JP2002173728A - Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING - Google Patents

Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING

Info

Publication number
JP2002173728A
JP2002173728A JP2000367771A JP2000367771A JP2002173728A JP 2002173728 A JP2002173728 A JP 2002173728A JP 2000367771 A JP2000367771 A JP 2000367771A JP 2000367771 A JP2000367771 A JP 2000367771A JP 2002173728 A JP2002173728 A JP 2002173728A
Authority
JP
Japan
Prior art keywords
aluminum alloy
delta
bulge
based aluminum
alloy hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000367771A
Other languages
Japanese (ja)
Other versions
JP4707074B2 (en
Inventor
Hitoshi Kawai
仁 川井
Masakazu Hirano
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000367771A priority Critical patent/JP4707074B2/en
Publication of JP2002173728A publication Critical patent/JP2002173728A/en
Application granted granted Critical
Publication of JP4707074B2 publication Critical patent/JP4707074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an aluminum alloy hollow extrusion material for bulging suitable to forming for the frames, joints or the like of automobiles, rolling stocks or building members. SOLUTION: The Al-Mg based aluminum alloy extrusion material contains, by mass, 1.5 to 5.0% Mg and 0.005 to 0.2% Ti. Provided that its total elongation is defined as δT, and uniform elongation as δU, δT is controlled to >=15%, and δU/δT to >=0.75.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車や鉄道車両
又は建築部材のフレームあるいは接合部等の成形に好適
なバルジ成形性が優れたアルミニウム合金中空押出材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy hollow extruded material having excellent bulge formability suitable for forming a frame or a joint portion of an automobile, a railway car or a building member.

【0002】[0002]

【従来の技術】近年、地球の温暖化及びオゾン層の破壊
など環境問題の観点から、大気中の炭酸ガス等の増加を
抑制するために、自動車の軽量化及び電気自動車の導入
などが本格的に検討されている。この軽量化の一貫とし
て、素材の置換、すなわち従来自動車用構造材に主とし
て使用されてきた鋼板の代わりにアルミニウム合金材の
使用が増加している。また、電気自動車においても電池
を積載するための重量増加を補償するために車体を軽量
化する必要が強く求められている。さらに、長手方向に
一定ではあるが自由な断面形状が得られる押出材は設計
の自由度を広げ、最終形状に近い断面形状を得ることで
成形性を向上できるなど、アルミニウム合金材の使用が
注目され、例えば特開2000−177621号公報に
は、サスペンションサブフレームの製造にアルミニウム
合金押出材を用いることが記載されている。
2. Description of the Related Art In recent years, from the viewpoint of environmental problems such as global warming and destruction of the ozone layer, in order to suppress an increase in carbon dioxide gas in the atmosphere, lightening of automobiles and introduction of electric automobiles have been in earnest. Is being considered. As part of this reduction in weight, the replacement of materials, that is, the use of aluminum alloy materials instead of steel plates that have been mainly used in conventional structural materials for automobiles is increasing. Also in electric vehicles, there is a strong need to reduce the weight of the vehicle body to compensate for the increase in weight for loading batteries. Furthermore, the use of aluminum alloy materials has attracted attention, as extruded materials that provide a constant, but free cross-sectional shape in the longitudinal direction can expand the degree of freedom of design and improve the formability by obtaining a cross-sectional shape close to the final shape. For example, Japanese Patent Application Laid-Open No. 2000-177621 describes that an aluminum alloy extruded material is used for manufacturing a suspension subframe.

【0003】一方、車体組立時にフレーム同士を接合す
る際に用いる継手部材や、サスペンションサブフレーム
等、複雑形状の部品の成形方法として、バルジ成形が着
目され、例えば、Al−Mg系アルミニウム合金溶接管
をバルジ成形したものをサスペンションサブフレームと
して用いることが公知である。そのほか、特開平5−2
12464号公報には、5000系(Al−Mg系)ア
ルミニウム合金板を液圧成形することが記載されてい
る。
On the other hand, bulge forming has attracted attention as a method for forming parts having complicated shapes such as a joint member used for joining frames to each other at the time of assembling a vehicle body and a suspension subframe. It is known to use a suspension bulge formed by bulging. In addition, Japanese Patent Laid-Open No. 5-2
Japanese Patent No. 12464 describes that a 5000 series (Al-Mg based) aluminum alloy plate is hydraulically formed.

【0004】[0004]

【発明が解決しようとする課題】Al−Mg系アルミニ
ウム合金の場合、これまで成形加工性の面で一般に有利
とされる焼きなまし材(O材)が、バルジ加工用素材と
して用いられてきた。しかし、バルジ成形の張出高さが
高くなると張出部の頂部に亀裂が入り、大きく張出成形
をすることができなかった。本発明は、Al−Mg系ア
ルミニウム合金のバルジ成形に関して、このような問題
点に鑑みてなされたもので、バルジ成形性(特に張出高
さ)に優れ、自動車や鉄道車両又は建築部材のフレーム
及び接合部材等の成形に好適なAl−Mg系アルミニウ
ム合金中空押出材を提供することを目的としてなされた
ものである。
In the case of Al-Mg based aluminum alloys, an annealing material (O material), which is generally advantageous in terms of formability, has been used as a material for bulging. However, when the overhang height of the bulge molding was high, a crack was formed at the top of the overhang portion, and the overhang molding could not be performed greatly. The present invention has been made in view of such problems with respect to bulge forming of an Al-Mg-based aluminum alloy, and is excellent in bulge formability (particularly, overhang height), and is suitable for a frame of an automobile, a railway vehicle, or a building member. Another object of the present invention is to provide an Al-Mg-based aluminum alloy hollow extruded material suitable for forming a joining member and the like.

【0005】[0005]

【課題を解決するための手段】本発明者らは、バルジ成
形性に優れるAl−Mg系アルミニウム合金中空押出材
を開発すべく種々実験研究を行う過程で、全伸び(破断
伸び)が大きいだけでは優れたバルジ成形性が得られ
ず、さらに均一伸びの破断伸びに対する比が所定値以上
を示す場合に優れたバルジ成形性が得られることを見い
だし、それをもとに本発明を得ることができた。
Means for Solving the Problems The inventors of the present invention conducted various experimental studies to develop an Al-Mg-based aluminum alloy hollow extruded material having excellent bulge formability. In the case where excellent bulge formability is not obtained, it is further found that when the ratio of uniform elongation to elongation at break shows a predetermined value or more, excellent bulge formability can be obtained, and it is possible to obtain the present invention based on it. did it.

【0006】すなわち、本発明に係るAl−Mg系アル
ミニウム合金中空押出材は、Mg:1.5〜5.0%及
びTi:0.005〜0.2%を含有し、全伸びを
δ、均一伸びをδとしたとき、δが15%以上
で、かつδ/δが0.75以上であることを特徴と
するバルジ成形用Al−Mg系アルミニウム合金中空押
出材である。本発明においてバルジ成形とは、流体圧を
利用して部材の一部を膨出させること(ハイドロフォー
ムと呼ばれることもある)、及び部材の外側を負圧にす
ることにより部材の一部を膨出させることを意味する。
That is, the Al-Mg-based aluminum alloy hollow extruded material according to the present invention contains 1.5 to 5.0% of Mg and 0.005 to 0.2% of Ti, and has a total elongation of δ T. An Al—Mg-based aluminum alloy hollow extruded material for bulge forming, wherein δ T is 15% or more and δ U / δ T is 0.75 or more, when uniform elongation is δ U. . In the present invention, bulge molding refers to expanding a part of a member by using fluid pressure (sometimes called hydroforming) and expanding a part of the member by applying a negative pressure to the outside of the member. Means to put out.

【0007】[0007]

【発明の実施の形態】上記Al−Mg系アルミニウム合
金は、上記以外の添加元素として必要に応じて、例えば
Mn、Cr、Zr及びVの1種又は2種以上を含み、さ
らに不可避不純物としてFe、その他の元素を含むこと
ができる。以下、本発明に係るアルミニウム合金中空押
出材における各成分の添加理由について説明する。 Mg Mgはアルミニウムのマトリックス中に固溶し、合金強
度を向上させる。自動車のフレーム又は継手部材等の構
造部材として必要な強度(耐力値σ0.2≧50MPa)
を得るためには、Mgは1.5%以上の添加が必要であ
る。しかし、5.0%を越えて添加されると固溶量が過
剰となり、δ/δが0.75に満たなくなり優れた
バルジ成形性が得られない。従って、Mg含有量は1.
5〜5.0%とする。より望ましい範囲は2.0〜4.
0%である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The Al-Mg-based aluminum alloy contains, if necessary, one or more of Mn, Cr, Zr and V as additional elements other than the above, and further contains Fe as an unavoidable impurity. , And other elements. Hereinafter, the reason for adding each component in the aluminum alloy hollow extruded material according to the present invention will be described. Mg Mg forms a solid solution in the aluminum matrix and improves the alloy strength. Strength required for structural members such as automobile frames or joint members (proof strength σ0.2 ≧ 50MPa)
In order to obtain Mg, it is necessary to add 1.5% or more of Mg. However, if added in excess of 5.0%, the amount of solid solution becomes excessive, and δ U / δ T becomes less than 0.75, so that excellent bulge formability cannot be obtained. Therefore, the Mg content is 1.
5 to 5.0%. A more desirable range is 2.0-4.
0%.

【0008】Ti Tiは鋳造時における結晶粒を微細化することにより合
金強度を向上させる。この効果を発揮させるには、Ti
添加量は0.005%以上とすることが必要である。ま
た、0.005%より少ないと、結晶粒が粗大化し大き
いδ及びδ/δを得ることが難しくなる。一方、
Ti添加量が0.2%を超えると前記効果が飽和し、さ
らに、粗大な金属間化合物が晶出して所定の合金強度、
δ及びδ/δが得られなくなる。従って、Tiの
含有量は0.005〜0.2%とし、より望ましくは
0.01〜0.1%、さらに望ましくは0.01〜0.
05%とする。
[0008] Ti Ti improves the alloy strength by refining the crystal grains during casting. To achieve this effect, Ti
It is necessary that the added amount be 0.005% or more. Further, when less than 0.005%, it is difficult to crystal grains get larger [delta] T and [delta] U / [delta] T coarse. on the other hand,
If the amount of Ti exceeds 0.2%, the above effect is saturated, and further, a coarse intermetallic compound is crystallized to obtain a predetermined alloy strength,
[delta] T and [delta] U / [delta] T can not be obtained. Therefore, the content of Ti is set to 0.005 to 0.2%, more preferably 0.01 to 0.1%, and still more preferably 0.01 to 0.1%.
05%.

【0009】Mn、Cr、Zr、V これらの元素は製造工程における組織制御、すなわち結
晶粒の粗大化を防止し耐応力腐食割れ性を改善するため
に、必要に応じて1種又は2種以上が添加される。それ
ぞれ、0.05%、0.05%、0.05%、0.01
%以下ではその効果がなく、1.5%、0.5%、0.
3%、0.3%を超えると前記効果が飽和し、また粗大
な金属間化合物が晶出して所定の合金強度、δ及びδ
/δが得られなくなる。
Mn, Cr, Zr, V One or more of these elements may be used, if necessary, in order to control the structure in the manufacturing process, that is, to prevent crystal grains from coarsening and improve stress corrosion cracking resistance. Is added. 0.05%, 0.05%, 0.05%, 0.01 respectively
% Or less, the effect is not obtained.
3% saturated, the effect exceeds 0.3%, also coarse intermetallic compound is crystallized predetermined alloy strength, [delta] T and [delta]
U / δ T cannot be obtained.

【0010】不可避不純物 不可避不純物のうちFeはアルミニウム地金に最も多く
含まれる不純物であり、0.5%を超えて合金中に存在
すると鋳造時に粗大な金属間化合物を晶出し、合金の機
械的性質を損なう。従って、Feの含有量は0.5%以
下に規制する。また、アルミニウム合金を鋳造する際に
は地金、添加元素の中間合金、化合物等様々な経路より
不純物が混入する。混入する元素は様々であるが、Fe
以外の不純物のうちSiは0.4%以下、Cuは0.2
%以下、Znは0.2%、その他の不純物は単体で0.
05%以下、総量で0.15%以下であれば合金の特性
にほとんど影響を及ぼさない。従って、これらの不純物
は上記の数値以下とする。なお、不純物のうちBについ
てはTiの添加に伴い合金中にTi含有量の1/5程度
の量で混入するが、より望ましい範囲は0.02%以
下、さらに0.01%以下が望ましい。
Inevitable impurities Fe is the most inevitable impurity contained in aluminum ingots. If it exceeds 0.5% in the alloy, coarse intermetallic compounds are crystallized during casting, and the mechanical properties of the alloy are reduced. Impair the nature. Therefore, the content of Fe is restricted to 0.5% or less. Further, when casting an aluminum alloy, impurities are mixed from various routes such as a base metal, an intermediate alloy of an additional element, and a compound. The elements to be mixed are various,
Of impurities other than Si, 0.4% or less of Si and 0.2% of Cu
% Or less, Zn is 0.2%, and other impurities are 0.1% by itself.
If it is not more than 05% and the total amount is not more than 0.15%, it hardly affects the properties of the alloy. Therefore, these impurities are set to the above numerical values or less. In addition, B among impurities is mixed into the alloy in an amount of about 1/5 of the Ti content with the addition of Ti, but a more preferable range is 0.02% or less, and further preferably 0.01% or less.

【0011】また、前記組成のAl−Mg系アルミニウ
ム合金押出材において、δが15%以上で、かつδ
/δが0.75以上のときバルジ成形性に優れる理由
については、均一伸びδの割合が大きいことにより、
バルジ成形の際の張出部の変形が局所的とならず、全体
的に変形して歪が分散するため、より強い加工に耐え得
るものと推測される。一方、従来バルジ成形に用いられ
ていたO材は、後述の実施例に示すようにδが大きく
てもδ/δが比較的小さく、張出部の変形が局所に
集中して亀裂が発生したものと考えられる。上記組成の
Al−Mg系アルミニウム合金押出材において、δ
びδ/δ が前記条件を満たす素材は、例えばH11
2材(JISH0001参照)で得られる。押出後にス
トレッチ(矯正)を行ってもよい。δ及びδ/δ
は、押出材よりJISに規定する引張試験片を採取し、
引張試験を行って求めることができる。
Further, the Al—Mg based aluminum having the above composition
ΔTIs not less than 15% and δU
/ ΔTIs excellent in bulge formability when is more than 0.75
About the uniform elongation δUIs large,
The deformation of the overhang during bulge forming is not localized,
Can withstand more intense machining due to mechanical deformation and dispersion of strain
It is supposed to be. On the other hand, conventionally used for bulge molding
O material was changed to δ as shown in the examples described later.TIs large
Even δU/ ΔTIs relatively small, and the overhang is locally deformed
It is probable that the cracks were concentrated. Of the above composition
In the extruded Al-Mg aluminum alloy, δTPassing
And δU/ Δ TThe material satisfying the above conditions is, for example, H11
It can be obtained from two materials (see JIS H0001). After extrusion
A tretch (correction) may be performed. δTAnd δU/ ΔT
Collects a tensile test specimen specified in JIS from the extruded material,
It can be determined by conducting a tensile test.

【0012】本発明に係るAl−Mg系アルミニウム合
金中空押出材は、種々の押出方式で製造することができ
るが、直接押出より間接押出の方が、押出材表面に粗大
な再結晶粒が形成されるのを防止する意味で望ましく、
また、ポートホール方式よりマンドレル方式の方が、断
面における組織の均一性を確保する(溶着部がない)意
味で望ましい。
The Al-Mg-based aluminum alloy hollow extruded material according to the present invention can be produced by various extrusion methods, but indirect extrusion produces coarse recrystallized grains on the surface of the extruded material rather than direct extrusion. Is desirable in the sense of preventing
Further, the mandrel method is more preferable than the port hole method from the viewpoint of ensuring the uniformity of the structure in the cross section (there is no welded portion).

【0013】[0013]

【実施例】次に、本発明の実施例について説明する。先
ず、下記表1に示す組成のアルミニウム合金鋳塊を通常
の方法により溶製し、これらの鋳塊に対し520℃×4
hrの均質化処理を施し、押出温度が520℃、押出速
度が5m/minの条件で押出加工を行い、No.1〜
8については、外径が38.5mm、肉厚が1.5mm
の丸パイプ、No.9については外径が47.0mm、
肉厚が1.5mmの丸パイプを得た。なお、押出直後に
材料をファン空冷(冷却速度約100℃/min)で冷
却した。No.1〜5についてはそのまま、No.6〜
8についてはストレッチ後380℃×2hrの焼きなま
し、No.9については抽伸をして外径38.5mm、
肉厚1.5mmとし(H34)、それぞれを供試材とし
た。
Next, an embodiment of the present invention will be described. First, aluminum alloy ingots having the compositions shown in Table 1 below were melted by a usual method, and these ingots were subjected to 520 ° C. × 4
hr, an extrusion process was performed at an extrusion temperature of 520 ° C. and an extrusion speed of 5 m / min. 1 to
About 8, the outer diameter is 38.5 mm and the wall thickness is 1.5 mm
No. round pipe, No. 9 has an outer diameter of 47.0 mm,
A round pipe having a thickness of 1.5 mm was obtained. The material was cooled by air cooling with a fan (cooling rate: about 100 ° C./min) immediately after extrusion. No. Nos. 1 to 5 are left as they are. 6 ~
No. 8 was annealed at 380 ° C. × 2 hr after stretching. 9 was drawn to an outer diameter of 38.5 mm,
The thickness was 1.5 mm (H34), and each was used as a test material.

【0014】[0014]

【表1】 [Table 1]

【0015】この供試材について、JIS12A号試験
片を作成し、JISZ2241に準拠して引張試験を実
施し、引張強さσB、耐力σ0.2及び全伸び(破断までの
伸び)δを求めた。さらに引張試験で得た応力−歪み
線図に基づき、最大応力を示す点までの伸びを均一伸び
δとして求め、均一伸びの全伸びに対する比δ/δ
を計算した。その結果を表2に示す。また、この供試
材を長さ177mmに切断し、バルジ成形試験を行っ
た。図1はバルジ成形試験方法を示す模式図であり、下
型1に各供試材(パイプ)5をセットし、マンドレル
2、3をパイプの端面に挿入した後上型4を締め、マン
ドレル2、3内部の穴2a、3aに水6を通しパイプ内
部に圧力をかけると同時に、マンドレル2、3を移動さ
せてパイプを長手方向に圧縮することでT型の成形を行
った。なお、内圧(水の圧力):14.7MPa、マン
ドレル圧縮量:85mm(片側42.5mm)、張出高
さ(図2参照):70mmに設定した。バルジ成形性は
張出頭頂部の表面に生ずる割れ(亀裂)の有無で評価し
た。その結果を下記表2に示す。ここで、割れなしを
○、割れありを×と評価した。
[0015] For this test materials, to create a JIS12A No. 5 test pieces were a tensile test according to JISZ2241, the tensile strength .sigma.B, the [delta] T (elongation to fracture) strength σ0.2 and total elongation determined Was. Further tensile tests obtained in stress - based on strain diagram, calculated elongation to the point showing the maximum stress as the uniform elongation [delta] U, the ratio to the total elongation of the uniform elongation [delta] U / [delta]
T was calculated. Table 2 shows the results. Further, this test material was cut into a length of 177 mm, and a bulge forming test was performed. FIG. 1 is a schematic view showing a bulge forming test method. Each test material (pipe) 5 is set on a lower die 1, mandrels 2 and 3 are inserted into end surfaces of the pipes, and then an upper die 4 is tightened. At the same time as applying pressure to the inside of the pipe by passing water 6 through the holes 2a and 3a inside the pipe 3, the mandrel 2 and 3 were moved to compress the pipe in the longitudinal direction, thereby forming a T-shape. The internal pressure (water pressure) was set to 14.7 MPa, the mandrel compression amount was set to 85 mm (42.5 mm on one side), and the overhang height (see FIG. 2) was set to 70 mm. The bulge formability was evaluated based on the presence or absence of cracks (cracks) generated on the surface of the overhang head. The results are shown in Table 2 below. Here, no cracking was evaluated as ○, and cracking was evaluated as x.

【0016】[0016]

【表2】 [Table 2]

【0017】この表2に示されるように、成分組成、δ
及びδ/δの値が本発明の規定を満たすNo.1
〜3はいずれもバルジ成形性が良好であり、耐力σ0.2
も構造部材としての必要強度を満たす。一方、Mg量の
多いNo.4はδ/δの値が小さくバルジ成形性に
劣り、Mg量の少ないNo.5は耐力が不足している。
またδ/δの値が小さいNo.6〜7及び全伸びδ
が15%に満たないNo.9はバルジ成形性が劣る。
なお、本発明に係る押出材は、端部のフランジ曲げなど
の口広げ加工性、ヘミング加工性も良好である。
As shown in Table 2, the component composition, δ
The value of T and [delta] U / [delta] T satisfies the provisions of the present invention No. 1
No. 3 to No. 3 have good bulge formability and have a proof stress σ 0.2
Also satisfies the required strength as a structural member. On the other hand, No. 2 having a large amount of Mg No. 4 has a small value of δ U / δ T , is inferior in bulge formability, and has a small amount of Mg. No. 5 has insufficient proof stress.
In addition, No. 3 having a small value of δ U / δ T was used. 6-7 and total elongation δ
No. T less than 15%. No. 9 is inferior in bulge formability.
In addition, the extruded material according to the present invention also has good mouth-opening workability such as bending of an end portion and hemming workability.

【0018】[0018]

【発明の効果】以上説明したように、所定組成のAl−
Mg系アルミニウム合金中空押出材において、全伸びδ
及び均一伸びの全伸びに対する比δ/δを所定値
以上とすることにより、優れたバルジ成形性が得られ
る。このAl−Mg−Si系アルミニウム合金中空押出
材は、自動車や鉄道車両、船舶又は建築部材のフレーム
及び接合部材等のバルジ成形用材料として好適である。
As described above, as described above, Al-
In the case of Mg-based aluminum alloy hollow extruded material, the total elongation δ
By setting T and the ratio δ U / δ T of the uniform elongation to the total elongation to a predetermined value or more, excellent bulge formability can be obtained. This Al-Mg-Si-based aluminum alloy hollow extruded material is suitable as a bulge forming material for frames and joining members of automobiles, railway vehicles, ships or building members.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例のバルジ成形試験方法を説明する模式
図である。
FIG. 1 is a schematic diagram illustrating a bulge forming test method according to an example.

【図2】 実施例のバルジ成形試験による張出高さの説
明図である。
FIG. 2 is an explanatory diagram of an overhang height by a bulge forming test of an example.

【符号の説明】[Explanation of symbols]

1 下型 2、3 マンドレル 4 上型 5 供試材(パイプ) 1 Lower mold 2, 3 Mandrel 4 Upper mold 5 Test material (pipe)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg:1.5〜5.0%(質量%、以下
同じ)及びTi:0.005〜0.2%を含有するAl
−Mg系アルミニウム合金中空押出材からなり、全伸び
をδ、均一伸びをδとしたとき、δが15%以上
で、かつδ/δが0.75以上であることを特徴と
するバルジ成形用Al−Mg系アルミニウム合金中空押
出材。
1. Al containing 1.5 to 5.0% (mass%, hereinafter the same) of Mg and 0.005 to 0.2% of Ti.
Consists -Mg series aluminum alloy hollow extruded material, the total elongation [delta] T, when the uniform elongation was [delta] U, wherein the [delta] T is at least 15%, and [delta] U / [delta] T is 0.75 or more Al-Mg based aluminum alloy hollow extruded material for bulge forming.
JP2000367771A 2000-12-01 2000-12-01 Al-Mg aluminum alloy hollow extruded material for bulge forming Expired - Lifetime JP4707074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367771A JP4707074B2 (en) 2000-12-01 2000-12-01 Al-Mg aluminum alloy hollow extruded material for bulge forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367771A JP4707074B2 (en) 2000-12-01 2000-12-01 Al-Mg aluminum alloy hollow extruded material for bulge forming

Publications (2)

Publication Number Publication Date
JP2002173728A true JP2002173728A (en) 2002-06-21
JP4707074B2 JP4707074B2 (en) 2011-06-22

Family

ID=18838135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367771A Expired - Lifetime JP4707074B2 (en) 2000-12-01 2000-12-01 Al-Mg aluminum alloy hollow extruded material for bulge forming

Country Status (1)

Country Link
JP (1) JP4707074B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138247A (en) * 2007-12-10 2009-06-25 Kobe Steel Ltd EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING
CN104148493A (en) * 2014-06-24 2014-11-19 凌爱珠 Lead-free cold extrusion forming process of irregular copper (or aluminum) tee joints
JP2018071946A (en) * 2016-11-04 2018-05-10 株式会社Uacj押出加工 Heat conducting aluminum alloy pipe for open rack vaporizer, and producing method thereof as well as open rack vaporizer
CN114540673A (en) * 2022-03-07 2022-05-27 中铝河南洛阳铝加工有限公司 Medium-strength aluminum alloy with excellent surface performance and deep drawing performance and preparation process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247739A (en) * 1990-02-23 1991-11-05 Kobe Steel Ltd High strength aluminum extruded material excellent in formability
JPH05271836A (en) * 1992-03-30 1993-10-19 Furukawa Alum Co Ltd Aluminum alloy material excellent in strength and ductility and its production
JP2000210720A (en) * 1999-01-21 2000-08-02 Kobe Steel Ltd Method for forming extruded material of aluminum alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247739A (en) * 1990-02-23 1991-11-05 Kobe Steel Ltd High strength aluminum extruded material excellent in formability
JPH05271836A (en) * 1992-03-30 1993-10-19 Furukawa Alum Co Ltd Aluminum alloy material excellent in strength and ductility and its production
JP2000210720A (en) * 1999-01-21 2000-08-02 Kobe Steel Ltd Method for forming extruded material of aluminum alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138247A (en) * 2007-12-10 2009-06-25 Kobe Steel Ltd EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING
CN104148493A (en) * 2014-06-24 2014-11-19 凌爱珠 Lead-free cold extrusion forming process of irregular copper (or aluminum) tee joints
CN104148493B (en) * 2014-06-24 2016-02-24 凌爱珠 The unleaded cold extruding formation process of abnormity copper or aluminium threeway
JP2018071946A (en) * 2016-11-04 2018-05-10 株式会社Uacj押出加工 Heat conducting aluminum alloy pipe for open rack vaporizer, and producing method thereof as well as open rack vaporizer
CN114540673A (en) * 2022-03-07 2022-05-27 中铝河南洛阳铝加工有限公司 Medium-strength aluminum alloy with excellent surface performance and deep drawing performance and preparation process thereof

Also Published As

Publication number Publication date
JP4707074B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4101614B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent resistance to corrosion and stress corrosion cracking
US7967928B2 (en) Methods of extruding magnesium alloys
AU725069B2 (en) High strength Al-Mg-Zn-Si alloy for welded structures and brazing application
EP2072628A1 (en) High strength crash resistant aluminium alloy
JP4942372B2 (en) Aluminum alloy extrusion for electromagnetic forming
JP2000313933A (en) Al ALLOY MATERIAL FOR WELDED STRUCTURE AND WELDED JOINT USING SAME
JP2012097321A (en) High-strength aluminum alloy forged product excellent in stress corrosion cracking resistance and forging method for the same
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP4798877B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JP2002173728A (en) Al-Mg BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL FOR BULGING
JP3850348B2 (en) Al-Mg aluminum alloy hollow extruded material for bulge forming
JP4311634B2 (en) Aluminum alloy extrusion for electromagnetic forming
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP2006213942A (en) Aluminum alloy extruded shape material for rear side rail having excellent corrosion resistance
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JP3236480B2 (en) High strength aluminum alloy for easy porthole extrusion
JP3882901B2 (en) Al-Mg-based aluminum alloy hollow extruded profile
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JP4281609B2 (en) Aluminum alloy extruded material excellent in formability and method for producing the same
JP2002155333A (en) Al-Mg-Si BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL HAVING EXCELLENT BULGING PROPERTY
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JP4540209B2 (en) Self-piercing rivet bonded aluminum alloy extrusions for automobile frames
JPH05311309A (en) Impact beam made of aluminum alloy for automobile side door
JP2001355032A (en) Aluminum alloy extruded material having excellent impact absorptivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4707074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term