of distilled water so that the total volume is 1L.

그 다음, 온도를 일정하게 유지하면서 1 시간 동안 교반한 후, 초음파진동기를 이용하여 약 40KHz 정도로 약 10분 동안 분산시킨다. Then, the mixture was stirred for 1 hour while maintaining the temperature constant, and then dispersed for about 10 minutes by using an ultrasonic vibrator at about 40 KHz.

그 다음, 분산된 코팅액을 80℃에서 2시간 동안 숙성시켜 실온에서 냉각시킨 후 스펙트라/포 멤브레인[Spectra/Por Membrane:MWCO:6-8000Da, Spectrum Laboratories Inc., 미국]을 사용하여 pH가 약 3이 될 때까지 투석하여 질소이온 및 염소이온이 도핑된 광촉매 코팅용 졸을 제조한다.The dispersed coating was then aged at 80 ° C. for 2 hours, cooled at room temperature, and then the pH was adjusted to about 3 using a Spectra / Por Membrane: MWCO: 6-8000Da, Spectrum Laboratories Inc., USA. Dialysis until it is prepared to prepare a photocatalyst coating sol doped with nitrogen and chlorine ions.

상기 광촉매 코팅용 졸의 광흡수율을 측정하기 위해 UV스펙트로미터(UV-VIS spectrophotometer)[DRS U-3501, 히타치, 일본]를 이용하였고, 상기 광촉매 코팅용 졸을 구성하고 있는 질소이온 및 염소이온이 도핑된 이산화티타늄의 결정구조는 XRD[Rigaku Mdel D/MAX-Ⅲ B, Rigaku, 일본]를 이용하여 측정하였으며, 표면적 및 기공크기는 BET[ASAP 2010 Micro- metrics]로 측정하였고, 입자크기는 TEM[JEM-4010, JEOL, 미국]으로 측정하였다.In order to measure the light absorption of the photocatalyst coating sol, a UV-VIS spectrophotometer (DRS U-3501, Hitachi, Japan) was used, and the nitrogen and chlorine ions constituting the photocatalyst coating sol. The crystal structure of doped titanium dioxide was measured using XRD [Rigaku Mdel D / MAX-III B, Rigaku, Japan], surface area and pore size were measured by BET [ASAP 2010 Micro-metrics], particle size TEM [JEM-4010, JEOL, USA].

그 결과를 표 1과 도 1 및 도 2로 나타냈다.The results are shown in Table 1 and Figs. 1 and 2.

[표 1]Table 1

광촉매 코팅용 졸의 이산화티타늄 물성Titanium Dioxide Properties of Photocatalyst Sol

물 성Properties 결과result 입자크기(nm)Particle size (nm) <10<10 비표면적(m2/g)Specific surface area (m 2 / g) 320320 기공직경(Å)Pore diameter 2323 타입(type)Type 아나타제(Anatase)Anatase

<비교예>Comparative Example

전체 광촉매 코팅용 졸의 중량 당 3중량%의 Degusa-P25[데구사, 독일]를 97 중량%의 증류수에 분산시켜 광촉매 코팅용 졸을 제조하였으며, 제조된 광촉매 코팅용 졸의 물성은 상기 실시예의 측정방법과 동일하다. 3 wt% of Degusa-P25 [Degusa, Germany] per weight of the total photocatalyst coating sol was dispersed in 97 wt% of distilled water to prepare a photocatalyst coating sol, and the physical properties of the prepared photocatalyst coating sol were Same as the measuring method.

그 결과를 도 1 및 도 2에 나타냈다.The results are shown in FIGS. 1 and 2.

도 1 및 도 2에 나타낸 바와 같이, 비교예에 따른 광촉매 코팅용 졸을 구성하는 p25는 400nm이하에서만 광흡수가 나타나고 있지만, 실시예에 따른 광촉매 코팅용 졸을 구성하는 질소이온 및 염소이온이 도핑된 이산화티타늄은 가시광 영역으로 레드-쉬프트(red-shift)하여 약 530nm이하에서 광흡수가 일어나는 것이 확인할 수 있었다. 아울러, 실시예에 따라 제조된 광촉매 코팅용 졸에 포함되어 있는 이산화티타늄의 크기는 10nm 이하였고, 기공크기는 20 내지 30ㅕ의 메조포어 기공을 가지면서 비표면적은 320m2/g인 것으로 나타났다. 여기서, 상기 레드-쉬프트는 흡수파장대가 가시광선 영역으로 이동하는 것을 의미한다.As shown in Fig. 1 and 2, p25 constituting the photocatalyst coating sol according to the comparative example is light absorption only below 400nm, but doped with nitrogen and chlorine ions constituting the photocatalyst coating sol according to the embodiment Titanium dioxide was red-shifted to the visible light region, and it was confirmed that light absorption occurred at about 530 nm or less. In addition, the size of the titanium dioxide contained in the photocatalyst coating sol prepared according to the embodiment was less than 10nm, the pore size was found to have a specific surface area of 320m 2 / g while having a mesopore pore of 20 to 30 ㅕ. Here, the red-shift means that the absorption wavelength band is moved to the visible light region.

실험예Experimental Example

광촉매 활성실험Photocatalytic Activity Experiment

가시광선 영역에서 실시예에 따라 제조된 광촉매 코팅용 졸의 광촉매 활성을 측정하기 위하여 상기 실시예에 따라 제조된 광촉매 코팅용 졸 및 비교예에 따라 제조된 광촉매 코팅용 졸을 1.5cmㅧ2cm 크기의 평판유리에 각각 담금법으로 코팅하였다.In order to measure the photocatalytic activity of the photocatalyst coating sol prepared according to the embodiment in the visible light region, the photocatalyst coating sol prepared according to the embodiment and the photocatalyst coating sol prepared according to the comparative example were 1.5 cm ㅧ 2 cm in size. Each plate glass was coated by immersion method.

그 다음, 반응조로서 130cm3의 부피를 갖는 밀폐된 석영유리관을 2개 준비한 후 하나의 석영유리관의 하단으로 상기 실시예에 따른 광촉매 코팅용 졸이 코팅된 평판유리를 설치하고, 다른 하나의 석영유리관에 비교예에 따라 제조된 광촉매용 코팅용 졸이 코팅된 평판유리를 설치하였다.Then, after preparing two sealed quartz glass tubes having a volume of 130 cm 3 as a reaction tank, and installed a flat glass coated with a photocatalyst coating sol according to the embodiment to the bottom of one quartz glass tube, and another quartz glass tube To the photocatalyst coating sol was prepared according to the comparative example was installed flat glass.

그 다음, 상기 각각의 평판유리에 가시광선 영역의 빛이 조사되도록 그 주변으로 427nm의 파장을 방출하는 BLED(Blue-light-emitting diodes)[빛샘전자, 한국]를 설치하였다.Then, BLEDs (Blue-light-emitting diodes, Korea) emitting wavelengths of 427 nm were installed on the respective flat glass to emit light in the visible region.

그 다음, 상기 각각의 석영유리관에 830ppm농도의 트리클로로에틸렌[Trichloro ethylene, 알드리치, 미국] 기체를 주입하여 상기 트리클로로에틸렌의 분해정도를 측정하였다.Then, 830 ppm trichloroethylene (Trichloro ethylene, Aldrich, USA) gas was injected into each quartz glass tube to measure the degree of decomposition of the trichloroethylene.

여기서, 상기 실험은 BLED의 광원의 세기를 3.5V(122㎼/cm2 at 472nm)로부터 5.5V(164㎼/cm2 at 472 nm)까지 변화시키면서 수행하였다.Here, the experiment was performed while changing the intensity of the light source to BLED from 3.5V (122㎼ / cm 2 at 472nm ) 5.5V (164㎼ / cm 2 at 472 nm).

이때, 상기 트리클로로에틸렌의 농도는 FT-IR 스펙트로미터[SPECTRUM 1, 퍼킨엘머, 영국]을 사용하여 측정하였으며, 그 결과를 도 3에 나타냈다.At this time, the concentration of the trichloroethylene was measured using an FT-IR spectrometer [SPECTRUM 1, Perkin Elmer, UK], the results are shown in FIG.

도 3에 도시된 바와 같이, 초기 270분까지는 3.5V(122㎼/cm2 at 472nm)로 광화학반응을 진행시키다가 그 이후로 5.5V(164㎼/cm2 at 472 nm)로 광의 세기를 증가시켰으며, 그 결과 실시예에 따라 제조된 광촉매 코팅용 졸이 코팅된 슬라이드 글 라스 플레이트는 광의세기에 영향을 받아 광화학반응 속도가 증가됨을 관찰할 수 있었으나, 비교예에 따라 제조된 광촉매 코팅용 졸이 코팅된 슬라이드 글라스의 경우 광의세기에 관계없이 가시광선 영역에서 광화학반응이 발생하지 않는 것으로 나타났다.3, the initial 270 minutes to 3.5V (122㎼ / cm 2 at 472nm ) to increase the intensity of light in a train proceeding to photochemistry 5.5V (164㎼ / cm 2 at 472 nm) after that As a result, the slide glass plate coated with the photocatalyst coating sol prepared according to the embodiment was observed to increase the photochemical reaction rate depending on the light intensity, but the photocatalyst coating sol prepared according to the comparative example. In the case of the coated slide glass, no photochemical reaction occurs in the visible light irrespective of the light intensity.

한편, BLED의 광세기에 따라 반응속도가 변하는 것은 흡착 등 따른 영향없이 순수한 가시광화학반응에 의해서만 진행되는 것을 나타낸다.Meanwhile, the change in the reaction rate according to the light intensity of the BLED indicates that the reaction proceeds only by pure visible photochemical reactions without the influence of adsorption.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 일실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, the exemplary embodiments described above are to be understood as illustrative in all respects and not as restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the appended claims and their equivalents, rather than the detailed description, are included in the scope of the present invention.

본 발명에 따른 광촉매 코팅용 졸의 제조방법에 따라 제조된 광촉매 코팅용 졸은 이산화티타늄에 질소이온 및 염소이온이 도핑되어 가시광선 영역에서 광촉매 활성을 나타낼 수 있는 효과가 있다.The photocatalyst coating sol prepared according to the method for preparing a photocatalyst coating sol according to the present invention has an effect of showing photocatalytic activity in the visible light region by doping titanium dioxide with chlorine ions.

또한, 본 발명에 따른 광촉매 코팅용 졸의 제조방법은 고온의 소싱과정을 필 요로 하지 않는 습식 제조방법에 따라 제조함으로써 종래의 광촉매 코팅용 졸의 제조방법 보다 용이하다는 효과가 있다. In addition, the manufacturing method of the photocatalyst coating sol according to the present invention has an effect that it is easier than the conventional manufacturing method of the photocatalyst coating sol by manufacturing according to the wet manufacturing method that does not require a high temperature sourcing process.

또한, 본 발명에 따른 광촉매 코팅용 졸은 벽지, 블라인드 및 페인팅된 시멘트와 같은 실내 내장재뿐만 아니라 공기정화와 공조용 필터류 및 수처리용 필터류에 코팅하여 가시광선의 광원에서 악취, 유해물질 및 유해균 등을 제거할 수 있는 효과가 있다.In addition, the photocatalyst coating sol according to the present invention is coated on not only indoor interior materials such as wallpaper, blinds and painted cement, but also on air purification and air conditioning filters and water treatment filters to remove odors, harmful substances and harmful bacteria from visible light sources. It can work.

Claims (5)

전체 혼합물 중량당 0.1 내지 6 중량%의 암모니아수, 1 내지 10 중량%의 사염화티탄 및 84 내지 98.9중량%의 용매를 0 내지 20℃에서 혼합하는 단계; 상기 혼합물을 초음파진동기로 5 내지 30분간 분산시키는 단계; 상기 분산된 혼합물을 70 내지 100℃에서 2시간 동안 숙성시키는 단계; 상기 숙성단계가 종료된 혼합물을 실온에서 냉각시킨 후 pH를 조절할 수 있도록 투석 가능한 분리막을 이용하여 pH 2 내지 5가 될 때까지 투석시켜 콜로이드 상태의 질소이온 및 염소이온이 도핑된 이산화티타늄을 제조하는 단계를 포함하는 광촉매 코팅용 졸의 제조방법.Mixing from 0.1 to 6% by weight of ammonia water, from 1 to 10% by weight of titanium tetrachloride and from 84 to 98.9% by weight of the solvent at 0 to 20 ° C. per weight of the total mixture; Dispersing the mixture with an ultrasonic vibrator for 5 to 30 minutes; Aging the dispersed mixture at 70 to 100 ° C. for 2 hours; After the aging step is cooled to room temperature and then dialyzed until the pH 2 to 5 using a dialysis membrane to adjust the pH to control the pH to prepare a titanium dioxide doped with colloidal nitrogen and chlorine ions Method for producing a photocatalyst coating sol comprising the step. 제 1항에 있어서,The method of claim 1, 상기 분리막이 이온교환막인 것을 특징으로 하는 광촉매 코팅용 졸의 제조방법.Method for producing a photocatalyst coating sol, characterized in that the separator is an ion exchange membrane. 제 1항 또는 제 2항에 따른 제조방법으로 제조된 광촉매 코팅용 졸을 코팅시킨 건축내외장재.Building interior and exterior materials coated with a photocatalyst coating sol prepared by the manufacturing method according to claim 1 or 2. 삭제delete 제 1항 또는 제 2항에 따른 제조방법으로 제조된 광촉매 코팅용 졸을 코팅시킨 필터.A filter coated with a sol for coating a photocatalyst prepared by the manufacturing method according to claim 1.
KR1020040062037A 2004-08-06 2004-08-06 Preparation of Visible Light Responding Photocatalytic Coating Solution KR100631337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040062037A KR100631337B1 (en) 2004-08-06 2004-08-06 Preparation of Visible Light Responding Photocatalytic Coating Solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040062037A KR100631337B1 (en) 2004-08-06 2004-08-06 Preparation of Visible Light Responding Photocatalytic Coating Solution

Publications (2)

Publication Number Publication Date
KR20060013181A KR20060013181A (en) 2006-02-09
KR100631337B1 true KR100631337B1 (en) 2006-10-09

Family

ID=37122643

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040062037A KR100631337B1 (en) 2004-08-06 2004-08-06 Preparation of Visible Light Responding Photocatalytic Coating Solution

Country Status (1)

Country Link
KR (1) KR100631337B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141725B1 (en) 2011-11-11 2012-05-03 한국기초과학지원연구원 Manufacturing method of impurities doped titanium dioxide photocatalysts with excellent photo activity at visible light and ultraviolet light region
KR101247161B1 (en) 2012-12-07 2013-03-25 김윤환 Method of menufacturing nano-oxygen catalyst for removing sick house syndrome
KR101247162B1 (en) 2012-12-20 2013-03-25 김윤환 Method of menufacturing nano-oxygen catalyst with carbon nanotubes for removing sick house syndrome
KR101400766B1 (en) 2013-03-07 2014-05-29 김윤환 Method of menufacturing nano-oxygen catalyst with carbon nanotubes for removing sick house syndrome and ge powder for radiating a negative ion

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825084B1 (en) * 2006-12-29 2008-04-28 (재)대구경북과학기술연구원 A method of manufacturing titanium dioxide sol and a method of titanium dioxide photo-catalyst including the method
KR102221738B1 (en) * 2020-02-24 2021-03-02 대한민국(관리청: 특허청장, 승계청: 산림청 국립산림과학원장) (Manufacturing method of photo-catalyst carbonized board of visible light responding type

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141725B1 (en) 2011-11-11 2012-05-03 한국기초과학지원연구원 Manufacturing method of impurities doped titanium dioxide photocatalysts with excellent photo activity at visible light and ultraviolet light region
KR101247161B1 (en) 2012-12-07 2013-03-25 김윤환 Method of menufacturing nano-oxygen catalyst for removing sick house syndrome
KR101247162B1 (en) 2012-12-20 2013-03-25 김윤환 Method of menufacturing nano-oxygen catalyst with carbon nanotubes for removing sick house syndrome
KR101400766B1 (en) 2013-03-07 2014-05-29 김윤환 Method of menufacturing nano-oxygen catalyst with carbon nanotubes for removing sick house syndrome and ge powder for radiating a negative ion

Also Published As

Publication number Publication date
KR20060013181A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
Augugliaro et al. Clean by light irradiation: Practical applications of supported TiO2
Liu et al. One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X= Mo, W) nanosheets
US7521394B2 (en) Nanoparticles containing titanium oxide
TWI651269B (en) Titanium dioxide particles and preparation method thereof
US7846864B2 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
Myilsamy et al. Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2 nanocomposites for the degradation of 2, 4-dinitrophenol under visible light
Ismail et al. Multilayered ordered mesoporous platinum/titania composite films: does the photocatalytic activity benefit from the film thickness?
EP1857181A1 (en) Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
JP2007098294A (en) Composite photocatalyst body
JP2006198464A (en) Visible light response type photocatalyst and its production method
Heshmatpour et al. A probe into the effect of fixing the titanium dioxide by a conductive polymer and ceramic on the photocatalytic activity for degradation of organic pollutants
JP2006124267A (en) Composite particle containing titanium dioxide and its application
KR100631337B1 (en) Preparation of Visible Light Responding Photocatalytic Coating Solution
KR102562529B1 (en) Transition Metal Doped Complex Photocatalyst and Manufacturing Method thereof
TWI627999B (en) Titanium oxide carrying a transition metal compound
CN106964375B (en) Titanium oxide photocatalyst carrying iron compound
KR102562523B1 (en) Complex Photocatalyst for Decomposition of Pollutants and Manufacturing Method thereof
KR101400633B1 (en) Visible ray reaction type Zirconium TiO2/SiO2 photocatalyst and preparation method thereof
Durgadevi et al. Synthesis and characterization of CdS nanoparticle anchored Silica-Titania mixed Oxide mesoporous particles: Efficient photocatalyst for discoloration of textile effluent
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
Liu et al. AgBr-Coupled TiO 2: A Visible Heterostructured Photocatalyst for Degrading Dye Pollutants.
JP2018079432A (en) Iron compound carrying titanium oxide photocatalyst
KR100780275B1 (en) Titanium Dioxide Photo-Catalyst and method of manufacturing the same
Wang et al. Preparation of Er 3+: YAlO 3/ZnO coating compound by sol-gel method and photocatalytic degradation of organic dyes under sun light irradiation
Di Paola et al. Semiconductor mixed oxides as innovative materials for the photocatalytic removal of organic pollutants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120925

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130926

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140926

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee