JP3284933B2 - Supercritical water oxidation method and apparatus - Google Patents

Supercritical water oxidation method and apparatus

Info

Publication number
JP3284933B2
JP3284933B2 JP21415497A JP21415497A JP3284933B2 JP 3284933 B2 JP3284933 B2 JP 3284933B2 JP 21415497 A JP21415497 A JP 21415497A JP 21415497 A JP21415497 A JP 21415497A JP 3284933 B2 JP3284933 B2 JP 3284933B2
Authority
JP
Japan
Prior art keywords
raw material
pressure
water
pump
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21415497A
Other languages
Japanese (ja)
Other versions
JPH1133568A (en
Inventor
伸二 麻生
斉 川尻
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP21415497A priority Critical patent/JP3284933B2/en
Publication of JPH1133568A publication Critical patent/JPH1133568A/en
Application granted granted Critical
Publication of JP3284933B2 publication Critical patent/JP3284933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機物と水とを含む
原料を酸素の共存下で水の超臨界状態に置き、前記原料
中の有機物を酸化分解する超臨界水酸化方法及びこの方
法を好適に実施するための超臨界水酸化装置に関する。
The present invention relates to a supercritical water oxidation method in which a raw material containing an organic substance and water is placed in a supercritical state of water in the presence of oxygen, and the organic substance in the raw material is oxidatively decomposed. The present invention relates to a supercritical water oxidation apparatus to be carried out.

【0002】[0002]

【従来の技術】有機物と水とを含む原料を酸素の共存下
で水の超臨界状態に置き、前記原料中の有機物を酸化分
解する超臨界水酸化方法は、例えば特公平1−3853
2号や特開平7−275870号などに開示されてい
る。水の臨界点は圧力が22MPa,温度が374℃で
ある。この臨界点を超えた超臨界状態では、水の物性が
著しく変化し、有機物や酸素を高濃度に溶け込ませるこ
とが可能となり、超臨界水中では有機物の酸化分解反応
が著しく進行する。このような超臨界水の特性を利用し
て、例えば有機性廃棄物の処理を行うことが開発されつ
つある。
2. Description of the Related Art A supercritical water oxidation method in which a raw material containing an organic substance and water is placed in a supercritical state of water in the presence of oxygen and the organic substance in the raw material is oxidatively decomposed is disclosed in, for example, Japanese Patent Publication No. 1-3853.
No. 2 and JP-A-7-275870. The critical point of water is a pressure of 22 MPa and a temperature of 374 ° C. In a supercritical state beyond this critical point, the physical properties of water change remarkably, and organic substances and oxygen can be dissolved at a high concentration. In supercritical water, the oxidative decomposition reaction of organic substances remarkably proceeds. Utilizing such properties of supercritical water, for example, treatment of organic waste is being developed.

【0003】超臨界水酸化装置では、反応器に供給する
原料をどのような手順で水の超臨界状態に到達させるか
が重要になる。一般には図1の状態図において原料を常
圧、常温の状態aから高圧ポンプを用いて一気に臨界圧
力以上に昇圧して状態gとし、状態gの原料を加熱して
状態hの超臨界状態にすることが行われている。状態h
の超臨界状態で原料に酸素を供給すると反応器では前記
のように原料中の有機物の酸化分解反応が著しく進行す
る。この方法によれば原料の昇圧や加熱の操作を主に液
相で実施できるので装置構成を比較的コンパクトにでき
る。仮に常圧、常温の状態aから臨界温度まで昇温し、
その後に昇圧して超臨界状態にしようとすると原料の昇
圧や加熱の操作をほとんど気相で実施することになり、
装置構成が複雑かつ大型となり操業上の安全性にも問題
が生じる。
[0003] In a supercritical water oxidation apparatus, it is important in what procedure a raw material supplied to a reactor is brought to a supercritical state of water. In general, in the state diagram of FIG. 1, the raw material is raised from the state a at normal pressure and room temperature to a state g by using a high-pressure pump to raise the raw material to a state g at a stretch, and the raw material in the state g is heated to the supercritical state h. That is being done. State h
When oxygen is supplied to the raw material in the supercritical state, the oxidative decomposition reaction of the organic substance in the raw material remarkably proceeds in the reactor as described above. According to this method, the operation of pressurizing and heating the raw material can be performed mainly in the liquid phase, so that the apparatus configuration can be made relatively compact. Suppose that the temperature is raised from normal pressure, normal temperature state a to the critical temperature,
If the pressure is then increased to the supercritical state, the operation of increasing the pressure and heating the raw material will be performed almost in the gas phase,
The device configuration is complicated and large, and there is a problem in operational safety.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者の検討結果によれば、上記した一般的な方法ではいく
つかの課題が存在することが判明した。第一に処理の対
象となる原料の流動性が悪い場合には、原料を常圧、常
温の状態aから臨界圧力以上に連続的に昇圧するための
高圧ポンプが高価で、かつ圧力損失が極めて大きいとい
う問題がある。第二に高圧の状態gの原料を加熱する装
置が高価になることである。すなわち、加熱装置は容器
(配管を含む。)内に原料を連続又は間欠的に滞留さ
せ、この間に容器の外部から間接的に加熱することにな
るが、高温高圧に耐える高級な材料を厚肉に用いるの
で、装置のコストが上昇する。
However, according to the study results of the present inventors, it has been found that the above-mentioned general method has some problems. First, when the fluidity of the raw material to be treated is poor, a high-pressure pump for continuously increasing the pressure of the raw material from the state a at normal pressure and normal temperature to a critical pressure or higher is expensive, and the pressure loss is extremely low. There is a problem of being large. Second, the apparatus for heating the raw material in the high-pressure state g is expensive. In other words, the heating device continuously or intermittently retains the raw material in a container (including piping), and indirectly heats the material from outside the container during this time. , The cost of the apparatus increases.

【0005】本発明の目的は、上記従来技術の課題を改
善し、流動性が悪い原料に対しても臨界圧力以上に昇圧
することが比較的容易で、かつ加熱装置のコストを低減
することができる超臨界水酸化方法及びその装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned problems of the prior art, to make it relatively easy to raise the pressure above the critical pressure even for a raw material having poor fluidity, and to reduce the cost of the heating device. It is an object of the present invention to provide a supercritical water oxidation method and an apparatus therefor.

【0006】[0006]

【課題を解決するための手段】本発明に係る超臨界水酸
化方法は、有機物と水とを含む原料を酸素の共存下で水
の超臨界状態に置き、前記原料中の有機物を酸化分解す
る超臨界水酸化方法において、前記原料を水の臨界圧力
よりも低い5〜15MPaに昇圧させ、この昇圧した原
料を加熱して昇温させ、この昇温した原料を水の臨界圧
力以上に昇圧させ、この昇圧した原料に酸素を供給する
ことによって、前記有機物の酸化分解を行うことを特徴
とする。
According to the supercritical water oxidation method of the present invention, a raw material containing an organic substance and water is placed in a supercritical state of water in the presence of oxygen, and the organic substance in the raw material is oxidized and decomposed. In the supercritical water oxidation method, the raw material is pressurized to 5 to 15 MPa lower than the critical pressure of water, and the pressurized raw material is heated to raise the temperature. The organic material is oxidatively decomposed by supplying oxygen to the pressurized raw material.

【0007】本発明に係る超臨界水酸化装置は、有機物
と水とを含む原料を水の臨界圧力よりも低い5〜15M
Paに昇圧させる第1のポンプと、この第1のポンプに
よって昇圧した原料を昇温させる熱交換器と、この熱交
換器によって昇温した原料を水の臨界圧力以上に昇圧さ
せる第2のポンプと、この第2のポンプによって昇圧し
た原料に酸素を供給する酸素供給手段と、この酸素供給
手段によって酸素を供給された原料を水の超臨界状態下
で反応させ原料中の有機物を酸化分解させる反応器とを
具備したことを特徴とする。
In the supercritical water oxidation apparatus according to the present invention, a raw material containing an organic substance and water is mixed at a pressure of 5 to 15 M lower than the critical pressure of water.
A first pump for raising the pressure to Pa , a heat exchanger for raising the temperature of the raw material raised by the first pump, and a second pump for raising the temperature of the raw material raised by the heat exchanger to a critical pressure of water or higher. Oxygen supply means for supplying oxygen to the raw material pressurized by the second pump; and reacting the raw material supplied with oxygen by the oxygen supply means in a supercritical state of water to oxidatively decompose organic substances in the raw material. And a reactor.

【0008】また、本発明に係る超臨界水酸化装置は、
前記反応器から排出される高温の反応物を前記熱交換器
に送給し、前記原料と間接的に熱交換させるようにした
ことを特徴とする。また、本発明に係る超臨界水酸化装
置は、前記第1のポンプ又は第2のポンプはハイドロ式
のポンプであって、前記反応器から排出される高圧の反
応物の圧力を駆動力として作動することを特徴とする。
Further, the supercritical water oxidation apparatus according to the present invention comprises:
A high-temperature reactant discharged from the reactor is fed to the heat exchanger to indirectly exchange heat with the raw material. Further, in the supercritical water oxidation apparatus according to the present invention, the first pump or the second pump is a hydro pump, and operates using a pressure of a high-pressure reactant discharged from the reactor as a driving force. It is characterized by doing.

【0009】本発明によれば、まず、原料を水の臨界圧
力よりも十分に低い程度に、すなわち5〜15MPaに
昇圧させる。この程度の圧力であれば流動性が多少悪い
原料に対しても昇圧が比較的容易である。
According to the present invention, first, the raw material is pressurized to a level sufficiently lower than the critical pressure of water, that is, to 5 to 15 MPa. At such a pressure, the pressure can be increased relatively easily even for a raw material having a somewhat poor fluidity.

【0010】次に、この昇圧した原料を昇温させる。昇
温の手段としては後述するプロセスの熱回収の観点から
熱交換器を用いることが好ましい。熱交換器に導入する
原料は上記のように水の臨界圧力よりも十分に低い程度
に昇圧されているだけであるから、熱交換器の肉厚を比
較的薄くすることができ、熱交換器のコストを低減でき
る。
Next, the temperature of the pressurized raw material is raised. As a means for raising the temperature, it is preferable to use a heat exchanger from the viewpoint of heat recovery in a process described later. As described above, the raw material introduced into the heat exchanger is merely pressurized to a level sufficiently lower than the critical pressure of water, so that the thickness of the heat exchanger can be made relatively thin, Cost can be reduced.

【0011】次に、熱交換器で昇温した原料を水の臨界
圧力以上に昇圧させる。発明者の知見によれば、5〜1
5MPaの圧力下で200℃以上に昇温させた原料は流
動性が著しく改善され液状化が進んでいる。このため、
流動性が悪い元の原料でもこの段階では液体としての取
り扱いが可能となり、原料を水の臨界圧力以上に昇圧す
ることが容易になる。
Next, the temperature of the raw material heated in the heat exchanger is raised to a value higher than the critical pressure of water. According to the inventors' findings, 5-1
Raw materials heated to 200 ° C. or more under a pressure of 5 MPa have remarkably improved fluidity and are being liquefied. For this reason,
At this stage, the raw material having poor fluidity can be handled as a liquid at this stage, and the raw material can be easily pressurized to a pressure higher than the critical pressure of water.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき説明する。図2は本発明の実施例を示す装置系
統図である。この実施例は下水処理場で発生した下水汚
泥を超臨界水酸化するための方法と装置構成を示すもの
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is an apparatus system diagram showing an embodiment of the present invention. This embodiment shows a method and apparatus configuration for supercritical water oxidation of sewage sludge generated in a sewage treatment plant.

【0013】この汚泥は水分が80〜95%の有機性の
ものであり、少量の無機物質を含んでいる。性状は泥を
捏ねたような粘稠質のもので悪臭が激しく、放置すると
腐敗が進行して更に悪臭を放つ。この汚泥を超臨界水酸
化すると汚泥の主成分である有機物が酸化分解して水分
と酸化ガスとなり無害化する。
This sludge is organic with a water content of 80 to 95% and contains a small amount of inorganic substances. The substance is viscous like kneaded mud and has a strong odor. When this sludge is supercritically hydroxylated, the organic matter, which is the main component of the sludge, is oxidized and decomposed to become water and oxidizing gas, thereby rendering it harmless.

【0014】図2において、汚泥貯留槽10には原料で
ある汚泥11が貯留されている。汚泥貯留槽10の底部
には配管12を介して汚泥供給ポンプ13が接続してい
る。汚泥供給ポンプ13の吐出側は配管14を介して熱
交換器15に接続している。熱交換器15の汚泥の出口
は配管16、逆止弁17を介して高圧ポンプ18に接続
している。高圧ポンプ18はハイドロ式であり、並列に
2台配置されて切り替え運転される。
In FIG. 2, a sludge storage tank 10 stores sludge 11 as a raw material. A sludge supply pump 13 is connected to the bottom of the sludge storage tank 10 via a pipe 12. The discharge side of the sludge supply pump 13 is connected to a heat exchanger 15 via a pipe 14. The sludge outlet of the heat exchanger 15 is connected to a high-pressure pump 18 via a pipe 16 and a check valve 17. The high-pressure pumps 18 are of a hydro type, and two high-pressure pumps are arranged in parallel and operated for switching.

【0015】高圧ポンプ18の汚泥側吐出口は逆止弁1
9、配管20を介して混合器21に接続している。混合
器21には酸素の供給口があり、この混合器21内で前
記高圧ポンプ18からの汚泥と酸素とが混合される。な
お、酸素は配管22から取り入れた空気を送風機23で
酸素製造器24に送り、この酸素製造器24で製造した
酸素を酸素圧縮機25で圧縮し、水の臨界圧力以上に昇
圧した後に、混合器21に供給される。
The discharge port on the sludge side of the high-pressure pump 18 is a check valve 1
9, connected to a mixer 21 via a pipe 20. The mixer 21 has an oxygen supply port, in which the sludge from the high-pressure pump 18 and oxygen are mixed. As for oxygen, the air taken in from the pipe 22 is sent to an oxygen generator 24 by a blower 23, and the oxygen produced by the oxygen generator 24 is compressed by an oxygen compressor 25, and after the pressure is increased to the critical pressure of water or higher, the mixing is performed. Is supplied to the vessel 21.

【0016】混合器21の出口には反応器26が接続さ
れている。反応器26はチュ−ブを連結した単純な構成
のものであって、酸素を共存させた超臨界状態の汚泥が
反応器26のチュ−ブ内を通過する過程で汚泥中の有機
物の酸化分解反応が進行し、完了する。反応器26の出
口側は配管27を介して前記熱交換器15内に配設され
た熱交換用チュ−ブ28に接続されている。この熱交換
用チュ−ブ28の出口側は配管29、冷却器30、配管
31を介して気液分離器32に接続されている。気液分
離器32で分離したガスは配管33から大気に放出され
る。
A reactor 26 is connected to an outlet of the mixer 21. The reactor 26 has a simple structure in which tubes are connected to each other, and oxidative decomposition of organic matter in sludge in a process in which supercritical sludge containing oxygen passes through the tube of the reactor 26. The reaction proceeds and is completed. The outlet side of the reactor 26 is connected to a heat exchange tube 28 provided in the heat exchanger 15 via a pipe 27. The outlet side of the heat exchange tube 28 is connected to a gas-liquid separator 32 via a pipe 29, a cooler 30, and a pipe 31. The gas separated by the gas-liquid separator 32 is released from the pipe 33 to the atmosphere.

【0017】一方、気液分離器32の液側は配管34を
介して並列切替式の固液分離器35に接続し、ここで分
離された灰分は配管36から系外に排出される。固液分
離器35の液側は配管37、切替弁38、 逆止弁39
を介して前記した高圧ポンプ18の液側流入口の接続さ
れ、高圧ポンプ18の液側吐出口は逆止弁40、切替弁
41、配管42を介して第2の気液分離器43に接続さ
れている。気液分離器43で分離したガスは配管44か
ら大気に放出される。気液分離器43の液側は配管45
を介して処理水貯槽46に接続し、処理水は配管47か
ら系外に排出される。また、処理水貯槽46には補助高
圧ポンプ48が接続され、処理水をこの補助高圧ポンプ
48から配管49を介して前記配管37に合流させ高圧
ポンプ18の液側流入口に供給可能にしてある。
On the other hand, the liquid side of the gas-liquid separator 32 is connected to a parallel-switchable solid-liquid separator 35 via a pipe 34, and the ash separated here is discharged out of the system from a pipe 36. The liquid side of the solid-liquid separator 35 is a pipe 37, a switching valve 38, a check valve 39.
The liquid-side inlet of the high-pressure pump 18 is connected to the second gas-liquid separator 43 through a check valve 40, a switching valve 41, and a pipe 42. Have been. The gas separated by the gas-liquid separator 43 is released from the pipe 44 to the atmosphere. The liquid side of the gas-liquid separator 43 is a pipe 45
Is connected to the treated water storage tank 46 through the pipe, and the treated water is discharged from the pipe 47 to the outside of the system. Further, an auxiliary high-pressure pump 48 is connected to the treated water storage tank 46, and the treated water is joined from the auxiliary high-pressure pump 48 to the pipe 37 via a pipe 49 so as to be supplied to the liquid-side inlet of the high-pressure pump 18. .

【0018】次に、この装置系統における処理操作の流
れを説明する。汚泥供給ポンプ13を稼働して、汚泥貯
留槽10に貯留した汚泥を本装置へ連続的に供給する。
汚泥供給ポンプ13によって汚泥は図1の常温、常圧の
状態aから約10MPaに昇圧されて、常温、中圧の状
態bとなり熱交換器15に供給される。熱交換器15内
の熱交換用チュ−ブ28には反応器26の出口側から送
られてくる高温(約600℃)の反応物が連続的に流れ
ており、熱交換器15に供給された汚泥と高温の反応物
が熱交換して、汚泥は約300℃に加熱される。
Next, the flow of the processing operation in this system will be described. The sludge supply pump 13 is operated to continuously supply the sludge stored in the sludge storage tank 10 to the present apparatus.
The sludge is pumped up by the sludge supply pump 13 from the normal temperature and normal pressure state a of FIG. 1 to about 10 MPa, and is changed to the normal temperature and medium pressure state b to be supplied to the heat exchanger 15. The high-temperature (about 600 ° C.) reactant sent from the outlet of the reactor 26 continuously flows through the heat exchange tube 28 in the heat exchanger 15 and is supplied to the heat exchanger 15. The sludge and the high-temperature reactant exchange heat, and the sludge is heated to about 300 ° C.

【0019】熱交換を効率良く促進させるために熱交換
器15内には汚泥を掻き混ぜる撹拌機50が装備されて
いる。加熱された汚泥は図1の高温、中圧の状態cとな
り、汚泥は最初の粘稠質な状態とは様変わりして、極め
て流動性の良い液状の状態となる。このため、熱交換器
15を出た後の汚泥は液体として取り扱うことが可能と
なり、配管や反応器を通過させるときの圧力損失も小さ
くて済む。
In order to efficiently promote heat exchange, the heat exchanger 15 is provided with a stirrer 50 for stirring the sludge. The heated sludge is in the high-temperature, medium-pressure state c shown in FIG. 1, and the sludge changes from the initial viscous state to a liquid state with extremely high fluidity. For this reason, the sludge after leaving the heat exchanger 15 can be handled as a liquid, and the pressure loss when passing through the pipe or the reactor can be small.

【0020】熱交換器15内に導入する汚泥は上記のよ
うに水の臨界圧力よりも十分に低い程度に昇圧されてい
るだけであるから、熱交換器15を構成する槽本体の肉
厚を比較的薄くすることができ、熱交換器のコストを低
減できる。
Since the sludge introduced into the heat exchanger 15 is merely raised to a level sufficiently lower than the critical pressure of water as described above, the thickness of the tank body constituting the heat exchanger 15 is reduced. The thickness can be made relatively thin, and the cost of the heat exchanger can be reduced.

【0021】熱交換器15で加熱された汚泥は配管16
を介して高圧ポンプ18に送られる。この高圧ポンプ1
8はハイドロ式であり、並列に設けた2台のポンプを交
互に作動させることによって汚泥を前記臨界圧力以上の
約25MPaに昇圧させる。
The sludge heated in the heat exchanger 15 is supplied to a pipe 16
Is sent to the high-pressure pump 18 via. This high pressure pump 1
Numeral 8 denotes a hydro-type, which raises the sludge to about 25 MPa above the critical pressure by alternately operating two pumps provided in parallel.

【0022】この時の操作を図3に基づいて説明する。
ハイドロ式の高圧ポンプ18A,18Bはシリンダ内の
ピストン51A、51Bを境にして汚泥室52A、52
Bと背圧室53A、53Bに区画されている。まず、背
圧室53A、53Bに通じる液側の切替弁のうち、38
A、41Bを閉とし、38B、41Aを開とする。
The operation at this time will be described with reference to FIG.
The hydro-type high-pressure pumps 18A and 18B are provided with sludge chambers 52A and 52B at the boundaries of the pistons 51A and 51B in the cylinder.
B and back pressure chambers 53A and 53B. First, of the liquid side switching valves communicating with the back pressure chambers 53A and 53B, 38
A and 41B are closed and 38B and 41A are open.

【0023】高圧ポンプ18Aにおいては、切替弁38
Aが閉であるから背圧室53Aには配管37からの処理
水の背圧が作用せず、背圧室53Aは低圧となる。従っ
て、前記熱交換器15からの汚泥が配管16A,逆止弁
17Aを経て汚泥室52A内に流入する。高圧ポンプ1
8Bにおいては、切替弁38Bが開であるから背圧室5
3Bには配管37からの処理水の背圧が作用して、背圧
室53Bは高圧となる。従って、汚泥室52B内の汚泥
は臨界圧力以上に昇圧され配管20B,逆止弁19Bを
経て配管20から混合器21に送られる。
In the high-pressure pump 18A, the switching valve 38
Since A is closed, the back pressure of the treated water from the pipe 37 does not act on the back pressure chamber 53A, and the back pressure chamber 53A has a low pressure. Therefore, the sludge from the heat exchanger 15 flows into the sludge chamber 52A via the pipe 16A and the check valve 17A. High pressure pump 1
8B, since the switching valve 38B is open, the back pressure chamber 5
The back pressure of the treated water from the pipe 37 acts on 3B, and the back pressure chamber 53B becomes high pressure. Accordingly, the sludge in the sludge chamber 52B is raised to a pressure higher than the critical pressure and is sent from the pipe 20 to the mixer 21 via the pipe 20B and the check valve 19B.

【0024】次に、背圧室53A、53Bに通じる液側
の切替弁38A、41Bを開、38B、41Aを閉に切
替える。高圧ポンプ18Aにおいては、切替弁38Aが
開であるから背圧室53Aには配管37からの処理水の
背圧が作用して、背圧室53Aは高圧となる。従って、
前記汚泥室52A内に流入した汚泥は臨界圧力以上に昇
圧され配管20A,逆止弁19Aを経て配管20から混
合器21に送られる。高圧ポンプ18Bにおいては、切
替弁38Bが閉であるから背圧室53Bには配管37か
らの処理水の背圧が作用せず、背圧室53Bは低圧とな
る。従って、前記熱交換器15からの汚泥が配管16
B,逆止弁17Bを経て汚泥室52B内に流入する。
Next, the switching valves 38A and 41B on the liquid side communicating with the back pressure chambers 53A and 53B are opened, and the switching valves 38B and 41A are closed. In the high-pressure pump 18A, since the switching valve 38A is open, the back pressure of the treated water from the pipe 37 acts on the back pressure chamber 53A, and the back pressure chamber 53A becomes high pressure. Therefore,
The sludge flowing into the sludge chamber 52A is pressurized above the critical pressure and sent to the mixer 21 from the pipe 20 through the pipe 20A and the check valve 19A. In the high-pressure pump 18B, since the switching valve 38B is closed, the back pressure of the treated water from the pipe 37 does not act on the back pressure chamber 53B, and the back pressure chamber 53B has a low pressure. Therefore, the sludge from the heat exchanger 15 is
B, flows into the sludge chamber 52B via the check valve 17B.

【0025】上記のように、並列した高圧ポンプ18
A、18Bの背圧室側の切替弁38A、38B、41
A、41Bの開閉を交互に切替えることによって、汚泥
をほぼ連続的に昇圧させ、混合器21に送り込むことが
できる。
As described above, the parallel high-pressure pump 18
Switching valves 38A, 38B, 41 on the back pressure chamber side of A, 18B
By alternately switching the opening and closing of A and 41B, the sludge can be pressurized almost continuously and sent to the mixer 21.

【0026】昇圧した汚泥は後述のように、混合器21
から反応器26へ送られ、ここでの生成物である処理水
が圧力を維持したまま高圧ポンプ18の背圧室側へ送ら
れてくるので、汚泥と処理水は実質上、連続している。
いわば、高圧ポンプ18によって押出し流れが形成され
ていると考えることができる。この押出し流れが各系統
の配管や機器を通過する過程で受ける圧力損失は、配管
37へ補助高圧ポンプ48からの高圧水を配管49から
供給することで補う。補助高圧ポンプ48が押出し流れ
の駆動力であり、高圧ポンプ18が押出し流れの圧力を
臨界圧力以上に維持するための役割を担う。
The pressurized sludge is supplied to a mixer 21 as described later.
To the reactor 26, and the treated water as a product here is sent to the back pressure chamber side of the high-pressure pump 18 while maintaining the pressure, so that the sludge and the treated water are substantially continuous. .
In other words, it can be considered that the extrusion flow is formed by the high-pressure pump 18. The pressure loss caused in the process of passing this pushing flow through the pipes and devices of each system is compensated by supplying high-pressure water from the auxiliary high-pressure pump 48 to the pipe 37 from the pipe 49. The auxiliary high-pressure pump 48 is a driving force for the extrusion flow, and the high-pressure pump 18 plays a role in maintaining the pressure of the extrusion flow at a critical pressure or higher.

【0027】混合器21に供給された汚泥は、図1にお
ける状態dの温度(約300℃)と圧力(約25MP
a)を有しており、この混合器21で酸素圧縮機25で
圧縮された酸素と混合される。酸素を混合された汚泥は
混合器21から反応器26に送られる。
The sludge supplied to the mixer 21 has a temperature (about 300 ° C.) and a pressure (about 25 MPa) in the state d in FIG.
a), and is mixed with the oxygen compressed by the oxygen compressor 25 in the mixer 21. The sludge mixed with oxygen is sent from the mixer 21 to the reactor 26.

【0028】反応器26のチュ−ブ内を通過する過程で
汚泥中の有機物が酸化分解反応を起し、この時の分解熱
によって昇温し図1における状態eの臨界状態へ進む。
さらに酸化分解反応が進むと超臨界状態の領域に入り、
酸化分解反応が加速的に進行する。
In the process of passing through the tube of the reactor 26, the organic matter in the sludge undergoes an oxidative decomposition reaction, the temperature of which rises due to the decomposition heat at this time, and proceeds to the critical state of the state e in FIG.
When the oxidative decomposition reaction proceeds further, it enters the supercritical state region,
The oxidative decomposition reaction proceeds at an accelerated rate.

【0029】この酸化分解反応によって有機物は水と酸
化ガス(大部分は炭酸ガス)に分解し、反応器26の出
口では反応が完了して安定な反応物となる。この時の反
応物の温度は分解熱によって約600℃にまで上昇し、
図1における状態fとなる。なお、原料である汚泥中の
有機物濃度等によって反応物の昇温の度合が大きく変化
する場合があるので、反応器26を二重管構造とすると
ともに、図示しない温度制御手段を設けて、二重管構造
の外側管に熱媒体を流し、汚泥又は反応物を冷却及び加
熱できるようにすることが好ましい。この温度制御手段
により、スタ−トアップ時や定常運転時の運転の安定化
を図ることができる。
The organic matter is decomposed into water and an oxidizing gas (mostly carbon dioxide gas) by the oxidative decomposition reaction, and the reaction is completed at the outlet of the reactor 26 to become a stable reactant. The temperature of the reactant at this time rises to about 600 ° C. due to the heat of decomposition,
The state becomes the state f in FIG. Since the degree of temperature rise of the reactant may vary greatly depending on the concentration of organic substances in the sludge as a raw material, the reactor 26 has a double pipe structure, and a temperature control means (not shown) is provided. Preferably, a heat medium is passed through the outer tube of the double tube structure so that the sludge or reactant can be cooled and heated. With this temperature control means, the operation can be stabilized at the time of start-up or steady operation.

【0030】反応器26を出た反応物は配管27から熱
交換器15内に配設された熱交換用チュ−ブ28に送ら
れる。この熱交換用チュ−ブ28内を通過する過程で反
応物は原料である汚泥と熱交換し、温度が約300℃に
低下する。熱交換器15を出た反応物は配管29から冷
却器30に入り、ここで冷却されてほぼ常温となる。冷
却器30を出た反応物は配管31を介して気液分離器3
2に供給され、ここで反応物中のガスが分離されて配管
33から大気に放出される。
The reactant exiting the reactor 26 is sent from a pipe 27 to a heat exchange tube 28 provided in the heat exchanger 15. In the course of passing through the heat exchange tube 28, the reactant exchanges heat with the raw material sludge, and the temperature drops to about 300 ° C. The reactant exiting the heat exchanger 15 enters a cooler 30 via a pipe 29, where it is cooled to approximately normal temperature. The reactant exiting the cooler 30 passes through a pipe 31 to the gas-liquid separator 3.
2 where the gases in the reactants are separated and released from pipe 33 to the atmosphere.

【0031】気液分離器32でガスが分離された反応物
は液側の配管34を介して並列切替式の固液分離器35
に供給され、ここで分離された反応物中の灰分は配管3
6から系外に排出される。固液分離器35の液側から出
る反応物は水であり、配管37を経て前記した高圧ポン
プ18の液側流入口の供給され、前記したように汚泥の
昇圧に利用された後、配管42を介して第2の気液分離
器43に送られる。
The reactant from which the gas has been separated by the gas-liquid separator 32 is connected via a liquid-side pipe 34 to a parallel-switching solid-liquid separator 35.
Ash in the reactant separated here is supplied to the pipe 3
From 6 is discharged out of the system. The reactant flowing out of the liquid side of the solid-liquid separator 35 is water. The reactant is supplied to the liquid side inlet of the high-pressure pump 18 via the pipe 37, and is used for pressurizing the sludge as described above. Is sent to the second gas-liquid separator 43.

【0032】第2の気液分離器43では分離したガスは
配管44から大気に放出される。第2の気液分離器43
でガスを分離された処理水は液側の配管45を介して処
理水貯槽46に一旦貯溜された後、配管47から系外に
排出される。また、処理水貯槽46には補助高圧ポンプ
48が接続され、処理水をこの補助高圧ポンプ48で昇
圧し、高圧ポンプ18の液側流入口に供給して汚泥の昇
圧に利用する。
In the second gas-liquid separator 43, the separated gas is discharged from a pipe 44 to the atmosphere. Second gas-liquid separator 43
The treated water from which the gas has been separated is temporarily stored in a treated water storage tank 46 via a liquid-side pipe 45 and then discharged out of the system from a pipe 47. An auxiliary high-pressure pump 48 is connected to the treated water storage tank 46, and the pressure of the treated water is increased by the auxiliary high-pressure pump 48 and supplied to the liquid-side inlet of the high-pressure pump 18 to be used for increasing the pressure of sludge.

【0033】以上に述べたように、本実施例によれば流
動性の悪い汚泥を比較的容易に水の臨界圧力以上に昇圧
することができ、かつ、汚泥を効率良く水の臨界温度付
近まで加熱し、熱交換器のコストを低減することができ
る超臨界水酸化方法及びその装置を提供することができ
る。
As described above, according to this embodiment, sludge having poor fluidity can be relatively easily increased to a pressure higher than the critical pressure of water, and the sludge can be efficiently brought to a temperature close to the critical temperature of water. A supercritical water oxidation method capable of heating and reducing the cost of a heat exchanger and an apparatus therefor can be provided.

【0034】上記実施例では原料が下水汚泥の場合を説
明したが、これに限らず有機物と水とを含むものであれ
ば任意の原料でよい。また、汚泥供給ポンプによる第1
段の昇圧を約10MPaとし、高圧ポンプによる第2段
の昇圧を約25MPaとしたが、これに限らず原料の組
成等に応じて適宜変化させてもよい。ただし、第1段の
昇圧が低く例えば1MPaであると、この昇圧した原料
を次の工程で水の臨界温度付近にまで昇温させるとき、
約180℃で原料中の水が飽和温度に達して、これ以上
加熱すると過熱蒸気となり、取扱性が著しく悪化する。
また、第1段の昇圧が高く例えば20MPaであると、
操作や装置が複雑になるばかりで、本発明の作用効果を
十分に享受できない。
In the above embodiment, the case where the raw material is sewage sludge has been described. However, the present invention is not limited to this, and any raw material containing organic matter and water may be used. In addition, the first sludge feed pump
The boosting of the stage is about 10 MPa, and the boosting of the second stage by the high-pressure pump is about 25 MPa. However, the present invention is not limited to this, and may be changed as appropriate according to the composition of the raw materials and the like. However, if the pressure increase in the first stage is low, for example, 1 MPa, when the temperature of the pressurized material is raised to near the critical temperature of water in the next step,
At about 180 ° C., the water in the raw material reaches the saturation temperature, and if it is heated further, it becomes superheated steam, and the handleability deteriorates significantly.
Also, if the boosting of the first stage is high, for example, 20 MPa,
Only the operation and the device become complicated, and the operation and effect of the present invention cannot be sufficiently enjoyed.

【0035】したがって、第1段の昇圧の程度は5〜1
5MPaの範囲で選択することが好ましい。第1段の昇
圧が例えば5MPaであると、原料の液相での加温が約
260℃まで可能となり、第1段の昇圧が例えば15M
Paであると、約340℃まで可能となる。
Therefore, the degree of boosting in the first stage is 5 to 1
It is preferable to select in the range of 5 MPa. If the first stage pressure is, for example, 5 MPa, the raw material can be heated in the liquid phase up to about 260 ° C., and the first stage pressure is increased to, for example, 15M.
If it is Pa, it can be up to about 340 ° C.

【0036】前記実施例では第2段の昇圧用としての高
圧ポンプをハイドロ式のポンプとし、このハイドロ式の
ポンプを反応器から排出される高圧の反応物の圧力を駆
動力として作動させるようにした。しかし、これに限ら
ず第1段昇圧用のポンプをハイドロ式のポンプとし、こ
のハイドロ式のポンプを反応器から排出される高圧の反
応物の圧力を駆動力として作動させるようにしてもよ
い。この場合には第2段昇圧用のポンプには他の形式の
ものを用いる。
In the above embodiment, the second-stage high-pressure pump for increasing pressure is a hydro pump, and the hydro pump is operated by using the pressure of the high-pressure reactant discharged from the reactor as a driving force. did. However, the invention is not limited thereto, and the first-stage pressure increasing pump may be a hydro-type pump, and the hydro-type pump may be operated using the pressure of the high-pressure reactant discharged from the reactor as a driving force. In this case, another type of pump is used for the second-stage boosting pump.

【0037】前記実施例では熱交換器15により、原料
である汚泥を約300℃にまで加温し、この温度でその
まま反応器26供給した。しかしながら、200℃以上
であれば原料の流動性が向上するので、原料を熱交換器
で約200℃に加温した後、前記第2段の昇圧を実行
し、その後別の加熱手段で原料を水の臨界温度付近まで
昇温するようにしてもよい。
In the above embodiment, the sludge as the raw material was heated to about 300 ° C. by the heat exchanger 15 and supplied to the reactor 26 at this temperature. However, if the temperature is 200 ° C. or higher, the fluidity of the raw material is improved. Therefore, after the raw material is heated to about 200 ° C. in the heat exchanger, the second-stage pressurization is performed, and then the raw material is heated by another heating means. The temperature may be raised to near the critical temperature of water.

【0038】[0038]

【発明の効果】本発明によれば有機物と水とを含む原料
を水の臨界圧力よりも十分に低い程度に昇圧させ、この
昇圧した原料を昇温させ、この昇温した原料を水の臨界
圧力以上に昇圧させ、この昇圧した原料に酸素を供給す
ることによって、前記有機物の酸化分解を行うようにし
たので、第1段の昇圧では流動性が悪い原料に対しても
昇圧が比較的容易である。この昇圧した原料を昇温させ
る際は、原料は水の臨界圧力よりも十分に低い程度に昇
圧されているだけであるから、加熱装置を構成する伝熱
面の肉厚を比較的薄くすることができ、加熱装置のコス
トを大幅に低減できる。
According to the present invention, a raw material containing an organic substance and water is pressurized to a level sufficiently lower than the critical pressure of water, the raised raw material is heated, and the heated raw material is cooled to a critical temperature. The organic substance is oxidatively decomposed by increasing the pressure to a pressure higher than the pressure and supplying oxygen to the increased pressure, so that the first-stage pressure increase makes it relatively easy to increase the pressure even on a material having poor fluidity. It is. When raising the temperature of the pressurized raw material, since the raw material is merely raised to a level sufficiently lower than the critical pressure of water, the thickness of the heat transfer surface constituting the heating device should be relatively thin. And the cost of the heating device can be greatly reduced.

【0039】また、この昇温した原料は流動性が著しく
改善され液状化が進んでいる。このため、流動性が悪い
元の原料でも第2段の昇圧の段階では液体としての取り
扱いが可能となり、原料を水の臨界圧力以上に昇圧する
ことが容易になる。
Further, the fluidity of the heated material is remarkably improved and liquefaction is progressing. For this reason, even the original raw material having poor fluidity can be handled as a liquid in the second pressurization stage, and the raw material can be easily pressurized above the critical pressure of water.

【0040】また、反応器から排出される高温の反応物
を熱交換器に送給し、前記原料と間接的に熱交換させる
ようにしたので、反応物の保有する熱量を原料加熱用に
有効に回収できる。また、第1のポンプ又は第2のポン
プをハイドロ式のポンプとし、反応器から排出される高
圧の反応物の圧力を駆動力として作動するようにしたの
で、反応物の保有する圧力を原料加圧用に有効に回収で
きる。
Further, since the high-temperature reactant discharged from the reactor is fed to the heat exchanger and indirectly exchanges heat with the raw material, the amount of heat held by the reactant is effectively used for heating the raw material. Can be recovered. Further, since the first pump or the second pump is a hydro-type pump and is operated using the pressure of the high-pressure reactant discharged from the reactor as a driving force, the pressure held by the reactant is added to the raw material. It can be effectively collected for pressure.

【0041】このため、本発明によれば流動性が悪い原
料に対しても臨界圧力以上に昇圧することが比較的容易
で、かつ加熱装置や昇圧装置のコストを低減することが
できる超臨界水酸化方法及びその装置を提供することが
できる。
For this reason, according to the present invention, it is relatively easy to increase the pressure above the critical pressure even for a raw material having poor fluidity, and it is possible to reduce the cost of the heating device and the pressure increasing device. An oxidation method and an apparatus thereof can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 水及び本発明に係る原料の状態を示す説明図
である。
FIG. 1 is an explanatory diagram showing a state of water and a raw material according to the present invention.

【図2】 本発明の実施例を示す装置系統図である。FIG. 2 is an apparatus system diagram showing an embodiment of the present invention.

【図3】 本発明の実施例に係る高圧ポンプの作動を説
明するための装置系統図である。
FIG. 3 is an apparatus system diagram for explaining an operation of the high-pressure pump according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10……汚泥貯留槽 13……汚泥供給ポンプ 15……熱交換器 18……高圧ポンプ 21……混合器 25……酸素圧縮機 26……反応器 30……冷却器 32……気液分離器 36……固液分離器 43……第2の気液分離器 45……処理水槽 48……補助高圧ポンプ 10 Sludge storage tank 13 Sludge supply pump 15 Heat exchanger 18 High pressure pump 21 Mixer 25 Oxygen compressor 26 Reactor 30 Cooler 32 Gas-liquid separation Vessel 36 solid-liquid separator 43 second gas-liquid separator 45 treated water tank 48 auxiliary high pressure pump

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C02F 1/74 C02F 11/00 B01J 3/00 B01J 19/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C02F 1/74 C02F 11/00 B01J 3/00 B01J 19/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機物と水とを含む原料を酸素の共存下で
水の超臨界状態に置き、前記原料中の有機物を酸化分解
する超臨界水酸化方法において、前記原料を水の臨界圧
力よりも低い5〜15MPaに昇圧させ、この昇圧した
原料を加熱して昇温させ、この昇温した原料を水の臨界
圧力以上に昇圧させ、この昇圧した原料に酸素を供給す
ることによって、前記有機物の酸化分解を行うことを特
徴とする超臨界水酸化方法。
In a supercritical water oxidation method in which a raw material containing an organic substance and water is placed in a supercritical state of water in the coexistence of oxygen, and the organic substance in the raw material is oxidatively decomposed, the raw material is subjected to a critical pressure of water. also boosts the low 5 to 15 MPa, the pressurized raw material heated to warm, and the raw materials this heated is raised to above the critical pressure of water, by supplying oxygen to the boosted starting material, the organic material A supercritical water oxidation method characterized by performing oxidative decomposition of water.
【請求項2】有機物と水とを含む原料を水の臨界圧力よ
りも低い5〜15MPaに昇圧させる第1のポンプと、
この第1のポンプによって昇圧した原料を昇温させる熱
交換器と、この熱交換器によって昇温した原料を水の臨
界圧力以上に昇圧させる第2のポンプと、この第2のポ
ンプによって昇圧した原料に酸素を供給する酸素供給手
段と、この酸素供給手段によって酸素を供給された原料
を水の超臨界状態下で反応させ原料中の有機物を酸化分
解させる反応器とを具備したことを特徴とする超臨界水
酸化装置。
2. A first pump for raising a raw material containing an organic substance and water to 5 to 15 MPa lower than a critical pressure of water,
A heat exchanger for raising the temperature of the raw material pressurized by the first pump, a second pump for raising the temperature of the raw material raised by the heat exchanger to a critical pressure of water or higher, and a pressure increase by the second pump. An oxygen supply unit for supplying oxygen to the raw material, and a reactor for reacting the raw material supplied with oxygen by the oxygen supply unit in a supercritical state of water to oxidatively decompose organic substances in the raw material, Supercritical water oxidation equipment.
【請求項3】前記反応器から排出される高温の反応物を
前記熱交換器に送給し、前記原料と間接的に熱交換させ
るようにしたことを特徴とする請求項2に記載の超臨界
水酸化装置。
3. The super-cooling apparatus according to claim 2, wherein a high-temperature reactant discharged from said reactor is sent to said heat exchanger to indirectly exchange heat with said raw material. Critical water oxidation equipment.
【請求項4】前記第1のポンプ又は第2のポンプはハイ
ドロ式のポンプであって、前記反応器から排出される高
圧の反応物の圧力を駆動力として作動することを特徴と
する請求項2又は請求項3に記載の超臨界水酸化装置。
4. The method according to claim 1, wherein the first pump or the second pump is a hydro pump, and operates using a pressure of a high-pressure reactant discharged from the reactor as a driving force. The supercritical water oxidation apparatus according to claim 2 or 3.
JP21415497A 1997-07-24 1997-07-24 Supercritical water oxidation method and apparatus Expired - Fee Related JP3284933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21415497A JP3284933B2 (en) 1997-07-24 1997-07-24 Supercritical water oxidation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21415497A JP3284933B2 (en) 1997-07-24 1997-07-24 Supercritical water oxidation method and apparatus

Publications (2)

Publication Number Publication Date
JPH1133568A JPH1133568A (en) 1999-02-09
JP3284933B2 true JP3284933B2 (en) 2002-05-27

Family

ID=16651127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21415497A Expired - Fee Related JP3284933B2 (en) 1997-07-24 1997-07-24 Supercritical water oxidation method and apparatus

Country Status (1)

Country Link
JP (1) JP3284933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103601282A (en) * 2013-11-25 2014-02-26 中国科学院山西煤炭化学研究所 Method for treating refractory wastewater by virtue of supercritical water oxidation technology

Also Published As

Publication number Publication date
JPH1133568A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
US6913700B2 (en) Method of and arrangement for continuous hydrolysis of organic material
US5540847A (en) Sludge digestion
JP3284933B2 (en) Supercritical water oxidation method and apparatus
US5674382A (en) Wet oxidation apparatus with compressor
US4072482A (en) Continuous deodorizing apparatus of fat and oil
Modell Supercritical waste oxidation of aqueous wastes
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JPH10328699A (en) Supercritical hydroxylation reactor
EP1101739B1 (en) Apparatus for treating flora and fauna waste with hydrothermal reaction
JP4355246B2 (en) High temperature and high pressure treatment equipment for organic waste
JP2003236594A (en) Apparatus for treating sludge
JP2001149767A (en) Supercritical water treating device and super critical water treating method
JP2005246153A (en) High temperature/high pressure treatment method for organic waste
CN111268783B (en) Method for oxidative degradation of material containing organic matters by circulating water
JP2004290819A (en) High-temperature and high-pressure treatment apparatus
JP2002119996A (en) Method and apparatus for treating excretion and/or septic tank sludge
JP2003326153A (en) Apparatus for feeding thick slurry and its starting method
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
JP3686778B2 (en) Operation method of supercritical water reactor
JP3792856B2 (en) Supercritical water oxidation method for organic sludge
JPH07275871A (en) Supercritical water oxidation treatment method of harmful substance and apparatus therefor
JP2002355698A (en) Method of supercritical water oxidative decomposition of organic sludge and apparatus therefor
JP2004181426A (en) Hydrothermal reaction method and apparatus therefor
JP2001259696A (en) Method and device for treating night soil and/or septic- tank sludge
JP2004181427A (en) Hydrothermal reaction method and apparatus therefor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees