JP2002177975A - Supercritical hydroxylation decomposition equipment for organic matter - Google Patents

Supercritical hydroxylation decomposition equipment for organic matter

Info

Publication number
JP2002177975A
JP2002177975A JP2000378736A JP2000378736A JP2002177975A JP 2002177975 A JP2002177975 A JP 2002177975A JP 2000378736 A JP2000378736 A JP 2000378736A JP 2000378736 A JP2000378736 A JP 2000378736A JP 2002177975 A JP2002177975 A JP 2002177975A
Authority
JP
Japan
Prior art keywords
water
flowing out
reactor
supercritical
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000378736A
Other languages
Japanese (ja)
Inventor
Tomoyuki Iwamori
智之 岩森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000378736A priority Critical patent/JP2002177975A/en
Publication of JP2002177975A publication Critical patent/JP2002177975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide supercritical hydroxylation decomposition equipment which is capable of stably oxidizing factory waste liquids, etc., even if the concentration and characteristic of the organic matter included in the factory waste liquid, etc., fluctuate. SOLUTION: The equipment for supercritical hydroxylation decomposition of organic matter by reacting the organic matter and an oxidizing agent in supercritical water is provided with means 1 and 2 for supplying the material to be treated which supply the fluid mixed with the material to be treated of the organic matter, water and the oxidizing agent under pressurization above the supercritical pressure of the water, a reactor 4 which effects the supercritical hydroxylation reaction of the fluid mixed with the material to be treated, a cooling means 9 which cools the treated fluid after the reaction flowing out of the reactor 4 and take-out means 10 and 11 which take out the cooled treated fluid flowing out of the cooling means 9. The supercritical hydroxylation decomposition equipment for the organic matter is provided with a heat exchange means 3 which effects a heat exchange between the fluid mixed with the material to be treated and the treated fluid after the reaction in the fore stage of the reactor 4, is provided with a bypass flow passage 5 in which the treated fluid flowing out of the reactor bypasses and is provided with a cooler 6 for bypassing in this bypass flow passage and a flow rate control valve 7 in the post stage thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機物を含む工場
廃液あるいは下排水汚泥を超臨界水を用いて酸化処理す
る超臨界水酸化処理装置および超臨界水酸化方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical water oxidation apparatus and a supercritical water oxidation method for oxidizing industrial wastewater or sewage sludge containing organic matter using supercritical water.

【0002】[0002]

【従来の技術】従来、有機物を含む工場廃液を処理する
方法として、焼却による方法があった。しかしながら、
有機物濃度が低い場合には大量の補助燃料が必要であっ
た。
2. Description of the Related Art Conventionally, incineration has been used as a method for treating industrial wastewater containing organic substances. However,
Large amounts of supplementary fuel were required when the organic matter concentration was low.

【0003】一方近年になり、超臨界状態の水を用い
て、工場廃液等を直接酸化処理する方法が提案されてい
る。
On the other hand, in recent years, a method of directly oxidizing a factory waste liquid or the like using water in a supercritical state has been proposed.

【0004】しかしながら、工場廃液等を超臨界水酸化
する方法においても、当該廃液中の有機物の濃度が低い
場合は、当該有機物の有する発熱量だけでは目標とする
反応温度に到達させることが困難であった。従って、工
場廃液等の希薄な有機物含有水溶液を超臨界水酸化処理
するには、被処理物を予熱してから反応器へ送り込む必
要がある。その予熱方法として、ヒーター等の加熱器に
より被処理流体を予熱する方法もあるが、熱交換器を用
いて反応前の被処理物(低温流体)と反応後の処理流体
(高温流体)間で熱交換を行う方法が効率的である。
[0004] However, even in the method of supercritical water oxidation of a factory effluent or the like, when the concentration of the organic substance in the effluent is low, it is difficult to reach the target reaction temperature only by the calorific value of the organic substance. there were. Therefore, in order to supercritically oxidize a dilute aqueous solution containing an organic substance such as a factory waste liquid, it is necessary to preheat an object to be treated before sending it to a reactor. As a method of preheating, there is a method of preheating a fluid to be treated by a heater such as a heater. However, a heat exchanger is used to treat a fluid to be treated (low-temperature fluid) before the reaction and a fluid to be treated (high-temperature fluid) after the reaction. The method of performing heat exchange is efficient.

【0005】熱交換を行う場合、熱交換後の被処理物の
温度は、熱交換器の能力と、熱交換器入口での被処理物
と処理流体の温度および流量で決定される。しかし、熱
交換後の被処理物の温度が低くなれば、反応後の到達温
度(反応温度)が目標温度より低くなり、満足な酸化処
理が行えない。逆に熱交換後の被処理物の温度が高温に
なれば、反応温度が高温になり、装置上問題が発生す
る。
When performing heat exchange, the temperature of the object after heat exchange is determined by the capacity of the heat exchanger and the temperature and flow rate of the object and the processing fluid at the inlet of the heat exchanger. However, if the temperature of the object to be processed after the heat exchange becomes low, the ultimate temperature (reaction temperature) after the reaction becomes lower than the target temperature, and satisfactory oxidation treatment cannot be performed. Conversely, if the temperature of the object to be processed after the heat exchange becomes high, the reaction temperature becomes high, which causes a problem on the apparatus.

【0006】また、処理対象物の有機物濃度や発熱量が
変動した場合、熱交換後の処理対象物の温度が同じで
も、それまでの反応温度から変動し、同様の問題が発生
する。
Further, when the concentration of the organic substance and the calorific value of the object to be processed fluctuate, even if the temperature of the object to be processed after the heat exchange is the same, the temperature of the object to be processed fluctuates from the previous reaction temperature, and the same problem occurs.

【0007】従って、予熱を行った後に超臨界水酸化を
行う場合、被処理物の予熱後や被処理物の発熱量を調整
することにより反応温度を制御する必要がある。
[0007] Therefore, when supercritical water oxidation is performed after preheating, it is necessary to control the reaction temperature by preheating the object to be treated or by adjusting the calorific value of the object to be treated.

【0008】温度を制御する方法として、熱量不足の場
合には、補助燃料を供給して発熱量を増加させたり、熱
交換器と反応器の間に設けたヒーターによって加熱して
予熱後の温度を高くすることによって、反応温度を一定
に制御できる。また、熱量が過大な場合には、バイパス
ラインを設けて熱交換器に流入する処理流体量を減らし
て、反応温度を制御する方法がある。反応後の処理流体
の流路にバイパスラインを設けて、処理流体の流量を調
整する技術が、特開平11−138198号公報に開示
されている。図5に、そのフローの概略を示す。
As a method of controlling the temperature, when the calorific value is insufficient, an auxiliary fuel is supplied to increase the calorific value, or the temperature after preheating by heating with a heater provided between the heat exchanger and the reactor. , The reaction temperature can be controlled to be constant. When the heat amount is excessive, there is a method of providing a bypass line to reduce the amount of processing fluid flowing into the heat exchanger and controlling the reaction temperature. Japanese Patent Application Laid-Open No. H11-138198 discloses a technique for adjusting the flow rate of a processing fluid by providing a bypass line in the flow path of the processing fluid after the reaction. FIG. 5 shows an outline of the flow.

【0009】図5において、工場廃液等の被処理物は、
被処理物供給ポンプ(不図示)により水の臨界圧力以上
に加圧され、酸素が酸素供給ポンプ(不図示)により供
給され、被処理物と酸素が混合されて、予熱器(熱交換
器)51に流入する。被処理物は熱交換器51で反応器
53から流出した処理流体と熱交換を行うことにより加
熱され、その後反応器53に流入する。反応器53内
で、超臨界水酸化反応が進行し、被処理物は酸化分解さ
れ、水、二酸化炭素、窒素および無機物からなる処理流
体として反応器53から流出する。処理流体は熱交換器
51に流入し、被処理物と熱交換を行うことにより冷却
され、その後さらに冷却器55で冷却され気液分離器5
6へ流入する。気液分離器56で、気相と液相に分離さ
れ、圧力調整弁57,58を介して外部へと放出され
る。
In FIG. 5, objects to be treated such as factory waste liquid are:
The pressure of water is increased to a value equal to or higher than the critical pressure of water by a treatment object supply pump (not shown), oxygen is supplied by an oxygen supply pump (not shown), and the treatment object and oxygen are mixed to form a preheater (heat exchanger) It flows into 51. The object to be processed is heated by performing heat exchange with the processing fluid flowing out of the reactor 53 in the heat exchanger 51, and then flows into the reactor 53. In the reactor 53, the supercritical hydroxylation reaction proceeds, and the material to be treated is oxidatively decomposed and flows out of the reactor 53 as a processing fluid composed of water, carbon dioxide, nitrogen and inorganic substances. The processing fluid flows into the heat exchanger 51 and is cooled by performing heat exchange with the object to be processed. Thereafter, the processing fluid is further cooled by the cooler 55 and is cooled by the gas-liquid separator 5.
Flow into 6. The gas-liquid separator 56 separates the gaseous phase and the liquid phase, and discharges them to the outside via the pressure regulating valves 57 and 58.

【0010】図5に示した特開平11−138198号
公報に開示された技術では、有機物濃度や有機物の性状
が変動しても確実に有機物の酸化処理を行うために、熱
交換器51後段に電気ヒータ52を設け、さらに処理流
体をバイパスさせる流路を設けバイパスする処理流体の
流量を調整するための流量調節弁54を設けたことに特
徴がある。すなわち、被処理物の有機物濃度が高い、あ
るいは反応熱が大きい場合には、熱交換器51における
熱回収量を減少させるように、流量調節弁54の開度を
大きくし、熱交換器51に流入する高温の処理流体の流
量を低下させるように制御する。また、被処理物の有機
物質濃度が低い、あるいは反応熱が低い場合には、電気
ヒータ52により、反応器53に流入する被処理物の温
度を上昇させる。
In the technique disclosed in Japanese Patent Application Laid-Open No. H11-138198 shown in FIG. 5, in order to reliably oxidize an organic substance even when the concentration of the organic substance and the properties of the organic substance fluctuate, the heat exchanger 51 is provided downstream. It is characterized in that an electric heater 52 is provided, a flow path for bypassing the processing fluid is provided, and a flow control valve 54 for adjusting the flow rate of the processing fluid to be bypassed is provided. That is, when the organic matter concentration of the processing object is high or the reaction heat is large, the opening degree of the flow control valve 54 is increased so that the heat recovery amount in the heat exchanger 51 is reduced. Control is performed to reduce the flow rate of the inflowing high-temperature processing fluid. When the concentration of the organic substance in the object to be processed is low or the reaction heat is low, the temperature of the object to be processed flowing into the reactor 53 is increased by the electric heater 52.

【0011】また、処理流体を冷却器に通して冷却して
から予熱用熱交換器に導入する方法が提示されている
(特開平10−328699号)。
Further, a method has been proposed in which a processing fluid is cooled by passing through a cooler and then introduced into a heat exchanger for preheating (Japanese Patent Laid-Open No. Hei 10-328699).

【0012】[0012]

【発明が解決しようとする課題】特開平11−1381
98号公報に開示されたようにバイパスラインを設ける
場合、バイパスさせる処理流体の流量を調整する必要が
あるが、反応器から流出する処理流体は高温、高圧であ
り、そのような高温、高圧に使用しうる流量調節弁は実
質的にはない。
Problems to be Solved by the Invention
When a bypass line is provided as disclosed in Japanese Patent Publication No. 98, it is necessary to adjust the flow rate of the processing fluid to be bypassed, but the processing fluid flowing out of the reactor is at a high temperature and a high pressure. There are virtually no flow control valves that can be used.

【0013】また特開平10−328699号に開示さ
れたように、処理流体を冷却器に通して温度制御する場
合、冷却が不要な時には冷却水を流さないが、処理流体
は冷却器内を流れているため、冷却水側が反応温度付近
まで昇温する恐れがあるので、冷却水側を耐熱仕様とす
る必要があり、コストの上昇は避けられない。
As disclosed in Japanese Patent Application Laid-Open No. 10-328699, when the temperature of a processing fluid is controlled by passing it through a cooler, cooling water is not supplied when cooling is not required, but the processing fluid flows through the cooler. Therefore, the temperature of the cooling water may rise to near the reaction temperature. Therefore, it is necessary to provide the cooling water with a heat-resistant specification, and an increase in cost is inevitable.

【0014】本発明が解決しようとする課題は、上記従
来技術の欠点を解消し、工場廃液等に含まれる有機物濃
度や有機物の性状が変動しても、工場廃液等を安定に酸
化処理できる超臨界水酸化分解装置を提供することであ
る。
The problem to be solved by the present invention is to solve the above-mentioned drawbacks of the prior art, and to stably oxidize factory waste liquid and the like even if the concentration of organic substances contained in the factory waste liquid and the properties of the organic substances fluctuate. An object of the present invention is to provide a critical hydroxylation decomposition apparatus.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
の請求項1に記載した本発明は、超臨界水中で有機物と
酸化剤とを反応させ、有機物を超臨界水酸化分解する装
置において、該有機物、水および酸化剤の被処理物混合
流体を水の臨界圧力以上に加圧供給する被処理物供給手
段と、該被処理物混合流体の超臨界水酸化反応を行う反
応器と、該反応器から流出する反応後の処理流体を冷却
する冷却手段と、該冷却手段から流出する冷却された処
理流体を取り出す取り出し手段を備えた超臨界水酸化分
解装置であって、反応前の被処理物混合流体と反応後の
処理流体との間で熱交換を行う熱交換手段を反応器の前
段に設け、さらに反応器から流出する処理流体がバイパ
スするバイパス流路を設け、該バイパス流路にバイパス
用冷却器とその後段に流量調節弁を設けたことを特徴と
する有機物の超臨界水酸化分解装置に関するものであ
る。
According to a first aspect of the present invention, there is provided an apparatus for reacting an organic substance and an oxidizing agent in supercritical water to supercritically hydrolyze the organic substance. A treatment object supply means for supplying a treatment target mixed fluid of the organic substance, water and the oxidizing agent to a pressure higher than a critical pressure of water, a reactor for performing a supercritical water oxidation reaction of the treatment target mixed fluid, A supercritical hydroxylation decomposition apparatus comprising: a cooling means for cooling a processing fluid after a reaction flowing out of a reactor; and a take-out means for taking out a cooled processing fluid flowing out from the cooling means. A heat exchange means for performing heat exchange between the product mixed fluid and the processed processing fluid after the reaction is provided at a stage preceding the reactor, and a bypass flow path through which the processing fluid flowing out of the reactor is bypassed is provided. Cooler for bypass and then It relates supercritical water oxidation decomposition apparatus of the organic matter which is characterized in that a flow regulating valve.

【0016】上記課題を解決するための請求項2に記載
した本発明は、前記超臨界水酸化分解装置において、バ
イパス流路に設けた流量調節弁から流出する処理流体の
流路を、前記熱交換手段から流出する処理流体の流路に
接続し、合流した処理流体を前記冷却器に導くことを特
徴とするものである。
According to a second aspect of the present invention, there is provided the supercritical hydroxylation decomposition apparatus, wherein the flow path of the processing fluid flowing out of the flow control valve provided in the bypass flow path is formed by the heat flow. The processing fluid is connected to a flow path of the processing fluid flowing out of the exchange means, and the combined processing fluid is guided to the cooler.

【0017】上記課題を解決するための請求項3に記載
した本発明は、前記超臨界水酸化分解装置において、バ
イパス流路に設けた流量調節弁から流出する処理流体の
流路を、前記熱交換手段の熱供給側の入口に接続し、前
記熱交換手段から流出する処理流体を前記冷却器に導く
ことを特徴とするものである。
According to a third aspect of the present invention, there is provided the supercritical hydroxylation decomposition apparatus, wherein the flow path of the processing fluid flowing out of the flow control valve provided in the bypass flow path is formed by the heat flow. The heat exchanger is connected to an inlet on the heat supply side of the exchange means, and guides the processing fluid flowing out of the heat exchange means to the cooler.

【0018】上記課題を解決するための請求項3に記載
した本発明は、前記超臨界水酸化分解装置において、バ
イパス流路に設けた流量調節弁から流出する処理流体の
流路を、前記熱交換手段の熱供給側の入口に接続し、前
記熱交換手段から流出する処理流体を前記冷却器に導く
ことを特徴とするものである。
According to a third aspect of the present invention, there is provided the supercritical hydroxylation decomposition apparatus, wherein the flow path of the processing fluid flowing out of the flow control valve provided in the bypass flow path is formed by the heat flow. The heat exchanger is connected to an inlet on the heat supply side of the exchange means, and guides the processing fluid flowing out of the heat exchange means to the cooler.

【0019】上記課題を解決するための請求項4に記載
した発明は、超臨界水中で有機物と酸化剤とを反応さ
せ、有機物を超臨界水酸化分解する装置において、該有
機物、水および酸化剤の被処理物混合流体を水の臨界圧
力以上に加圧供給する被処理物供給手段と、該被処理物
混合流体の超臨界水酸化反応を行う反応器と、該反応器
から流出する反応後の処理流体を冷却する冷却手段と、
該冷却手段から流出する冷却された処理流体を減圧する
圧力調節手段と、該圧力調節手段から流出する減圧され
た処理流体を気液分離するための気液分離手段を備えた
超臨界水酸化処理装置であって、反応前の被処理物混合
流体と反応後の処理流体との間で熱交換を行う熱交換手
段を反応器の前段に設け、水の臨界圧力以上で冷却水を
供給する冷却水供給手段と、冷却水供給手段から流出す
る冷却水の一部を流量調節弁を介して該熱交換器の熱供
給側に導入する流路と、冷却水供給手段から流出する冷
却水の残部を圧力制御手段の前段に導入する流路を備え
たことを特徴とする有機物の超臨界水酸化分解装置に関
するものである。
According to a fourth aspect of the present invention, there is provided an apparatus for reacting an organic substance with an oxidizing agent in supercritical water to supercritically decompose the organic substance, wherein the organic substance, water and oxidizing agent are dissolved. An object supply means for supplying the object mixture fluid at a pressure equal to or higher than the critical pressure of water, a reactor for performing a supercritical hydroxylation reaction of the object mixture fluid, and after the reaction flowing out of the reactor Cooling means for cooling the processing fluid of
Supercritical water oxidation treatment comprising pressure adjusting means for reducing the pressure of the cooled processing fluid flowing out of the cooling means, and gas-liquid separating means for gas-liquid separating the reduced pressure processing fluid flowing out of the pressure adjusting means. An apparatus, wherein a heat exchange means for performing heat exchange between a mixed fluid to be treated before a reaction and a processing fluid after a reaction is provided in a preceding stage of a reactor, and cooling for supplying cooling water at a critical pressure of water or more. A water supply means, a flow path for introducing a part of the cooling water flowing out of the cooling water supply means to a heat supply side of the heat exchanger via a flow control valve, and a remainder of the cooling water flowing out of the cooling water supply means And a supercritical water oxidation decomposition apparatus for organic matter, characterized in that a flow path for introducing the organic matter into a stage preceding the pressure control means is provided.

【0020】[0020]

【発明の実施の形態】本発明の超臨界水酸化分解装置
は、超臨界状態の水と酸化剤の存在下に有機物の酸化分
解を行う反応器を備えたものである。反応器において行
なわれる超臨界水酸化反応は、水を超臨界状態とする温
度、圧力条件であれば特に限定されるものではないが、
例えば、温度374℃以上、好ましくは500〜650
℃、かつ圧力22MPa以上、好ましくは22〜25M
Paの条件とすればよい。酸化剤としては、例えば空
気、純酸素、過酸化水素、液体酸素を挙げることがで
き、これらの酸化剤は化学量論要求量以上用いればよ
い。超臨界水酸化分解を行う反応器は、パイプ(管状)
型、ベッセル型のいずれでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The supercritical hydroxylation decomposition apparatus according to the present invention is provided with a reactor for oxidatively decomposing organic substances in the presence of supercritical water and an oxidizing agent. The supercritical hydroxylation reaction performed in the reactor is not particularly limited as long as the temperature and pressure conditions for bringing water to a supercritical state,
For example, the temperature is 374 ° C. or more, preferably 500 to 650.
° C, and pressure 22MPa or more, preferably 22-25M
The condition of Pa may be used. Examples of the oxidizing agent include air, pure oxygen, hydrogen peroxide, and liquid oxygen. These oxidizing agents may be used in a stoichiometrically required amount or more. The reactor for supercritical hydroxylation decomposition is a pipe (tubular)
Type or Bessel type.

【0021】水は、超臨界状態では、良好な溶媒となる
ため、反応器内では超臨界水、有機物および酸化剤は均
一相を形成し、超臨界水酸化反応が進行し、極めて短時
間のうちに酸化分解される。
Since water becomes a good solvent in the supercritical state, supercritical water, organic substances and oxidizing agent form a homogeneous phase in the reactor, and the supercritical water oxidation reaction proceeds, and the reaction time is extremely short. It will be oxidatively decomposed.

【0022】本発明における被処理物は、工場廃液、パ
ルプスラリー、下排水汚泥等の有機物を含む水分量の比
較的多いものであって、このような被処理物であっても
反応温度を容易に制御することができる。
The substance to be treated in the present invention is a substance having a relatively large amount of water containing organic substances such as factory waste liquid, pulp slurry, sewage sludge and the like. Can be controlled.

【0023】(第1実施形態)図1に、本発明の第1実
施形態のフロー図を示す。
(First Embodiment) FIG. 1 shows a flow chart of a first embodiment of the present invention.

【0024】工場廃液等のような水と有機物を含む被処
理物は、被処理物供給ポンプ1により水の臨界圧力以上
に加圧される。酸化剤は酸化剤供給ポンプ2により水の
臨界圧力以上に加圧される。被処理物と酸化剤は、混合
され、被処理物混合流体となる。
An article to be treated containing water and organic matter, such as a waste liquid of a factory, is pressurized by a substance supply pump 1 to a pressure higher than the critical pressure of water. The oxidant is pressurized by the oxidant supply pump 2 to a pressure higher than the critical pressure of water. The treatment object and the oxidizing agent are mixed to form a treatment object mixed fluid.

【0025】被処理物混合流体は、反応器4の前段に設
けた熱交換器3に流入し、そこで超臨界水酸化反応後の
処理流体の間で熱交換を行い、予熱される。
The fluid mixture to be treated flows into the heat exchanger 3 provided at the front stage of the reactor 4, where heat is exchanged between the treated fluids after the supercritical water oxidation reaction and preheated.

【0026】水分量の多い被処理物や、発熱容量の小さ
な有機物を超臨界水酸化処理するには、公知の補助燃料
を被処理物に加えるか、反応器4の入口に電気ヒータ等
の予熱器を設けて処理すればよい。
In order to supercritically oxidize an object having a large amount of water or an organic substance having a small heat generating capacity, a known auxiliary fuel is added to the object to be treated, or a preheater such as an electric heater is provided at the inlet of the reactor 4. A vessel may be provided for processing.

【0027】反応器4内では、水の臨界圧力および臨界
温度を超えた被処理物混合流体中で、超臨界水酸化反応
が進行する。超臨界水酸化反応により被処理物混合流体
中の有機物は酸化分解され、水、二酸化炭素、窒素およ
び無機物等からなる高温高圧の処理流体として反応器4
から流出する。
In the reactor 4, a supercritical water oxidation reaction proceeds in the mixed fluid of the processing object exceeding the critical pressure and critical temperature of water. The organic matter in the mixed fluid to be treated is oxidatively decomposed by the supercritical water oxidation reaction, and is converted into a high-temperature and high-pressure treatment fluid composed of water, carbon dioxide, nitrogen, inorganic substances, and the like.
Spill out of.

【0028】反応器4から流出した高温、高圧の処理流
体の一部は、流路5を経て前記熱交換器3に流入し、反
応前の被処理物混合流体との間で熱交換を行い、冷却さ
れて熱交換器3より流出する。反応後の処理流体の他部
は、バイパス流路6によりバイパスし、バイパス用冷却
器7に流入する。バイパス用冷却器7に流入した高温の
処理流体は、冷却水により冷却され、バイパス用冷却器
7より流出する。バイパス用冷却器7より流出した処理
流体は、流量調節弁8により、その流量が制御される。
流量調節弁8には十分冷却された処理流体が流れるた
め、通常の流量調節弁を使用することができる。また、
バイパスラインを通る処理流体は熱回収を行う必要がな
いため、温度制御する必要がない。そのためバイパス用
冷却器7の冷却水は流量制御が不要であり、常時冷却水
を流しておけばよく、冷却器が異常昇温することはな
い。
A part of the high-temperature, high-pressure processing fluid flowing out of the reactor 4 flows into the heat exchanger 3 through the flow path 5 and exchanges heat with the mixed fluid before the reaction. Is cooled and flows out of the heat exchanger 3. The other part of the processing fluid after the reaction is bypassed by the bypass channel 6 and flows into the bypass cooler 7. The high-temperature processing fluid that has flowed into the bypass cooler 7 is cooled by the cooling water and flows out of the bypass cooler 7. The flow rate of the processing fluid flowing out of the bypass cooler 7 is controlled by the flow rate control valve 8.
Since a sufficiently cooled processing fluid flows through the flow control valve 8, a normal flow control valve can be used. Also,
Since the processing fluid passing through the bypass line does not need to perform heat recovery, there is no need to control the temperature. Therefore, the flow rate of the cooling water of the bypass cooler 7 does not need to be controlled, and the cooling water only needs to flow constantly, and the temperature of the cooler does not abnormally rise.

【0029】流量調節弁8の開度を調節することによ
り、流路5を介して熱交換器3に流入する高温の処理流
体の流量を制御して、反応前の被処理物混合流体に与え
る熱量を変化させることができるので、反応温度を容易
に制御することができる。
By adjusting the opening of the flow control valve 8, the flow rate of the high-temperature processing fluid flowing into the heat exchanger 3 via the flow path 5 is controlled and given to the mixed fluid before the reaction. Since the amount of heat can be changed, the reaction temperature can be easily controlled.

【0030】熱交換器3および流量調節弁8から流出し
た処理流体は、合流して流路9を経て、冷却器10へ流
入する。冷却器10で冷却された処理流体は、取り出し
手段により気相と液相として取り出せばよい。取り出し
手段としては、例えば圧力調節弁と気液分離器を組み合
わせたものが挙げられる。図1に示したように、冷却器
10から流出した処理流体は、圧力調節弁11により大
気圧へ開放され、その後気液分離器12で気相と液相に
分離し、気相は排ガスとして、液相は処理水として流出
する。
The processing fluids flowing out of the heat exchanger 3 and the flow control valve 8 join and flow into the cooler 10 via the flow path 9. The processing fluid cooled by the cooler 10 may be taken out as a gas phase and a liquid phase by a take-out means. As the take-out means, for example, a combination of a pressure control valve and a gas-liquid separator can be mentioned. As shown in FIG. 1, the processing fluid flowing out of the cooler 10 is released to the atmospheric pressure by a pressure control valve 11, and then separated into a gas phase and a liquid phase by a gas-liquid separator 12, and the gas phase is exhausted. The liquid phase flows out as treated water.

【0031】図1のフロー図では、熱交換手段として、
熱交換器を例示したが、熱交換器の形式は限定されず、
例えば図2に示した形式のものを挙げることができる。
In the flow chart of FIG. 1, the heat exchange means
Although the heat exchanger is exemplified, the type of the heat exchanger is not limited,
For example, the type shown in FIG. 2 can be used.

【0032】図2は、図1の反応器を中心とした部分拡
大図である。図2に示した反応器4は管状のものであ
り、熱交換手段は反応器4の入口付近に設けた2重管型
熱交換器3’である。
FIG. 2 is a partially enlarged view centering on the reactor of FIG. The reactor 4 shown in FIG. 2 is tubular, and the heat exchange means is a double tube heat exchanger 3 ′ provided near the inlet of the reactor 4.

【0033】(第2実施形態)第1実施形態では、バイ
パスされた処理流体を熱交換手段から流出する処理流体
に合流させる例を示したが、バイパスされた処理流体を
熱交換手段の熱供給側に流入するようにしてもよい。
(Second Embodiment) In the first embodiment, an example has been shown in which the bypassed processing fluid is merged with the processing fluid flowing out of the heat exchange means. However, the bypass processing fluid is supplied with heat from the heat exchange means. It may be made to flow into the side.

【0034】図3は、第2実施形態を示すフロー図であ
り、図1の第1実施形態で示した同一の構成要素には同
一の記号を付し、説明を省略する。
FIG. 3 is a flowchart showing the second embodiment. The same components as those shown in the first embodiment of FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0035】第2実施形態が、第1実施形態と異なる点
は、バイパスされた処理流体の流路の接続先が異なるの
みで、図3に示したように、バイパスされた処理流体は
バイパス用冷却器7で冷却され、流量調節弁8で流量を
調節された後、熱交換器3の熱供給側に接続されてい
る。反応器3から流出し、分かれた処理流体は、合流し
て熱交換手段の熱供給側に流入し、反応前の被処理物混
合流体との間で熱交換を行い、熱交換手段から流出し、
流路9を経て冷却器10で、さらに冷却される。
The second embodiment is different from the first embodiment only in the connection destination of the bypassed processing fluid flow path. As shown in FIG. 3, the bypassed processing fluid is used for bypass. After being cooled by the cooler 7 and having its flow rate adjusted by the flow rate adjusting valve 8, it is connected to the heat supply side of the heat exchanger 3. The processing fluids that have flowed out of the reactor 3 and have merged and flow into the heat supply side of the heat exchange means, perform heat exchange with the mixed fluid of the workpiece before the reaction, and flow out of the heat exchange means. ,
Further cooling is performed by the cooler 10 through the flow path 9.

【0036】第2実施形態においては、熱交換器3に流
入する処理流体の温度が低下するため、被処理流体の熱
交換器出口温度を迅速に低下させることができる。
In the second embodiment, since the temperature of the processing fluid flowing into the heat exchanger 3 decreases, the temperature of the heat exchanger outlet of the fluid to be processed can be rapidly reduced.

【0037】(第3実施形態)反応後の処理流体をバイ
パスさせず、高圧の冷却水を処理流体に合流させて熱交
換手段に供給して、反応温度を一定に保ってもよい。
(Third Embodiment) The reaction temperature may be kept constant by combining high-pressure cooling water with the processing fluid and supplying it to the heat exchange means without bypassing the processing fluid after the reaction.

【0038】図4は、第3実施形態を示すフロー図であ
り、図1の第1実施形態で示した同一の構成要素には同
一の記号を付し、説明を省略する。
FIG. 4 is a flowchart showing the third embodiment. The same components as those shown in the first embodiment of FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0039】図4に示したように、反応器4から流出す
る処理流体は分岐させずに熱交換器3の熱供給側に導
く。反応温度の制御を行うために、冷却水を高圧定量ポ
ンプ13で水の臨界圧力以上に加圧供給する。高圧定量
ポンプ13から供給された冷却水の一部は、流量調節弁
8を介して、反応器4から流出した処理流体と合流し
て、熱交換器3の熱供給側に供給される。処理流体と冷
却水は熱交換器3で、反応前の被処理物混合流体と熱交
換し、流路9を経て冷却器10へ流出する。高圧定量ポ
ンプ13から供給された冷却水の残部は、冷却器10の
出口で合流させる。
As shown in FIG. 4, the processing fluid flowing out of the reactor 4 is guided to the heat supply side of the heat exchanger 3 without branching. In order to control the reaction temperature, the cooling water is supplied by a high-pressure metering pump 13 to a pressure higher than the critical pressure of water. Part of the cooling water supplied from the high-pressure metering pump 13 is combined with the processing fluid flowing out of the reactor 4 via the flow control valve 8 and supplied to the heat supply side of the heat exchanger 3. The processing fluid and the cooling water exchange heat with the mixed fluid before the reaction in the heat exchanger 3 and flow out to the cooler 10 through the flow path 9. The remainder of the cooling water supplied from the high-pressure metering pump 13 is joined at the outlet of the cooler 10.

【0040】図4に示した装置によれば、熱交換器3に
流入する処理流体の温度を下げることができるため、交
換熱量を低下させることができ、流量調節弁8の開度を
調節することにより反応温度を制御することができる。
According to the apparatus shown in FIG. 4, since the temperature of the processing fluid flowing into the heat exchanger 3 can be reduced, the amount of heat exchanged can be reduced, and the opening of the flow control valve 8 is adjusted. Thus, the reaction temperature can be controlled.

【0041】熱交換器3手前で合流する冷却水の流量は
変動するため、そのままでは系内の圧力を調節する圧力
調節弁11を流れる流量も変動する。圧力調節弁は基本
的には、定格の流量および圧力によって弁の特性が決定
されるので、急激な流量変化があると、圧力調節が困難
になる。
Since the flow rate of the cooling water that joins before the heat exchanger 3 fluctuates, the flow rate flowing through the pressure control valve 11 for adjusting the pressure in the system fluctuates as it is. Since the characteristics of the pressure control valve are basically determined by the rated flow rate and the pressure, it is difficult to control the pressure if there is a sudden change in the flow rate.

【0042】しかし、本実施形態では、高圧定量ポンプ
13で一定量の冷却水を供給しており、冷却に不要な用
水は圧力調節弁11手前で合流されるため、圧力調節弁
11を通る流量は一定であり、圧力制御を容易に行うこ
とができる。
However, in the present embodiment, a fixed amount of cooling water is supplied by the high-pressure metering pump 13, and the water unnecessary for cooling is joined before the pressure control valve 11, so that the flow rate through the pressure control valve 11 is reduced. Is constant, and pressure control can be easily performed.

【0043】[0043]

【発明の効果】請求項1ないし3に記載の本発明によ
り、バイパスラインに設けた流量調節弁の開度を制御す
ることにより、反応温度を容易に制御できる。また、バ
イパスされた処理流体を冷却した後に流量調節するた
め、通常の流量調節弁を使用することができるととも
に、冷却器も耐熱仕様としなくともよい。
According to the present invention, the reaction temperature can be easily controlled by controlling the opening of the flow control valve provided in the bypass line. In addition, since the flow rate is adjusted after cooling the bypassed processing fluid, a normal flow rate control valve can be used, and the cooler does not have to be heat-resistant.

【0044】請求項4に記載の本発明により、容易に反
応温度の制御ができる。また、反応系内から流出する流
体の量は一定なので、圧力調節弁の制御が容易になる。
According to the present invention, the reaction temperature can be easily controlled. Further, since the amount of fluid flowing out of the reaction system is constant, control of the pressure control valve is facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の一例を示すフロー図。FIG. 1 is a flowchart showing an example of a first embodiment of the present invention.

【図2】本発明の第1実施形態の他の一例を示す部分フ
ロー図。
FIG. 2 is a partial flow chart showing another example of the first embodiment of the present invention.

【図3】本発明の第2実施形態の一例を示すフロー図。FIG. 3 is a flowchart showing an example of a second embodiment of the present invention.

【図4】本発明の第3実施形態の一例を示すフロー図。FIG. 4 is a flowchart showing an example of a third embodiment of the present invention.

【図5】従来の超臨界水酸化分解装置を示すフロー図。FIG. 5 is a flowchart showing a conventional supercritical hydroxylation decomposition apparatus.

【符号の説明】[Explanation of symbols]

1 被処理物供給ポンプ 2 酸化剤供給ポンプ 3 熱交換器 4 反応器 5 流路 6 バイパス流路 7 バイパス用冷却器 8 流量調節弁 9 流路 10 冷却器 11 圧力調節弁 12 気液分離器 13 高圧定量ポンプ DESCRIPTION OF SYMBOLS 1 Processing object supply pump 2 Oxidant supply pump 3 Heat exchanger 4 Reactor 5 Flow path 6 Bypass flow path 7 Bypass cooler 8 Flow control valve 9 Flow path 10 Cooler 11 Pressure control valve 12 Gas-liquid separator 13 High pressure metering pump

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超臨界水中で有機物と酸化剤とを反応さ
せ、有機物を超臨界水酸化分解する装置において、該有
機物、水および酸化剤の被処理物混合流体を水の臨界圧
力以上に加圧供給する被処理物供給手段と、該被処理物
混合流体の超臨界水酸化反応を行う反応器と、該反応器
から流出する反応後の処理流体を冷却する冷却手段と、
該冷却手段から流出する冷却された処理流体を取り出す
取り出し手段を備えた超臨界水酸化分解装置であって、
反応前の被処理物混合流体と反応後の処理流体との間で
熱交換を行う熱交換手段を反応器の前段に設け、さらに
反応器から流出する処理流体がバイパスするバイパス流
路を設け、該バイパス流路にバイパス用冷却器とその後
段に流量調節弁を設けたことを特徴とする有機物の超臨
界水酸化分解装置。
In an apparatus for reacting an organic substance with an oxidizing agent in supercritical water to supercritically decompose the organic substance, a mixed fluid of the organic substance, water and the oxidizing agent is applied to a pressure higher than the critical pressure of water. Pressure-supplied processing object supply means, a reactor for performing a supercritical hydroxylation reaction of the processing object mixed fluid, and a cooling means for cooling the reaction processing fluid flowing out of the reactor,
A supercritical hydroxylation decomposition apparatus comprising a take-out means for taking out a cooled processing fluid flowing out of the cooling means,
Heat exchange means for performing heat exchange between the mixture fluid to be processed before the reaction and the processing fluid after the reaction is provided at the previous stage of the reactor, and further provided with a bypass flow path through which the processing fluid flowing out of the reactor bypasses, An organic supercritical water splitting / decomposing apparatus comprising a bypass cooler provided in the bypass flow path and a flow rate control valve provided at a subsequent stage thereof.
【請求項2】 前記超臨界水酸化分解装置において、バ
イパス流路に設けた流量調節弁から流出する処理流体の
流路を、前記熱交換手段から流出する処理流体の流路に
接続し、合流した処理流体を前記冷却器に導くことを特
徴とする請求項1に記載の有機物の超臨界水酸化分解装
置。
2. In the supercritical hydroxylation decomposition apparatus, a flow path of a processing fluid flowing out of a flow control valve provided in a bypass flow path is connected to a flow path of a processing fluid flowing out of the heat exchange means. 2. The apparatus for supercritically decomposing organic matter according to claim 1, wherein the treated fluid is guided to the cooler.
【請求項3】 前記超臨界水酸化分解装置において、バ
イパス流路に設けた流量調節弁から流出する処理流体の
流路を、前記熱交換手段の熱供給側の入口に接続し、前
記熱交換手段から流出する処理流体を前記冷却器に導く
ことを特徴とする請求項1に記載の有機物の超臨界水酸
化分解装置。
3. In the supercritical hydroxylation / decomposition apparatus, a flow path of a processing fluid flowing out of a flow control valve provided in a bypass flow path is connected to an inlet on a heat supply side of the heat exchange means. The apparatus for supercritically decomposing organic matter according to claim 1, wherein the processing fluid flowing out of the means is guided to the cooler.
【請求項4】 超臨界水中で有機物と酸化剤とを反応さ
せ、有機物を超臨界水酸化分解する装置において、該有
機物、水および酸化剤の被処理物混合流体を水の臨界圧
力以上に加圧供給する被処理物供給手段と、該被処理物
混合流体の超臨界水酸化反応を行う反応器と、該反応器
から流出する反応後の処理流体を冷却する冷却手段と、
該冷却手段から流出する冷却された処理流体を減圧する
圧力調節手段と、該圧力調節手段から流出する減圧され
た処理流体を気液分離するための気液分離手段を備えた
超臨界水酸化処理装置であって、反応前の被処理物混合
流体と反応後の処理流体との間で熱交換を行う熱交換手
段を反応器の前段に設け、水の臨界圧力以上で冷却水を
供給する冷却水供給手段と、冷却水供給手段から流出す
る冷却水の一部を流量調節弁を介して該熱交換器の熱供
給側に導入する流路と、冷却水供給手段から流出する冷
却水の残部を圧力制御手段の前段に導入する流路を備え
たことを特徴とする有機物の超臨界水酸化分解装置。
4. An apparatus for reacting an organic substance with an oxidizing agent in supercritical water and supercritically decomposing the organic substance by applying a mixed fluid of the organic substance, water and the oxidizing agent to a pressure higher than the critical pressure of water. Pressure-supplied processing object supply means, a reactor for performing a supercritical hydroxylation reaction of the processing object mixed fluid, and a cooling means for cooling the reaction processing fluid flowing out of the reactor,
Supercritical water oxidation treatment comprising pressure adjusting means for reducing the pressure of the cooled processing fluid flowing out of the cooling means, and gas-liquid separating means for gas-liquid separating the reduced pressure processing fluid flowing out of the pressure adjusting means. An apparatus, wherein a heat exchange means for performing heat exchange between a mixed fluid to be treated before a reaction and a processing fluid after a reaction is provided in a preceding stage of a reactor, and cooling for supplying cooling water at a critical pressure of water or more. A water supply means, a flow path for introducing a part of the cooling water flowing out of the cooling water supply means to a heat supply side of the heat exchanger via a flow control valve, and a remainder of the cooling water flowing out of the cooling water supply means A supercritical water oxidation decomposition apparatus for organic matter, comprising: a flow path for introducing a gas to a stage preceding the pressure control means.
JP2000378736A 2000-12-13 2000-12-13 Supercritical hydroxylation decomposition equipment for organic matter Pending JP2002177975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378736A JP2002177975A (en) 2000-12-13 2000-12-13 Supercritical hydroxylation decomposition equipment for organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378736A JP2002177975A (en) 2000-12-13 2000-12-13 Supercritical hydroxylation decomposition equipment for organic matter

Publications (1)

Publication Number Publication Date
JP2002177975A true JP2002177975A (en) 2002-06-25

Family

ID=18847244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378736A Pending JP2002177975A (en) 2000-12-13 2000-12-13 Supercritical hydroxylation decomposition equipment for organic matter

Country Status (1)

Country Link
JP (1) JP2002177975A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237064A (en) * 2006-03-08 2007-09-20 Japan Organo Co Ltd Method and device for treating waste liquid
CN105600913A (en) * 2016-03-10 2016-05-25 西安交通大学 Pressure reduction device and method of supercritical water system
CN108423952A (en) * 2018-03-31 2018-08-21 中国石油大学(华东) A kind of group technology of supercritical fluid step extraction-oxidative degradation coupling processing oily sludge
CN108423953A (en) * 2018-05-11 2018-08-21 西安交通大学 Recovery of nitrogen and phosphorus system and method in a kind of municipal sludge based on supercritical technology
CN110790467A (en) * 2019-10-12 2020-02-14 西安交通大学 Heating system for supercritical water oxidation treatment system and control method
CN112661314A (en) * 2020-12-31 2021-04-16 成都九翼环保科技有限公司 Subcritical fluidized bed reactor and method for treating high-concentration organic waste liquid
CN114715964A (en) * 2022-05-11 2022-07-08 南京宇越水性涂料技术有限公司 Sewage treatment system for vehicle after-market
CN114790030A (en) * 2022-04-29 2022-07-26 西安交通大学 Safety guarantee system and method for supercritical water oxidation device
CN114804321A (en) * 2022-04-29 2022-07-29 西安交通大学 Supercritical water oxidation treatment system and regulation and control method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237064A (en) * 2006-03-08 2007-09-20 Japan Organo Co Ltd Method and device for treating waste liquid
CN105600913A (en) * 2016-03-10 2016-05-25 西安交通大学 Pressure reduction device and method of supercritical water system
CN108423952B (en) * 2018-03-31 2021-05-04 中国石油大学(华东) Combined process for treating oily sludge by supercritical fluid gradient extraction-oxidative degradation coupling
CN108423952A (en) * 2018-03-31 2018-08-21 中国石油大学(华东) A kind of group technology of supercritical fluid step extraction-oxidative degradation coupling processing oily sludge
CN108423953A (en) * 2018-05-11 2018-08-21 西安交通大学 Recovery of nitrogen and phosphorus system and method in a kind of municipal sludge based on supercritical technology
CN108423953B (en) * 2018-05-11 2020-05-22 西安交通大学 System and method for recovering nitrogen and phosphorus in municipal sludge based on supercritical technology
CN110790467A (en) * 2019-10-12 2020-02-14 西安交通大学 Heating system for supercritical water oxidation treatment system and control method
CN112661314A (en) * 2020-12-31 2021-04-16 成都九翼环保科技有限公司 Subcritical fluidized bed reactor and method for treating high-concentration organic waste liquid
CN112661314B (en) * 2020-12-31 2022-08-30 成都九翼环保科技有限公司 Subcritical fluidized bed reactor and method for treating high-concentration organic waste liquid
CN114790030A (en) * 2022-04-29 2022-07-26 西安交通大学 Safety guarantee system and method for supercritical water oxidation device
CN114804321A (en) * 2022-04-29 2022-07-29 西安交通大学 Supercritical water oxidation treatment system and regulation and control method thereof
CN114804321B (en) * 2022-04-29 2023-02-28 西安交通大学 Supercritical water oxidation treatment system and regulation and control method thereof
CN114715964A (en) * 2022-05-11 2022-07-08 南京宇越水性涂料技术有限公司 Sewage treatment system for vehicle after-market

Similar Documents

Publication Publication Date Title
CA2373202C (en) A method of and arrangement for continuous hydrolysis of organic material
US5183577A (en) Process for treatment of wastewater containing inorganic ammonium salts
US6709601B2 (en) Hydrothermal treatment system and method
JP2002177975A (en) Supercritical hydroxylation decomposition equipment for organic matter
JPH0134115B2 (en)
DK1318968T3 (en) A process for the hydrothermal oxidation of waste
JPH10328522A (en) Solid electrolyte system for producing fixed purity oxygen
US5234607A (en) Wet oxidation system startup process
CN105776495A (en) Method and system for overheating near-critical water oxidation of unsymmetrical dimethylhydrazine waste liquor
JP2000033355A (en) Treatment of organic waste using high-temperature and high-pressure steam
JP3345285B2 (en) How to start and stop supercritical water oxidation equipment
JPH09276655A (en) Treatment of exhaust gas containing high concentration ammonia and device therefor
JP3836270B2 (en) Method for shutting down supercritical water reactor
JP3686778B2 (en) Operation method of supercritical water reactor
JP2002355696A (en) Supercritical water oxidative decomposition apparatus
JP2003236594A (en) Apparatus for treating sludge
JP2000279795A5 (en)
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP3486522B2 (en) Supercritical water reactor and method of operating supercritical water reactor
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP3284933B2 (en) Supercritical water oxidation method and apparatus
JP2002355700A (en) Supercritical water oxidative decomposition apparatus
JP2005505756A (en) Method for treating radioactive waste and system for carrying out this method