JP2002175711A - 紫外線ランプシステム用反射器 - Google Patents

紫外線ランプシステム用反射器

Info

Publication number
JP2002175711A
JP2002175711A JP2001274905A JP2001274905A JP2002175711A JP 2002175711 A JP2002175711 A JP 2002175711A JP 2001274905 A JP2001274905 A JP 2001274905A JP 2001274905 A JP2001274905 A JP 2001274905A JP 2002175711 A JP2002175711 A JP 2002175711A
Authority
JP
Japan
Prior art keywords
reflector
bulb
electromagnetic radiation
radiation
microwave chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001274905A
Other languages
English (en)
Other versions
JP4982015B2 (ja
Inventor
Richard G Klein
ジー.クライン リチャード
James W Schmitkons
ダブリュ.シュミットコンズ ジェームズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of JP2002175711A publication Critical patent/JP2002175711A/ja
Application granted granted Critical
Publication of JP4982015B2 publication Critical patent/JP4982015B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/044Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by a separate microwave unit

Abstract

(57)【要約】 【課題】 広い面積にわたって均一な紫外線放射を効率
的に提供し、かつマイクロ波チャンバの最適な寸法と干
渉することがなく、あるいはプラズマバルブの動作特性
に悪影響を及ぼさないようになされた反射器を提供す
る。 【解決手段】 反射器はプラズマバルブを有する紫外線
その他のランプシステムに用いるものである。反射器は
1つ以上の細長く延在する特徴的形状を有する反射パネ
ルを有し、バルブから放たれた紫外線放射を効果的に反
射し、基板の比較的広い表面にわたって均一な照射をも
たらす。各反射パネルの主要部は式(x/a)( 2+n) + (y/b)
(2+m) = 1により表される特徴的形状を有する。ここ
で、aおよびbは定数、nおよびmは約2より小さく0
より大きい指数であり、nおよびmの少なくとも一方は
0より大である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は概して紫外線ランプ
システムに関するものであり、特に紫外線ランプシステ
ムにおいて用いられる、システム内に配設されたプラズ
マバルブの発生する紫外線放射を反射する反射器(反射
器)に関するものである。
【0002】
【従来の技術】紫外線ランプシステムは、該システム内
のマイクロ波キャビティ即ちマイクロ波チャンバ内に設
置された紫外線プラズマバルブのごとき無電極ランプに
マイクロ波エネルギーを結合するようになされている。
紫外線熱硬化においては、ランプシステムに1以上のマ
グネトロンを設け、マイクロ波放射をマイクロ波チャン
バ内のプラズマバルブに結合している。マグネトロンは
マイクロ波チャンバに対して、チャンバの上端に連結さ
れた出力ポートを有するウェーブガイドを介して結合さ
れている。プラズマバルブはマイクロ波エネルギーによ
り十分に励起されているとき、マイクロ波チャンバの下
端から、照射対象基板に向けて強い紫外および赤外成分
を有する放射スペクトルを放つ。一般的には紫外線ラン
プシステムはまた、チャンバ下端に設けられた、紫外線
は透過するがマグネトロンにより発生されたマイクロ波
は透過しない金属網を有している。なおここで「上端」
および「下端」とは図面に示されたチャンバの向きに関
連してマイクロ波チャンバの説明を簡単にするために用
いているものであることを理解されたい。当然ながら、
紫外線ランプ加熱硬化の特定の適用例に応じて、マイク
ロ波チャンバの構造と機能を全く改変することなくマイ
クロ波チャンバの向きを変えることができる。
【0003】プラズマバルブ(plasma bulb即ちプラズ
マ管あるいはプラズマ電球)は、特性スペクトルを有す
る近似的線光源を提供し、その長手方向に沿って外部に
等方的に放射を射出する。しかし放出された放射の大部
分は1回以上の反射を経て基板に到達する。例えば接着
剤、シーラント、インク、塗膜材等の硬化または加熱に
用いられる紫外線ランプシステムは、プラズマバルブが
配置されるマイクロ波チャンバ内に取り付けられるかま
たは該チャンバの一部をなす反射器を含む。反射器は反
射された放射を所定パターンに従って基板に振り向ける
よう機能する光学要素である。
【0004】大部分の紫外線ランプシステムにおいて
は、冷光照明(cold-light illumination)が望まれ
る。冷光照明ではプラズマバルブの放つ放射の赤外成分
をシステム内の吸収フィルタ又は反射フィルタにより除
去しておく。赤外線放射は基板と相互作用し照射面を加
熱する。従ってこのようなシステムの好適な反射器は放
射を波長の関数として選択的に反射しかつ透過する。特
に反射器を、紫外線を優先選択的に基板に導く波長選択
的コーティングを有する被膜光学素子とすることができ
る。波長選択的コーティングは一般的には誘電体材料の
多層薄膜であり、これは当業者にはよく知られた物理蒸
着または化学蒸着などの真空蒸着技術を用いて塗膜され
る。赤外領域の波長を有する放射は反射器によって透過
され、周囲構造に吸収されて熱的に放散される。従って
余計な赤外放射は反射器によって実質的に反射されるこ
とはなく、基板を照明することもない。
【0005】
【発明が解決しようとする課題】反射器の幾何学的形状
は基板を照明する放射のパターンを決定する。反射器は
通例、円錐を平面で切って得られる放物線、楕円、双曲
線、円などの円錐曲線の一部の形状になされる。一般的
には楕円形の反射器が用いられ、該反射器の焦点あるい
はその近傍に置かれた基板に紫外線放射のフォーカスさ
れた即ち収束されたビームを与える。楕円反射器の特性
は、楕円の一つの焦点に位置する光源から放射された光
線は反射器でいちど反射された後他方の焦点を通過す
る、というものである。こうして一方の焦点に沿って軸
方向に置かれたプラズマバルブを有する楕円反射器は、
第2の焦点に置かれた基板に対してフォーカスされた線
状の放射を与えることになる。
【0006】他方で、紫外線ランプシステムのいくつか
の適用例では、基板の比較的広い面積にわたって一様な
照射または放射密度が要求される。このような適用例に
対しては、双曲線の焦点に置かれた放射源を有する双曲
線反射器が理想的であろう。双曲線反射器のこのような
線光源から発せられた間接放射は無限遠の焦点面に向か
う共心の平行光線束として反射される。しかしながら、
双曲線反射器は双曲線面に割り当てられる数学的記述に
従って相対的に広いので、大抵の場合、双曲線反射器は
大部分のマイクロ波チャンバの利用可能スペースに納め
ることが物理的にできない。
【0007】過去において、反射器−プラズマバルブ−
基板の光学的配置を調整することにより一様な放射を与
えるように紫外線ランプシステムの設計が試みられてき
た。より小型の反射器を提供するために提案された一つ
の解決策は、楕円反射器の焦点からプラズマバルブを離
すように位置替えすることであった。この構成によって
反射される紫外線放射は少なくとも部分的にデフォーカ
スされはしたが、照射は基板面にわたって十分に均一で
はなかった。更に入射マイクロ波エネルギーとプラズマ
バルブ内のガスの結合が変化し、プラズマバルブの長さ
方向に沿って照射が不均一になる。提案された別の解決
策は、楕円反射器の位置を変えて基板が焦点面あるいは
その近傍に位置しないようにするというものであった。
しかし反射器を位置替えすることによりプラズマバルブ
に与えうる冷却が減少し、それに伴ってプラズマバルブ
の使用寿命が短くなる。
【0008】以上の次第で、広い面積にわたって均一な
紫外線放射を効率的に提供し、かつマイクロ波チャンバ
の最適な寸法と干渉することがなく、あるいはプラズマ
バルブの動作特性に悪影響を及ぼさないようになされた
反射器が求められている。
【0009】
【課題を解決するための手段】本発明は現在知られてい
るマイクロ波励起式紫外線ランプシステムの上記および
その他の欠点を解消するものである。後に本発明を或る
実施の形態に関連して説明するが、本発明はそれら実施
形態に限定されるものではない。むしろ本発明は本発明
の概念と範囲の内に含まれるであろうすべての代替的構
成、変形例、均等物を含むものである。
【0010】本発明による反射器は、紫外線ランプシス
テムのプラズマバルブから離間して設けられるようにな
された長手に延びる1つ以上の反射パネルを有する。こ
の反射器はプラズマバルブの発する電磁放射、特に紫外
線放射を反射し、隣接する基板の表面に上にほぼ均一な
照射をもたらすことができる。各反射パネルの主要部の
湾曲はデカルト座標において、式(x/a)(2+n)+(y/b)
(2+m)=1で表される。ここでaおよびbは定数であり、
nおよびmはおよそ2より小さく0以上の指数であり、
かつ少なくともnまたはmの一方は0より大きい。
【0011】反射器のこの湾曲により、広い面積にわた
って実質的に均一な紫外線放射の照射がもたらされる。
更にその場合でも反射器はマイクロ波チャンバの最適な
寸法と干渉することがなく、またプラズマバルブの動作
特性に悪影響を与えることもない。更にこの反射器はマ
イクロ波チャンバの利用可能スペースに好適に適合す
る。
【0012】以上に説明した本発明の目的および利点は
添付図面とその説明により明らかにされるであろう。
【0013】
【発明の実施の形態】図面を参照すると、本発明の原理
に従ったマイクロ波励起式の紫外線(UV)ランプシス
テム10が図示されている。紫外線ランプシステム10
は、一対のマグネトロン12として示される一対のマイ
クロ波発生器を有している。該一対のマグネトロン12
はそれぞれのウェーブガイド16を介して、長手的に延
在するマイクロ波チャンバ14に連結されている。各ウ
ェーブガイド16は、マイクロ波チャンバ14の上端部
に連結される出口ポート18を有している。一対のマイ
クロ波発生器12が発生するマイクロ波エネルギーは、
マイクロ波チャンバ14に対して、その両側上端部に隣
接して長手方向に離間した位置において結合される。当
該技術において知られているように、密閉された細長く
延在する管状の無電極プラズマバルブ20が、マイクロ
波チャンバ14に設置され、且つマイクロ波チャンバ1
4の上面付近に支持されている。図示されていないが、
以下のことを理解されたい。即ちランプシステム10
は、当業者によく知られた、加圧空気源を含んだキャビ
ネットまたはハウジング内に設置されており、該加圧空
気源は、マイクロ波チャンバー14内にエアを向けるよ
う動作し、バルブ20を冷却する。
【0014】ランプシステム10は、マグネトロン12
からマイクロ波チャンバ14に結合された電磁波による
プラズマバルブ20内のガスの十分な励起によって、マ
イクロ波チャンバ14の底面から、図2中の矢印24に
よって概略示されるように、紫外線の放射を放つよう設
計や構成がなされる。なおここでは一対のマグネトロン
12を、図示し説明していくが、ランプシステム10
は、単一のマグネトロン12を含んで、プラズマバルブ
20内の混合ガスを励起させるようにしても、本発明の
思想や範囲から外れることがないことを理解されたい。
プラズマバルブ20内の混合ガスは、放出される放射の
所定の波長分布を作り出すようにその元素を調整する。
これらの目的のために都合のよい混合ガスは、水銀蒸気
とアルゴンに鉄などの微量元素を加えたものである。バ
ルブ20内の励起した混合ガスによって出力された電磁
気の放射は、強い紫外線と赤外線の成分を含んでいる。
ここでは、電磁放射(以下、放射と称する)は、約20
0nmから約1000nmにわたる波長として定義さ
れ、紫外線放射は、約200nmから約400nmにわ
たる波長として定義され、また赤外線放射は、約750
nmから約1000nmにわたる波長として定義され
る。
【0015】ランプシステム10は、一つのスタータバ
ルブ26と、一対の変圧器28を備えている。これら変
圧器28は、各マグネトロン12に電気的に接続されて
おり、当業者に知られているようにマグネトロン12の
フィラメントに電力供給する。マグネトロン12はウェ
ーブガイド16の入り口ポート30に取り付けられてお
り、マグネトロン12により発生されるマイクロ波はウ
ェーブガイド16の長手方向に離間した出口ポート18
を介してチャンバ14に放出される。好ましくは、2つ
のマグネトロン12の周波数をわずかに分離し(ずら
し)、ランプシステムの動作中にそれらが相互結合(int
ercoupling)するのを防止する。本発明を限定するもの
ではないが、具体的な例としては、2つのマグネトロン
12は、それぞれ約2470MHzと約2445MHzの
周波数で動作することができる。
【0016】図1と図2を参照すれば、最もよく解るよ
うに、マイクロ波チャンバ14は、ほぼ水平な上面32
と、ほぼ垂直な対向する一対の端壁34と、端壁34の
間で長手方向に延び、且つプラズマバルブ20の両側に
位置するほぼ垂直な対向する一対の側壁36とを有して
いる。マイクロ波チャンバ14は、さらに側壁36から
上面32に向かって上方に且つ内側に延在する傾いた傾
壁38を有している。一対の開口40が、マイクロ波チ
ャンバ14の上端に設けられている。その開口40は、
ウェーブガイド16の出口ポート18に整列されて(位
置合わせされて)連結される。一対のマグネトロン12
によって発生された電磁波は、マイクロ波チャンバ14
に結合され、十分なエネルギーによってバルブ20内の
混合ガスを励起し、これによりガス原子は多くの紫外線
と赤外線の成分を有した放射のスペクトルを放出する。
もちろん、本発明書の思想や範囲から外れることなくマ
イクロ波チャンバ14の他の形態も可能である。例え
ば、知られているように、放電によって混合ガスを励起
するための電源に接続された電極をバルブ20の両端に
内蔵してもよい。
【0017】本発明の原理に従って、長手方向に延在す
る反射器42がマイクロ波チャンバ42内に設置されて
いる。この反射器は図2に矢印21によって図式的に示
されているプラズマバルブ20から発する放射のスペク
トルから、紫外線放射を優先選択的に反射してマイクロ
波チャンバ14の底面の下方に位置する基板(不図示)
に向ける。メッシュ(網目)スクリーン44が、マイク
ロ波チャンバ14の底面に取り付けられている。メッシ
ュスクリーン44は紫外線放射24は透過するが、一対
のマグネトロン12によって発生されたマイクロ波は閉
じこめる。網目スクリーン44は、高い導電性の金属、
好ましくはタングステンからなり、且つ入射紫外線放射
に対する高い透過率(好ましくは90%以上)を有して
いる。
【0018】図1および図2に示すように、反射器42
はマイクロ波チャンバ14内に取り付けられた一対の長
手方向に延在する反射パネル46を含んでいる。反射パ
ネルはそれぞれ対向して向き合いかつプラズマバルブ2
0から離間した内側凹面43を有している。本発明書の
思想や範囲から外れることなく、反射器42は、マイク
ロ波チャンバ内に延在しバルブ20から離間したワンピ
ースの一体型パネル46または2枚以上からなるパネル
46のどちらでもよいことはあきらかである。
【0019】おのおのの内側面は、光学的に平坦な表面
仕上げを有することが望ましく、おのおのの反射パネル
46は、PYREX(登録商標)のような放射透過性の
物質の層で構成されることが望ましい。適度な反射と温
度の特性を有している他の物質(金属など)は、マイク
ロ波チャンバ14の一部に用いられ放射伝達が要求され
ない特定の用途に際して付随的に使用されるであろう。
【0020】紫外線ランプシステム10を使用するため
に、反射器42は、プラズマバルブ20によって放射さ
れる放射21の特定の波長を少なくとも部分的に透過、
反射もしくは吸収するように機能することができる。特
に反射器は、図2の矢印22によって図式的に示される
ように、赤外線を好適に透過し、且つ入射する放射21
内の紫外線放射24は、反射する。従来知られているよ
うに、このような結果をもたらすためのよく知られてい
る方法は、ダイクロイックコーティング(不図示)によ
って、おのおのの反射パネル46の内側面43をコート
することである。このダイクロイックコーティングは、
通常屈折率の高低が交互にくる多様な誘電体の材料から
なる周期的多層フィルムから構成される。このコーティ
ングが非金属であるゆえに、一対のマグネトロン12か
ら下方に向かって反射器42の裏面に入射するマイクロ
波放射は、調節された層とほとんど干渉することなく、
即ちほとんど吸収されることなく容易に透過され、バル
ブ20内の混合ガスをイオン化する。典型的なコーティ
ングは「Balzers #UNS200-S 多層性コーティング」であ
り、これは波長220nm-440nmの入射放射に対して反射性
が高い。
【0021】図2に示すように、赤外線放射22は、反
射器42を介して透過され、且つマイクロ波チャンバ1
4の周囲に導かれる。チャンバ壁32、34、36、3
8は、赤外線放射22を吸収したり、放散したりする。
その結果、基板(不図示)は反射器42から反射される
望ましくない間接赤外線放射22によってさらされるこ
とがない。あるいは代替的には、反射器42は、赤外線
放射22を吸収するようにしてもよい。対照的に、紫外
線放射24は、反射器42によってよく反射され、マイ
クロチャンバ14の底面より下の網目スクリーン44を
越えて所定の距離に配置された基板に向けられる。
【0022】一対の反射パネル46は、一対の長手方向
に離間したリテーナ48(その内の一方のみが図2に示
されている)によってマイクロ波チャンバ14内に取り
付けられている。各反射パネル46は最下端部53を有
しており、該最下端部53は各チャンバ側壁36から内
側に延びる概して水平の内向きフランジ50上に支持さ
れている。長手方向に延在する中間部材52がリテーナ
48内に形成された一対のスロット54(図2)によっ
てマイクロ波チャンバ内に取り付けられている。中間部
材52は反射パネル46の各頂点55から離間して、か
つプラズマバルブ20から離間して位置しており、バル
ブを冷却するのに十分な空気の循環を可能にする。この
中間部材52はPYREX(登録商標)などのガラス製
としてよく、またコーティングせずにバルブ20から放
出される紫外線放射24に対して非反射性としてよい。
【0023】本発明の一つの態様によれば、各反射パネ
ル46の内面43は非2次の(non-quadratic)数学的
関係式で定義される湾曲を有する非球面ミラーの一部を
表している。説明のために図2に直交2次元デカルト座
標系を定義しており、ここでは原点58をとり、パネル
の内面43に垂直な平面内の各点を該原点58に対する
座標(x,y)で表している。各パネル46はそれぞれ
の頂部56で切頭されており、かつその最下端53は式
y=0で定義される平面から所定距離59だけ持ち上げ
られている。このデカルト座標系では各反射パネル46
の内面43の湾曲は数学的関係式(x/a)(2+n)+(y/b)
(2+m)=1で表される。なおここでbは曲線の半短径であ
りaは半長径である。
【0024】反射器42の示す回転面を作り出すため
に、指数nおよびmをそれぞれ0.8に設定した。しか
し指数nおよびmの値はこれには限定されず、約2より
小さく0以上であってかつnおよびmの少なくとも一方
は0より大となるような値とすることができる。好適に
は指数nおよびmの値を約0.7〜0.8の範囲に設定
する。n=0かつm=0であれば、数学的関係式は通常
の楕円となり、各パネル46は楕円柱の一部をなす形状
となる。いずれのパネル46もマイクロ波チャンバの範
囲内でx方向あるいはy方向にずらすことができ、それ
によって各内面43はプラズマバルブ20の周囲でもは
や配置の対称性を失うが、このようなものも本発明の思
想の範囲内に含まれるものであることを理解されたい。
【0025】上記式で定義される湾曲面が長手方向に延
在して反射器42を形成する。プラズマバルブ20の軸
は反射器42の焦点あるいはその近傍に位置決めされ、
プラズマバルブ20から放出される紫外線放射24は反
射器42によってほとんどホモセントリックな平行光線
として下方に反射され、メッシュスクリーン44を介し
て基板(不図示)に向けられる。数学的に表現された内
面43の湾曲により、比較的均一な照射あるいは放射光
束密度を有する紫外線放射24が基板の比較的大きな表
面領域にわたってもたらされる。またこの均一な照射は
マイクロ波チャンバの最適な寸法と干渉することなく達
成される。
【0026】本発明を限定するものではないが、例とし
て示すと、反射器42の好適な実施例は切頭された頂部
56までのy方向寸法が75.29mm(2.964イン
チ)であり、最下端部53までのx方向寸法が39.9
8mm(1.574インチ)である。なおこれらは原点58
から各パネル46の内側凹面43までを計測したもので
ある。また、この好適な実施例の反射器42のランプの
軸に平行な長手方向寸法は251.00mm(9.882イ
ンチ)であり、その公称厚さは3.175mm(0.125
インチ)である。更に、この好適な実施例の各パネル4
6の持ち上がり距離59は6.25mm(0.246イン
チ)であり、パネル46の頂部56は17.98mm
(0.708インチ)の横方向隙間によって隔てられてい
る。
【0027】図1および図2と同じ参照符号を用いて、
本発明の原理による反射器62の別の実施例を図3に示
す。反射器62は一対の長く延びる反射パネル64を有
している。これら反射パネルはマイクロ波チャンバ14
内に各内側凹面66が互いに対向し対面するように、か
つプラズマバルブ20から離間するように取り付けられ
ている。各反射パネル64は上に反射パネル46に関連
して説明した数学的関係式によって表現される好適な湾
曲内側表面66を有している。反射器62を形成する指
数nおよびmはそれぞれ0.7とした。一対の反射パネ
ル64はリテーナ68によりマイクロ波チャンバ14内
に取り付けられており、かつ各反射パネル64の最下端
部70は、概して水平で各チャンバ側壁36から内側に
延在するフランジ50上に支持されている。各パネル6
4はそれぞれの頂部72で切頭されており、またその最
下端部70はx=0で定義される平面から上方に所定距
離74だけ持ち上げられている。
【0028】反射器62は反射器42(図1および図
2)に関連して説明したものと同様に動作するものであ
り、比較的均一な紫外線放射の照射を基板の比較的広い
表面領域に与え、その際マイクロ波チャンバの最適寸法
と干渉することがない。
【0029】本発明を限定するものではないが、例とし
て示すと、反射器62の好適な実施例は切頭された頂部
72までのy方向寸法が75.59mm(2.976イン
チ)であり、最下端部70までのx方向寸法が50.0
1mm(1.969インチ)である。なおこれらは原点58
から各パネル64の内側凹面66までを計測したもので
ある。また、この好適な実施例の反射器62のランプの
軸に平行な長手方向寸法は146.99mm(5.787イ
ンチ)であり、その公称厚さは3.175mm(0.125
インチ)である。更に、この好適な実施例の各パネル6
4の持ち上がり距離74は6.35mm(0.250イン
チ)であり、パネル64の頂部72は11.99mm
(0.472インチ)の横方向隙間によって隔てられてい
る。
【0030】以上本発明を様々な実施形態により細部に
わたって説明してきたが、特許請求の範囲に記載した本
発明の範囲をこれらの細部によって限定しようと意図す
るものではない。その他の利点および変形例は当業者に
は容易に理解されるだろう。たとえば、本発明は反射器
の焦点又はその付近に位置する放射源を有する任意の光
反射システムにおいて基板その他の目標物の比較的広い
表面にわたって比較的均一な照射をおこなうために用い
ることができる。したがって本発明を広くとらえれば、
図示されかつ上に説明された特定の細部、代表的な装置
および方法、そして例示のための実施例などに限定され
るものではない。従って本発明の概括的思想の範囲を逸
脱することなく、上記の細部からの変更を行うことがで
きる。
【図面の簡単な説明】
【図1】本発明の原理による紫外線ランプシステムの斜
視図である。
【図2】図1の紫外線ランプシステムの線2−2に沿っ
た断面図であり、図1のランプシステムに用いる2つの
パネルを有する反射器の位置実施形態を示す図である。
【図3】図1のランプ紫外線システムに用いる、本発明
による2つのパネルを有する反射器の別の実施例を示す
断面図である。
【符号の説明】
10………紫外線ランプシステム 12………マグネトロン 14………マイクロ波チャンバ 16………ウェーブガイド 18………出口ポート 20………プラズマバルブ 21………矢印 22………矢印 24………紫外線放射 26………スタータバルブ 28………変圧器 32………上面 34………端壁 36………側壁 38………傾壁 40………開口 42………反射器 43………内側凹面 44………メッシュスクリーン 46………反射器パネル 50………フランジ 53………最下端 56………頂部 58………原点 59………所定距離 59………持ち上がり距離 62………反射器 64………反射器パネル 66………内側凹面 68………リテーナ 70………最下端部 72………頂部 74………所定距離 74………持ち上がり距離
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 5/26 F21Y 103:00 G21K 5/00 F21V 7/12 E // F21Y 103:00 F21S 1/00 M (72)発明者 ジェームズ ダブリュ.シュミットコンズ アメリカ合衆国 44053 オハイオ,ロー レイン,ミドル リッジ ロード 43530 Fターム(参考) 2H042 DD06 DE04 2H048 FA01 FA09 FA16 FA18 FA24 4G075 AA30 BA04 CA26 CA33 CA47 DA02 EB01 EB33 EB43 FC04

Claims (16)

    【特許請求の範囲】
  1. 【請求項1】 細長く延びるバルブを有するランプシス
    テムに用いられる反射器であって、該反射器は細長く延
    びるバルブから離間して設置されるようになされてお
    り、該反射器の主要部分の湾曲はデカルト座標系におい
    て以下の式により表されることを特徴とする反射器: (x/a)(2+n) + (y/b)(2+m) = 1 ここで、aおよびbは定数、nおよびmは約2より小さ
    く0より大きい指数であり、nおよびmの少なくとも一
    方は0より大である。
  2. 【請求項2】 前記反射器は少なくとも2つの長手に延
    在する反射パネルを有することを特徴とする請求項1記
    載の反射器。
  3. 【請求項3】 前記反射器は、バルブから離間して取り
    付けられるようになされた第1の長手に延在する反射パ
    ネルと、 バルブから離間すると共に前記第1の反射パネルと対向
    して取り付けられるようになされた第2の長手に延在す
    る反射パネルと、を有することを特徴とする請求項1記
    載の反射器。
  4. 【請求項4】 前記指数nおよびmは等しいことを特徴
    とする請求項1記載の反射器。
  5. 【請求項5】 前記反射器は波長範囲約200nm〜400nmの
    紫外波長を有する電磁放射を反射可能であることを特徴
    とする請求項1記載の反射器。
  6. 【請求項6】 前記反射器は波長約750nm以上の赤外波
    長を有する電磁放射を少なくとも部分的に透過または吸
    収可能であることを特徴とする請求項5記載の反射器。
  7. 【請求項7】 前記反射器の表面は紫外波長を有する電
    磁放射を反射可能であり、赤外波長を有する電磁放射を
    少なくとも部分的に透過または吸収可能であるダイクロ
    イックコーティングを施されていることを特徴とする請
    求項1記載の反射器。
  8. 【請求項8】 紫外線放射を発生する装置であって、 細長く延びるマイクロ波チャンバと、 前記マイクロ波チャンバ内に設置された細長く延びるバ
    ルブと、 前記マイクロ波チャンバに結合され、前記チャンバ内に
    マイクロ波エネルギー場を発生可能であり、前記バルブ
    を励起して電磁放射を放出させる少なくとも一つのマイ
    クロ波発生器と、 細長く延びるバルブから離間して設置されるようになさ
    れた反射器と、を有し、該反射器の主要部分の湾曲はデ
    カルト座標系において以下の式により表されることを特
    徴とする装置: (x/a)(2+n) + (y/b)(2+m) = 1 ここで、aおよびbは定数、nおよびmは約2より小さ
    く0より大きい指数であり、nおよびmの少なくとも一
    方は0より大である。
  9. 【請求項9】 前記反射器は少なくとも2つの長手に延
    在する反射パネルを有することを特徴とする請求項8記
    載の装置。
  10. 【請求項10】 前記反射器は、 バルブから離間して取り付けられるようになされた第1
    の長手に延在する反射パネルと、 バルブから離間すると共に前記第1の反射パネルと対向
    して取り付けられるようになされた第2の長手に延在す
    る反射パネルと、を有することを特徴とする請求項8記
    載の装置。
  11. 【請求項11】 前記指数nおよびmは等しいことを特
    徴とする請求項8記載の装置。
  12. 【請求項12】 前記反射器は波長範囲約200nm〜400nm
    の紫外波長を有する電磁放射を反射可能であることを特
    徴とする請求項8記載の反射器。
  13. 【請求項13】 前記反射器は波長約750nm以上の赤外
    波長を有する電磁放射を少なくとも部分的に透過または
    吸収可能であることを特徴とする請求項12記載の反射
    器。
  14. 【請求項14】 前記反射器の表面は紫外波長を有する
    電磁放射を反射可能であり、赤外波長を有する電磁放射
    を少なくとも部分的に透過または吸収可能であるダイク
    ロイックコーティングを施されていることを特徴とする
    請求項8記載の反射器。
  15. 【請求項15】 ターゲットの比較的大きな表面領域に
    わたってほぼ均一な放射を発生する装置であって、 長手軸を有するバルブと、 前記バルブに作動的に結合され、該バルブを励起して電
    磁放射を放出させるパワー供給源と、 長手方向に延びるバルブから離間して設置された反射器
    と、を有し、該反射器の主要部分の湾曲はデカルト座標
    系において以下の式により表されることを特徴とする装
    置: (x/a)(2+n) + (y/b)(2+m) = 1 ここで、aおよびbは定数、nおよびmは約2より小さ
    く0より大きい指数であり、nおよびmの少なくとも一
    方は0より大である。
  16. 【請求項16】 前記指数nおよびmは等しいことを特
    徴とする請求項15記載の装置。
JP2001274905A 2000-09-11 2001-09-11 紫外線ランプシステム用反射器 Expired - Fee Related JP4982015B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/659075 2000-09-11
US09/659,075 US6323601B1 (en) 2000-09-11 2000-09-11 Reflector for an ultraviolet lamp system

Publications (2)

Publication Number Publication Date
JP2002175711A true JP2002175711A (ja) 2002-06-21
JP4982015B2 JP4982015B2 (ja) 2012-07-25

Family

ID=24643925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274905A Expired - Fee Related JP4982015B2 (ja) 2000-09-11 2001-09-11 紫外線ランプシステム用反射器

Country Status (4)

Country Link
US (1) US6323601B1 (ja)
EP (1) EP1186913A3 (ja)
JP (1) JP4982015B2 (ja)
CN (1) CN1184432C (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502200A (ja) * 2003-08-04 2007-02-08 アトランティウム レイザーズ リミテッド 光放射による液体及びガスの直列処理
JP2013541126A (ja) * 2010-07-12 2013-11-07 ノードソン コーポレーション 紫外線電灯システム及び放出される紫外線光を制御するための方法
JP2014521991A (ja) * 2011-06-29 2014-08-28 ケーエルエー−テンカー コーポレイション 光源持続プラズマセルにおける収差を補正するための適応光学系
JP2016540256A (ja) * 2013-09-11 2016-12-22 ヘレウス ノーブルライト アメリカ エルエルシー 多数の小型エミッタを具備する大面積高一様性uv供給源

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20004368U1 (de) * 2000-03-10 2000-10-19 Heraeus Noblelight Gmbh Elektrodenlose Entladungslampe
US6471376B1 (en) * 2000-08-17 2002-10-29 General Electric Company Increased life reflector lamps
AUPR214500A0 (en) * 2000-12-18 2001-01-25 Barry Webb & Associates, (NSW) Pty Limited A light reflector
US20020079796A1 (en) * 2000-12-22 2002-06-27 Okamitsu Jeffrey K. Wavelength selective optical reflector with integral light trap
US6646384B2 (en) * 2002-02-20 2003-11-11 Fusion Uv Systems, Inc. Microwave powered UV lamp with improved RF gasket arrangement
US6797971B2 (en) * 2002-07-18 2004-09-28 Fusion Uv Systems, Inc. Apparatus and method providing substantially two-dimensionally uniform irradiation
EP1631439B1 (en) 2003-05-01 2007-08-22 Objet Geometries Ltd. Rapid prototyping apparatus
US6905230B2 (en) * 2003-08-18 2005-06-14 Nordson Corporation UV lamp retainer system
US6841790B1 (en) * 2003-10-07 2005-01-11 Miltec Corporation Snap-in radio frequency screen for ultraviolet lamp system
US7109669B2 (en) * 2004-04-08 2006-09-19 Nordson Corporation Microwave lamp power supply that can withstand failure in high voltage circuit
US20050250346A1 (en) * 2004-05-06 2005-11-10 Applied Materials, Inc. Process and apparatus for post deposition treatment of low k dielectric materials
US7077547B2 (en) * 2004-07-29 2006-07-18 Nordson Corporation Shuttered lamp assembly and method of cooling the lamp assembly
US20060251827A1 (en) * 2005-05-09 2006-11-09 Applied Materials, Inc. Tandem uv chamber for curing dielectric materials
US20060249175A1 (en) * 2005-05-09 2006-11-09 Applied Materials, Inc. High efficiency UV curing system
US7777198B2 (en) * 2005-05-09 2010-08-17 Applied Materials, Inc. Apparatus and method for exposing a substrate to a rotating irradiance pattern of UV radiation
JP2007026921A (ja) * 2005-07-19 2007-02-01 Koito Mfg Co Ltd 自動車用放電バルブ
US7692171B2 (en) * 2006-03-17 2010-04-06 Andrzei Kaszuba Apparatus and method for exposing a substrate to UV radiation using asymmetric reflectors
SG136078A1 (en) * 2006-03-17 2007-10-29 Applied Materials Inc Uv cure system
US7566891B2 (en) * 2006-03-17 2009-07-28 Applied Materials, Inc. Apparatus and method for treating a substrate with UV radiation using primary and secondary reflectors
DE102006051738B4 (de) * 2006-10-30 2012-12-20 Heraeus Noblelight Gmbh Packstoff-Entkeimungsanlage
GB0624075D0 (en) * 2006-12-01 2007-01-10 Gew Ec Ltd a reflector
US7952289B2 (en) * 2007-12-21 2011-05-31 Nordson Corporation UV lamp system and associated method with improved magnetron control
US7906911B2 (en) * 2008-05-01 2011-03-15 Fusion Uv Systems, Inc. Luminaire assembly having a bonded reflector cavity for supporting an ultra-violet lamp
US8179046B2 (en) * 2008-05-20 2012-05-15 Nordson Corporation Ultraviolet lamp system with cooling air filter
DE102008031996A1 (de) * 2008-07-07 2010-02-18 Osram Gesellschaft mit beschränkter Haftung Strahlungsemittierende Vorrichtung
CN102245988B (zh) * 2008-12-11 2014-11-26 奥斯兰姆有限公司 具有多个uv灯的,尤其用于技术地处理产品的uv照明器
US8282435B2 (en) * 2009-03-09 2012-10-09 Topanga Technologies, Inc. Method and system for replacing a plasma lamp from a resonator assembly
US9177779B1 (en) 2009-06-15 2015-11-03 Topanga Usa, Inc. Low profile electrodeless lamps with an externally-grounded probe
US8629616B2 (en) 2011-01-11 2014-01-14 Topanga Technologies, Inc. Arc tube device and stem structure for electrodeless plasma lamp
EP2827360A1 (en) * 2010-03-22 2015-01-21 Robe Lighting, Inc Plasma light source automated luminaire
WO2012138866A1 (en) 2011-04-08 2012-10-11 Applied Materials, Inc. Apparatus and method for uv treatment, chemical treatment, and deposition
GB201206556D0 (en) * 2012-04-13 2012-05-30 Ceravision Ltd Light source
US9171747B2 (en) 2013-04-10 2015-10-27 Nordson Corporation Method and apparatus for irradiating a semi-conductor wafer with ultraviolet light
US9099291B2 (en) 2013-06-03 2015-08-04 Topanga Usa, Inc. Impedance tuning of an electrode-less plasma lamp
US9392752B2 (en) 2014-05-13 2016-07-19 Topanga Usa, Inc. Plasma growth lamp for horticulture
CN106838827A (zh) * 2017-01-18 2017-06-13 深圳市润沃自动化工程有限公司 一种远距离投射的线光源件固化机
US10265428B1 (en) 2017-10-06 2019-04-23 The Boeing Company Reflector system for a lighting assembly
CN114340778A (zh) * 2019-06-24 2022-04-12 不列颠哥伦比亚大学 用于流体受控辐照的多反射器式光反应器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105303A (ja) * 1985-10-31 1987-05-15 三菱電機株式会社 照明器具
JPH0330204A (ja) * 1989-06-13 1991-02-08 Tetsuhiro Kano レフレクタ―
WO2000030411A1 (en) * 1998-11-18 2000-05-25 Fusion Uv Systems, Inc. Extendable focal length lamp

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE217720C (ja) *
US3398272A (en) * 1965-12-03 1968-08-20 William B. Elmer Isoradiant energy reflecting
US4027151A (en) * 1975-11-18 1977-05-31 Crouse-Hinds Company Luminaire and reflector therefor
US4042850A (en) 1976-03-17 1977-08-16 Fusion Systems Corporation Microwave generated radiation apparatus
US4355350A (en) * 1980-09-02 1982-10-19 Polaroid Corporation Reflector for use in an artificial lighting device
US4535753A (en) 1984-04-12 1985-08-20 Leo Zayauskas Radiant heat collector
JPS614153A (ja) * 1984-06-14 1986-01-10 フュージョン・システムズ・コーポレーション マイクロ波無電極光源装置用の無電極ランプ
JPH0621167Y2 (ja) 1987-08-07 1994-06-01 高橋 柾弘 マイクロ波励起による紫外線発生装置
JPH0637521Y2 (ja) 1988-10-05 1994-09-28 高橋 柾弘 マイクロ波励起による紫外線発生装置
US5237170A (en) * 1991-07-03 1993-08-17 Shatz Narkis E I Method and apparatus for non-imaging concentration and projection of electromagnetic radiation
US5586013A (en) * 1991-07-19 1996-12-17 Minnesota Mining And Manufacturing Company Nonimaging optical illumination system
US5980067A (en) * 1996-09-18 1999-11-09 Valeo Vision Indicator light for a motor vehicle, having a faceted reflector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105303A (ja) * 1985-10-31 1987-05-15 三菱電機株式会社 照明器具
JPH0330204A (ja) * 1989-06-13 1991-02-08 Tetsuhiro Kano レフレクタ―
WO2000030411A1 (en) * 1998-11-18 2000-05-25 Fusion Uv Systems, Inc. Extendable focal length lamp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502200A (ja) * 2003-08-04 2007-02-08 アトランティウム レイザーズ リミテッド 光放射による液体及びガスの直列処理
US7683344B2 (en) 2003-08-04 2010-03-23 Atlantium Technologies Ltd. In-line treatment of liquids and gases by light irradiation
JP2013541126A (ja) * 2010-07-12 2013-11-07 ノードソン コーポレーション 紫外線電灯システム及び放出される紫外線光を制御するための方法
US9439273B2 (en) 2010-07-12 2016-09-06 Nordson Corporation Ultraviolet lamp system and method for controlling emitted ultraviolet light
JP2014521991A (ja) * 2011-06-29 2014-08-28 ケーエルエー−テンカー コーポレイション 光源持続プラズマセルにおける収差を補正するための適応光学系
JP2018112758A (ja) * 2011-06-29 2018-07-19 ケーエルエー−テンカー コーポレイション 光源持続プラズマセルにおける収差を補正するための装置及び方法
JP2016540256A (ja) * 2013-09-11 2016-12-22 ヘレウス ノーブルライト アメリカ エルエルシー 多数の小型エミッタを具備する大面積高一様性uv供給源

Also Published As

Publication number Publication date
EP1186913A3 (en) 2005-01-26
CN1343852A (zh) 2002-04-10
US6323601B1 (en) 2001-11-27
EP1186913A2 (en) 2002-03-13
JP4982015B2 (ja) 2012-07-25
CN1184432C (zh) 2005-01-12

Similar Documents

Publication Publication Date Title
JP4982015B2 (ja) 紫外線ランプシステム用反射器
EP0450131B1 (en) Electrodeless microwave-generated radiation apparatus
JP4777582B2 (ja) 向上したランプの冷却を伴っているマイクロ波励起紫外線ランプシステム
JP3258802B2 (ja) リフレクタレスマイクロ波駆動型ランプにおいて光を回収するためのリフレクタ
JPH11503263A (ja) マイクロ波放射で無電極ランプを励起させる装置
JP2008504651A (ja) 光透過性導波路を備えたプラズマランプ
JP2002260595A (ja) 紫外線ランプシステムおよび方法
KR100575666B1 (ko) 플라즈마 램프 시스템
US20050115498A1 (en) Reflector for UV curing systems
EP1070339B1 (en) Microwave energised plasma light source
WO2000030411A1 (en) Extendable focal length lamp
JP2001085152A (ja) メッシュ部材を包含するマイクロ波装置
CN100356504C (zh) 无电极照明系统
CN1855356B (zh) 等离子照明系统
US6351070B1 (en) Lamp with self-constricting plasma light source
KR100856779B1 (ko) 마이크로파를 이용한 조명기기 및 그의 공진기
KR100400401B1 (ko) 무전극 조명기기의 램프 방열구조
US20020079796A1 (en) Wavelength selective optical reflector with integral light trap
JP2915181B2 (ja) マイクロ波無電極発光装置
KR100595541B1 (ko) 무전극 조명기기의 공진기구조
JP2008053014A (ja) 光照射装置
JPS5923613B2 (ja) 高周波放電光源装置
KR100430012B1 (ko) 무전극 램프의 열변형 방지장치
KR100556781B1 (ko) 플라즈마 램프 시스템의 전구
JPS61281452A (ja) マイクロ波放電光源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110725

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees