JP2002170908A - Semiconductor device accommodation substrate - Google Patents

Semiconductor device accommodation substrate

Info

Publication number
JP2002170908A
JP2002170908A JP2000363699A JP2000363699A JP2002170908A JP 2002170908 A JP2002170908 A JP 2002170908A JP 2000363699 A JP2000363699 A JP 2000363699A JP 2000363699 A JP2000363699 A JP 2000363699A JP 2002170908 A JP2002170908 A JP 2002170908A
Authority
JP
Japan
Prior art keywords
insulating
insulating substrate
semiconductor element
substrate
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000363699A
Other languages
Japanese (ja)
Other versions
JP4514318B2 (en
Inventor
Shoichi Nakagawa
彰一 仲川
Takashi Ono
孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000363699A priority Critical patent/JP4514318B2/en
Publication of JP2002170908A publication Critical patent/JP2002170908A/en
Application granted granted Critical
Publication of JP4514318B2 publication Critical patent/JP4514318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device accommodation substrate that can inhibit damage due to thermal stress caused by difference in the coefficient of thermal expansion between a lid body and an insulating board. SOLUTION: This semiconductor device accommodation substrate has the insulating board 2, a semiconductor device 7 accommodated into a cavity 5 on the insulating board 2, a lid body 11 joined to the insulating board 2 for sealing the semiconductor device 7, and a plurality of terminal electrodes 13 that are formed on a surface at a side opposite to the mounting surface of the semiconductor device 7 on the insulating board 2 and whose electric continuity is cancelled by an insulating groove 15. In this case, the insulating groove 15 is formed at the outside as compared with a junction section 21 between the lid body 11 and insulating board 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子収納基
板に関するものであり、特に、複数の端子電極が絶縁溝
により電気的導通が解除された半導体素子収納基板に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device housing substrate, and more particularly to a semiconductor device housing substrate in which a plurality of terminal electrodes are electrically disconnected by an insulating groove.

【0002】[0002]

【従来技術】従来、半導体素子収納用パッケージや混成
集積回路装置等の半導体素子収納基板に用いられる絶縁
基板は、一般にアルミナ質焼結体などの電気絶縁性のセ
ラミック焼結体を用い、その内部及び表面に、タングス
テン(W)、モリブデン(Mo)、マンガン(Mn)等
の高融点金属からなる複数の配線導体層を配設するとと
もに、各配線導体層を、絶縁基板内に設けた前記と同様
の高融点金属からなるスルーホール導体で接続した構造
を有している。
2. Description of the Related Art Conventionally, an insulating substrate used for a semiconductor element housing substrate such as a semiconductor element housing package or a hybrid integrated circuit device is generally made of an electrically insulating ceramic sintered body such as an alumina sintered body. And disposing a plurality of wiring conductor layers made of a refractory metal such as tungsten (W), molybdenum (Mo), and manganese (Mn) on the surface, and providing each wiring conductor layer in an insulating substrate. It has a structure connected by through-hole conductors made of a similar high-melting point metal.

【0003】また、絶縁基板の下面には、外部回路との
接続のための端子電極が形成されており、その表面には
電解メッキ法などにより形成されたメッキ層を有してい
る。
Further, a terminal electrode for connection to an external circuit is formed on a lower surface of the insulating substrate, and a surface thereof has a plating layer formed by an electrolytic plating method or the like.

【0004】そして、絶縁基板を、例えば半導体素子収
納用パッケージに適用した場合には、図5に示すよう
に、その絶縁基板51のキャビティ53底面に半導体素
子55をガラス、樹脂、ロウ材などの接着剤を介して接
着固定するとともに、半導体素子55の各電極がキャビ
ティ53周辺に位置する配線導体層にボンディングワイ
ヤ57を介して電気的に接続され、金属やセラミックス
からなる蓋体59が、キャビティ53を塞ぐように前記
接着剤と同様の封止材を介して絶縁基板51に接合さ
れ、絶縁基板51のキャビティ53内に半導体素子55
が気密に収納されていた。
When the insulating substrate is applied to, for example, a package for accommodating a semiconductor element, as shown in FIG. 5, a semiconductor element 55 is formed on a bottom surface of a cavity 53 of the insulating substrate 51 by using glass, resin, brazing material or the like. Each electrode of the semiconductor element 55 is electrically connected to a wiring conductor layer located around the cavity 53 through a bonding wire 57, and a cover 59 made of metal or ceramic is attached to the cavity by an adhesive. The semiconductor element 55 is bonded to the insulating substrate 51 via a sealing material similar to the adhesive so as to cover the semiconductor element 55 in the cavity 53 of the insulating substrate 51.
Was kept airtight.

【0005】また、絶縁基板51の下面には、メタライ
ズあるいはスパッタなどによって形成された下地電極層
と、この下地電極層の表面に電解メッキ法により形成さ
れたメッキ層とからなる複数の端子電極61が形成され
ており、これらの端子電極61は、絶縁基板51に形成
された絶縁溝63により相互の電気的な接続が解除され
ている。これらの端子電極61は、キャビティ53周辺
に形成された配線導体層にビアホール導体65により電
気的に接続されている。
On the lower surface of the insulating substrate 51, there are provided a plurality of terminal electrodes 61 comprising a base electrode layer formed by metallization or sputtering and a plating layer formed on the surface of the base electrode layer by electrolytic plating. These terminal electrodes 61 are electrically disconnected from each other by insulating grooves 63 formed in the insulating substrate 51. These terminal electrodes 61 are electrically connected to the wiring conductor layer formed around the cavity 53 by via-hole conductors 65.

【0006】これらの端子電極61には、鉄−ニッケル
(Fe−Ni)合金等からなる外部リード端子(図示せ
ず)が、銀ロウ等のロウ材を介して電気的に接続されて
おり、これらの外部リード端子を外部回路に接続するこ
とによって、半導体素子の各電極は、ボンディングワイ
ヤ、配線導体層、ビアホール導体及び外部リード端子を
介して外部回路に電気的に接続されていた。
An external lead terminal (not shown) made of an iron-nickel (Fe-Ni) alloy or the like is electrically connected to these terminal electrodes 61 via a brazing material such as a silver brazing. By connecting these external lead terminals to an external circuit, each electrode of the semiconductor element is electrically connected to the external circuit via a bonding wire, a wiring conductor layer, a via-hole conductor, and the external lead terminal.

【0007】従来、複数の端子電極は、絶縁基板の下面
に、後述する電解メッキ法をより効率的に行うべく、メ
タライズあるいはスパッタなどによって連続する下地電
極層を形成し、この下地電極層上に、電解メッキ法によ
りメッキ層を形成する。この状態では、複数の端子電極
は電気的に短絡している。
Conventionally, a plurality of terminal electrodes are formed on the lower surface of an insulating substrate by forming a continuous base electrode layer by metallization or sputtering in order to more efficiently perform an electrolytic plating method described later. Then, a plating layer is formed by an electrolytic plating method. In this state, the plurality of terminal electrodes are electrically short-circuited.

【0008】この後、複数の端子電極が導通している導
通部で、蓋体と絶縁基板との接合部よりも内側の部分
を、リュータにより研摩加工して除去し、各端子電極を
電気的に絶縁していた。
[0008] Thereafter, a portion inside the junction between the lid and the insulating substrate, which is a conduction portion where a plurality of terminal electrodes are conducted, is removed by polishing using a luter, and each terminal electrode is electrically connected. Was insulated.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来の方法においては、複数の端子電極の導通部をリュー
タにより研摩加工して除去しているため、研摩加工によ
り、絶縁基板の下面に絶縁溝が形成されるが、この絶縁
溝は、半導体素子収納基板への半導体素子の実装工程、
その後の、半導体素子収納基板への蓋体の接合工程にお
いて、もしくは、半導体素子の実装、蓋体の接合が完了
した半導体素子収納基板の信頼性を確認するために実施
される、温度サイクル試験などの信頼性試験において、
主に蓋体と絶縁基板の熱膨張率差に起因して生じる絶縁
基板の熱応力により、絶縁溝から絶縁基板の破壊が生じ
るという問題があった。
However, in the above-mentioned conventional method, since the conductive portions of the plurality of terminal electrodes are removed by polishing using a router, an insulating groove is formed on the lower surface of the insulating substrate by the polishing. This insulating groove is formed in a semiconductor element housing substrate mounting step,
In a subsequent bonding step of the lid to the semiconductor element housing substrate, or for mounting the semiconductor element, and conducting a temperature cycle test to confirm the reliability of the semiconductor element housing substrate after the bonding of the lid is completed, etc. In the reliability test of
There has been a problem that the thermal stress of the insulating substrate caused mainly by the difference in thermal expansion coefficient between the lid and the insulating substrate causes the insulating substrate to break down from the insulating groove.

【0010】具体的には、図5に示すように、従来、蓋
体59と絶縁基板51との接合部67よりも内側の部分
を、リュータにより研摩加工して除去し、各端子電極6
1を電気的に絶縁していたため、蓋体59と絶縁基板5
1との接合部67よりも内側に絶縁溝63が形成されて
いる。
[0010] More specifically, as shown in FIG. 5, conventionally, a portion inside a joint portion 67 between the lid 59 and the insulating substrate 51 is removed by polishing using a luter, and each terminal electrode 6 is removed.
1 is electrically insulated, so that the lid 59 and the insulating substrate 5
An insulating groove 63 is formed on the inner side of the junction 67 with the first groove 1.

【0011】ところで、本発明者等は、蓋体59と絶縁
基板51の熱膨張率差に起因して生じる熱応力は、蓋体
59と絶縁基板51との接合部67の内側で大きく、接
合部67よりも外側になると、自由端となるため殆ど熱
応力は発生しなくなることを知見した。従って、従来で
は、各端子電極61を電気的に絶縁する絶縁溝63が、
接合部67よりも内側に存在していたため、熱応力が大
きく、しかも構造上絶縁溝63に応力集中し、絶縁溝6
3から亀裂等の破損が生じるという問題があった。
By the way, the present inventors have found that the thermal stress generated due to the difference in the coefficient of thermal expansion between the lid 59 and the insulating substrate 51 is large inside the joint 67 between the lid 59 and the insulating substrate 51, It has been found that if it is outside the portion 67, it becomes a free end, so that almost no thermal stress is generated. Therefore, conventionally, the insulating groove 63 that electrically insulates each terminal electrode 61 is
Since it was present inside the joint 67, thermal stress was large, and stress was concentrated on the insulating groove 63 structurally.
There was a problem that damages such as cracks occur from No. 3.

【0012】即ち、図5、図6に示すように、絶縁溝6
3が、蓋体59の絶縁基板51への接合部67よりも内
側に形成されていたため、半導体素子収納基板に熱負荷
が負荷されると、絶縁基板51と蓋体59の熱膨張率差
に主に起因する熱変形が生じ、この熱変形により、絶縁
基板51には曲げ応力が生じる。
That is, as shown in FIG. 5 and FIG.
3 is formed inside the joint 67 of the lid 59 to the insulating substrate 51, so that when a thermal load is applied to the semiconductor element housing substrate, a difference in thermal expansion coefficient between the insulating substrate 51 and the lid 59 is caused. Thermal deformation mainly occurs, and the thermal deformation causes a bending stress in the insulating substrate 51.

【0013】この曲げ応力は、図6のように変形する場
合は、絶縁基板51と蓋体59との接合部67の領域内
が大きく、この領域に絶縁溝63が存在すると、絶縁溝
63が破壊の起点となり、破損が生じるという問題があ
った。
When the bending stress is deformed as shown in FIG. 6, the area of the joint 67 between the insulating substrate 51 and the lid 59 is large, and if the insulating groove 63 exists in this area, the insulating groove 63 There was a problem that it became a starting point of destruction and was damaged.

【0014】従って、本発明は、蓋体と絶縁基板の熱膨
張率差に起因して生じる熱応力による破損を抑制できる
半導体素子収納基板を提供することを目的とする。
Accordingly, it is an object of the present invention to provide a semiconductor element housing substrate capable of suppressing damage due to thermal stress caused by a difference in thermal expansion coefficient between a lid and an insulating substrate.

【0015】[0015]

【課題を解決するための手段】本発明の半導体素子収納
基板は、絶縁基板と、該絶縁基板のキャビティに収納さ
れた半導体素子と、前記絶縁基板に接合され前記半導体
素子を密封する蓋体と、前記絶縁基板における前記半導
体素子の搭載面と反対側の面に形成されるとともに、絶
縁溝により電気的導通が解除された複数の端子電極とを
具備する半導体素子収納基板であって、前記絶縁溝を、
前記蓋体と前記絶縁基板との接合部よりも外側に形成し
てなるものである。
According to the present invention, there is provided a semiconductor element housing substrate comprising: an insulating substrate; a semiconductor element housed in a cavity of the insulating substrate; and a lid joined to the insulating substrate to seal the semiconductor element. A plurality of terminal electrodes formed on a surface of the insulating substrate opposite to a surface on which the semiconductor element is mounted, and having a plurality of terminal electrodes released from electrical continuity by an insulating groove; Groove
It is formed outside the joint between the lid and the insulating substrate.

【0016】蓋体と絶縁基板の熱膨張率差に起因して生
じる熱応力は、蓋体と絶縁基板との接合部の内側で大き
く、接合部よりも外側になると殆ど熱応力は発生しなく
なるが、本発明の半導体素子収納基板では、絶縁溝が、
蓋体と絶縁基板との接合部よりも外側に形成されている
ため、絶縁溝に作用する熱応力は小さく、この絶縁溝か
らの破損を抑制することができる。
The thermal stress generated due to the difference in thermal expansion coefficient between the lid and the insulating substrate is large inside the joint between the lid and the insulating substrate, and hardly occurs outside the joint between the lid and the insulating substrate. However, in the semiconductor element housing substrate of the present invention, the insulating groove
Since it is formed outside the joint between the lid and the insulating substrate, thermal stress acting on the insulating groove is small, and damage from the insulating groove can be suppressed.

【0017】また、本発明では、絶縁溝はジグザグ状に
形成されていることが望ましい。このように絶縁溝をジ
グザグ状に形成することにより、絶縁溝に作用する熱応
力を分散してさらに小さくすることができ、信頼性をさ
らに向上できる。
In the present invention, it is desirable that the insulating groove is formed in a zigzag shape. By forming the insulating grooves in a zigzag shape in this manner, the thermal stress acting on the insulating grooves can be dispersed and further reduced, and the reliability can be further improved.

【0018】さらに、本発明では、絶縁溝は、絶縁基板
の端面から500μm以上内側に形成されていることが
望ましい。これにより、絶縁基板内に形成されたビアホ
ール導体を端子電極に確実に接続することができる。
Further, in the present invention, it is desirable that the insulating groove is formed at least 500 μm inside the end face of the insulating substrate. Thereby, the via-hole conductor formed in the insulating substrate can be reliably connected to the terminal electrode.

【0019】また、本発明では、蓋体が金属からなり、
絶縁基板がセラミックスからなる場合に効果的である。
In the present invention, the lid is made of metal,
This is effective when the insulating substrate is made of ceramics.

【0020】即ち、半導体素子からの発熱を効果的に放
散するためには、半導体素子収納基板に接合される蓋体
として、銅やアルミ、コバールなどの金属材料からなる
ものが好ましいが、一般的に絶縁基板の材料として、セ
ラミック材料からなる場合は、蓋体と絶縁基板の熱膨張
率差が大きくなるため、本発明を採用することにより、
絶縁基板の絶縁溝からの破壊をより効果的に抑制するこ
とができる。
That is, in order to effectively dissipate the heat generated from the semiconductor element, the lid body to be joined to the semiconductor element housing substrate is preferably made of a metal material such as copper, aluminum, or Kovar. When the insulating substrate is made of a ceramic material, the difference in thermal expansion coefficient between the lid and the insulating substrate becomes large.
Breakage from the insulating groove of the insulating substrate can be more effectively suppressed.

【0021】[0021]

【発明の実施の形態】図1および図2は、本発明の半導
体素子収納基板の概略図を説明するためのものであり、
図1は平面図、図2は、図1のA−A線に沿った断面を
示すものである。
1 and 2 are schematic views of a semiconductor device housing substrate according to the present invention.
FIG. 1 is a plan view, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

【0022】図1および図2において、符号2は主面が
正方形状の絶縁基板を示している。絶縁基板2は、アル
ミナ、窒化アルミ、窒化珪素、サイアロン(Si,A
l,O,Nを含有)、ムライトまたは炭化珪素などを主
成分とするセラミックからなることが好ましい。
In FIGS. 1 and 2, reference numeral 2 indicates an insulating substrate having a square main surface. The insulating substrate 2 is made of alumina, aluminum nitride, silicon nitride, sialon (Si, A
It is preferable to use a ceramic mainly containing mullite or silicon carbide.

【0023】この絶縁基板2には、段差部3を有する開
口部が正方形状のキャビティ5が形成されており、その
キャビティ5内には半導体素子7が収容され、この半導
体素子7は、段差部3表面に形成された配線導体層(図
示せず)にワイヤ9により接続されている。
The insulating substrate 2 is formed with a cavity 5 having an opening having a step 3 and a square shape, and a semiconductor element 7 is accommodated in the cavity 5. The wires 9 are connected to wiring conductor layers (not shown) formed on the three surfaces.

【0024】半導体素子7は、絶縁基板2のキャビティ
5外周を囲むように絶縁基板2表面に接合された蓋体1
1により気密封止されている。
The semiconductor element 7 includes a lid 1 joined to the surface of the insulating substrate 2 so as to surround the outer periphery of the cavity 5 of the insulating substrate 2.
1 is hermetically sealed.

【0025】そして、絶縁基板2の下面外周部の各辺中
央部には、外部回路と電気的に接続するための多数の端
子電極13が形成されており、これらの端子電極13
は、絶縁溝15により、電気的な導通が阻止されてい
る。即ち、多数の端子電極13は、端子電極作製時には
電気的に導通しており、これらが、リュータにより研摩
加工して形成された絶縁溝15により、端子電極13と
電気的導通部17に分離されている。尚、絶縁溝15
は、少し窪んだすり傷痕のようなものも含む概念であ
る。
A large number of terminal electrodes 13 for electrically connecting to an external circuit are formed in the center of each side of the outer peripheral portion of the lower surface of the insulating substrate 2.
The electrical conduction is prevented by the insulating groove 15. That is, many terminal electrodes 13 are electrically conductive at the time of manufacturing the terminal electrodes, and are separated into the terminal electrodes 13 and the electrically conductive portions 17 by the insulating grooves 15 formed by polishing with a router. ing. The insulating groove 15
Is a concept that includes such things as slightly dented abrasions.

【0026】電気的導通部17は、例えば、絶縁基板2
に形成されたメタライズ層(下地層)に電解メッキによ
りメッキ被覆を行う際に、多数の端子電極13に同時に
電流を印加するために各端子電極13を短絡するために
設けられたものである。
The electrical conduction portion 17 is formed, for example, on the insulating substrate 2
This is provided to short-circuit each terminal electrode 13 in order to apply a current to many terminal electrodes 13 at the same time when plating the metallized layer (base layer) formed by electroplating on the metallized layer.

【0027】絶縁溝15は、絶縁基板2の各辺にほぼ平
行に形成されており、端子電極13が形成されている部
分のみ、即ち絶縁基板2の四隅の部分には、絶縁溝15
は形成されていない。
The insulating groove 15 is formed substantially parallel to each side of the insulating substrate 2, and only in the portion where the terminal electrode 13 is formed, that is, in the four corners of the insulating substrate 2, the insulating groove 15 is formed.
Is not formed.

【0028】端子電極13には、キャビティ5の段差部
3表面に形成された配線導体層が、ビアホール導体19
を介して接続され、これにより端子電極13と半導体素
子7が電気的に接続されている。即ち、ビアホール導体
19は、絶縁溝15よりも外側に形成されている。ビア
ホール導体19を確実に絶縁基板2内に形成するという
点から、絶縁溝15は、絶縁基板2の端面から500μ
m以上内側に形成されていることが望ましい。
The terminal electrode 13 is provided with a wiring conductor layer formed on the surface of the step portion 3 of the cavity 5 by a via-hole conductor 19.
, Whereby the terminal electrode 13 and the semiconductor element 7 are electrically connected. That is, the via-hole conductor 19 is formed outside the insulating groove 15. From the viewpoint that the via-hole conductor 19 is reliably formed in the insulating substrate 2, the insulating groove 15 is 500 μm from the end surface of the insulating substrate 2.
It is desirable to be formed at least m inward.

【0029】端子電極13は、絶縁基板2表面に下地電
極層、メッキ層を順次積層して形成されている。尚、図
1においては、理解を容易にするため、半導体素子7、
段差部3は実線で記載した。
The terminal electrode 13 is formed by sequentially laminating a base electrode layer and a plating layer on the surface of the insulating substrate 2. In FIG. 1, for easy understanding, the semiconductor elements 7 and
The step 3 is indicated by a solid line.

【0030】本発明の半導体素子収納基板では、上記し
た絶縁溝15は、蓋体11と絶縁基板2との接合部21
よりも外側に形成されている。
In the semiconductor element housing substrate of the present invention, the above-described insulating groove 15 is provided at the joint 21 between the lid 11 and the insulating substrate 2.
It is formed outside.

【0031】以上のように形成された半導体素子収納基
板では、図3に示すように、蓋体11と絶縁基板2の熱
膨張率差に起因して生じる熱応力は、蓋体11と絶縁基
板2との接合部21の領域内で大きくなり、接合部21
よりも外側になると殆ど熱応力は発生しなくなるが、本
発明の半導体素子収納基板では、絶縁溝15が、蓋体1
1と絶縁基板2との接合部21よりも外側に形成されて
いるため、絶縁溝15に作用する熱応力が小さくなり、
この絶縁溝15からの破損を抑制することができる。
In the semiconductor element housing substrate formed as described above, as shown in FIG. 3, the thermal stress generated due to the difference in thermal expansion coefficient between the lid 11 and the insulating substrate 2 is different from that of the lid 11 and the insulating substrate. 2 in the region of the junction 21 with
However, in the semiconductor device housing substrate of the present invention, the insulating groove 15 is
1 is formed outside the joint 21 between the insulating substrate 1 and the insulating substrate 2, the thermal stress acting on the insulating groove 15 is reduced,
Damage from the insulating groove 15 can be suppressed.

【0032】また、本発明では、図4に示すように、絶
縁溝35をジグザグ状に形成することが望ましい。この
ように、絶縁溝35をジグザグ状に形成することによ
り、絶縁溝35に作用する熱応力を分散して、絶縁溝3
5に集中する熱応力をさらに小さくすることができ、こ
の絶縁溝35からの破損をさらに確実に防止でき、信頼
性をさらに向上できる。
In the present invention, as shown in FIG. 4, it is desirable to form the insulating groove 35 in a zigzag shape. As described above, by forming the insulating groove 35 in a zigzag shape, the thermal stress acting on the insulating groove 35 is dispersed and the insulating groove 3 is formed.
5 can be further reduced, breakage from the insulating groove 35 can be more reliably prevented, and reliability can be further improved.

【0033】尚、本発明は前述の例に限定されるもので
はなく、本発明の要旨逸脱しない範囲であれば種々の変
更が可能である。
It should be noted that the present invention is not limited to the above-described example, and various changes can be made without departing from the gist of the present invention.

【0034】[0034]

【実施例】先ず、Al23、SiO2、MgO、CaO
の原料粉末に適当な有機バインダー、可塑剤、溶剤を添
加混合して泥漿を調整し、該泥漿を周知のドクターブレ
ード法により厚さ約300μmのセラミックグリーンシ
ートを成形した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, Al 2 O 3 , SiO 2 , MgO, CaO
An appropriate organic binder, a plasticizer and a solvent were added to and mixed with the raw material powder to prepare a slurry, and the slurry was formed into a ceramic green sheet having a thickness of about 300 μm by a well-known doctor blade method.

【0035】その後、半導体素子を収納するためのキャ
ビティを形成する為に、厚さ300μmのグリーンシー
トの所定の位置に打ち抜き加工を施した。また、各配線
層間の電気的導通を取るために設けるビアホールを形成
するために、セラミックグリーンシートの所望の位置に
打ち抜き加工を施した。
Thereafter, in order to form a cavity for accommodating a semiconductor element, a green sheet having a thickness of 300 μm was punched at a predetermined position. In addition, punching was performed at a desired position of the ceramic green sheet to form a via hole provided for establishing electrical conduction between the wiring layers.

【0036】その後、Wを主成分とする粉末に、アルミ
ナ粒子を添加し、有機バインダー、可塑剤、溶剤を添加
混合して得た金属ペーストを、前記セラミックグリーン
シートに設けたビアホール形成用の打ち抜き穴にスクリ
ーン印刷により充填した。また、同時に所望のパターン
をスクリーン印刷した。
Thereafter, a metal paste obtained by adding alumina particles to a powder containing W as a main component, and adding and mixing an organic binder, a plasticizer, and a solvent is punched into a via hole formed in the ceramic green sheet. The holes were filled by screen printing. At the same time, a desired pattern was screen-printed.

【0037】半導体素子収納基板の裏面に設けられた端
子電極を形成するために、グリーンシートに、以後の工
程で電解メッキを行う際に必要となる各端子電極を短絡
するための導通メタライズのパターンもスクリーン印刷
して形成した。
In order to form terminal electrodes provided on the back surface of the semiconductor element housing substrate, a conductive metallization pattern for short-circuiting each terminal electrode required when performing electrolytic plating in a subsequent step on a green sheet. Was also formed by screen printing.

【0038】その後、導通メタライズのパターンが形成
されたグリーンシート上に、所望のパターンが形成さ
れ、ビアホール内に金属ペーストが充填されたグリーン
シートを、所望の積層数だけ積層し、さらに、その上
に、キャビティ用の打ち抜き加工が施されたグリーンシ
ートを積層し、積層成形体を作製した。
Thereafter, a desired number of green sheets, each having a desired pattern formed thereon and a metal paste filled in the via hole, are stacked on the green sheet on which the conductive metallized pattern is formed, and the green sheets are further stacked thereon. Then, green sheets that had been subjected to a punching process for cavities were laminated thereon to produce a laminated molded body.

【0039】その後、積層成形体を水素(H2)と窒素
(N2)の混合ガスから成る還元性雰囲気中、約160
0℃の温度で焼成して、主面が正方形状で一辺が30m
m、厚さ1mmの絶縁基板を作製した。尚、キャビティ
は、絶縁基板表面で一辺が14mmの正方形状、半導体
素子が固着される底面で一辺が8mmの正方形状とし
た。また、ビアホール導体は、絶縁基板の端面から0.75
mmの位置に形成した。
After that, the laminated molded body was placed in a reducing atmosphere comprising a mixed gas of hydrogen (H 2 ) and nitrogen (N 2 ) for about 160
Sintered at a temperature of 0 ° C, the main surface is square and one side is 30m
An insulating substrate having a thickness of 1 mm and a thickness of 1 mm was prepared. The cavity had a square shape with a side of 14 mm on the surface of the insulating substrate, and a square shape with a side of 8 mm on the bottom surface to which the semiconductor element was fixed. The via-hole conductor is 0.75 mm from the end face of the insulating substrate.
mm.

【0040】また、絶縁基板の大きさの違いによる本発
明の効果を確認する為、主面が正方形状で一辺が20m
m、厚さ1mmの絶縁基板も作製した。この後、導通メ
タライズの全表面に、ニッケル(Ni)メッキ層を形成す
るために、絶縁基板のキャビティに形成された配線導体
層と絶縁基板の底面に形成された導通メタライズを電気
的に短絡して、電解メッキ法により、メッキ層を形成し
た。
In order to confirm the effect of the present invention due to the difference in the size of the insulating substrate, the main surface was square and the side was 20 m.
An insulating substrate having a thickness of 1 mm and a thickness of 1 mm was also prepared. Thereafter, in order to form a nickel (Ni) plating layer on the entire surface of the conductive metallization, the wiring conductor layer formed in the cavity of the insulating substrate and the conductive metallization formed on the bottom surface of the insulating substrate are electrically short-circuited. Then, a plating layer was formed by an electrolytic plating method.

【0041】その後、該評価用の絶縁基板に、一辺が3
0mmの絶縁基板の場合、一辺が20mmの正方形状の
コバールからなる蓋体をロウ材を用いて接合した。ま
た、絶縁基板の大きさが一辺が20mmの絶縁基板の場
合、一辺が16mmの正方形状のコバールからなる蓋体
を同様にして接合した。尚、本半導体素子収納基板は評
価用であるため、半導体素子を実装しなかった。
Thereafter, the side of the insulating substrate for evaluation was 3
In the case of a 0 mm insulating substrate, a lid made of square Kovar having a side of 20 mm was joined using a brazing material. When the size of the insulating substrate was 20 mm on one side, a lid made of square Kovar having a side of 16 mm was bonded in the same manner. In addition, since the present semiconductor element housing substrate was for evaluation, no semiconductor element was mounted.

【0042】その後、本発明と比較例の半導体素子収納
基板に、各端子電極が短絡している部分を、リュータ
(小形グラインダ)にて削除し、本発明では図1、図2
に示すように、比較例では図5に示すように導通部を切
断して絶縁溝を形成した。絶縁溝は、表1に示すよう
に、接合部の外縁端からの距離Lを、内側がプラスで
(比較例)、外側がマイナス(本発明)で表示した。
Thereafter, portions of the semiconductor element housing substrates of the present invention and the comparative example, in which each terminal electrode is short-circuited, are deleted by a router (small grinder).
As shown in FIG. 5, in the comparative example, as shown in FIG. 5, the conductive portion was cut to form an insulating groove. As shown in Table 1, the distance L from the outer edge of the joining portion is indicated by a plus sign on the inner side (comparative example) and a minus sign on the outer side (the present invention).

【0043】かくして、得られた評価用の半導体素子収
納基板が、実使用環境などで信頼性を損なうことがない
か確認する為、半導体素子収納基板の下面を加熱する試
験を実施した。具体的には、該半導体素子収納基板を3
00℃に加熱されたヒーターブロックの上に置き、1時
間保持後、絶縁基板に割れが生じるか否かを確認した。
割れの確認は、浸透探傷液を用いた浸透探傷により行な
った。
A test for heating the lower surface of the semiconductor element housing substrate was conducted in order to confirm whether the obtained semiconductor element housing substrate for evaluation did not impair the reliability in an actual use environment or the like. Specifically, the semiconductor element housing substrate is 3
After placing on a heater block heated to 00 ° C. and holding for 1 hour, it was confirmed whether or not cracks occurred in the insulating substrate.
The cracks were confirmed by penetrant testing using a penetrant solution.

【0044】また、該評価用半導体素子収納基板の実際
の使用状況を想定し、長期の信頼性確認の為に、該半導
体素子収納基板に、高温設定温度125℃、低温設定温
度−40℃の熱衝撃を1000サイクル加える熱衝撃試
験を施し、500サイクル、1000サイクルの各々
で、前記同様の断面観察により絶縁基板の破壊の有無を
確認した。これらの結果を表1に記載した。
Further, assuming the actual use condition of the semiconductor element housing board for evaluation, in order to confirm long-term reliability, the semiconductor element housing board is set at a high temperature setting temperature of 125 ° C. and a low temperature setting temperature of −40 ° C. A thermal shock test was performed in which a thermal shock was applied for 1000 cycles. At each of 500 cycles and 1000 cycles, the presence or absence of breakage of the insulating substrate was confirmed by the same cross-sectional observation as described above. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】表1から明らかなように、本発明の範囲外
の試料No.3、4、7、8と比較して、本発明の試料
No.1、2、5、6では、ヒーターブロック加熱試験
において絶縁基板に割れが生じず、また、熱衝撃試験を
1000サイクル印加しても割れが発生していないのに
対して、絶縁溝を接合部の内側に形成した比較例の試料
No.3、4、7、8では、絶縁溝を起点として割れが
発生し、しかも、熱衝撃試験の印加回数が多くなるほど
割れが発生し、信頼性が低下することが判る。
As is evident from Table 1, the sample Nos. 3, 4, 7, and 8, the sample Nos. In Nos. 1, 2, 5, and 6, cracks did not occur in the insulating substrate in the heater block heating test, and no cracks occurred even after 1000 cycles of the thermal shock test. The sample No. of the comparative example formed inside the sample No. In 3, 4, 7, and 8, cracks occur starting from the insulating groove, and as the number of times of application of the thermal shock test increases, cracks occur, and the reliability decreases.

【0047】[0047]

【発明の効果】本発明の半導体素子収納基板では、蓋体
と絶縁基板の熱膨張率差に起因して生じる熱応力は、蓋
体と絶縁基板との接合部の内側で大きく、接合部よりも
外側になると殆ど熱応力は発生しなくなるが、絶縁溝
が、蓋体と絶縁基板との接合部よりも外側に形成されて
いるため、絶縁溝に作用する熱応力は小さく、この絶縁
溝からの破損を抑制することができる。これにより、半
導体素子収納基板が使用される環境においても、絶縁基
板に破壊が生じることなく高信頼性を確保できる。この
ため、外部の電子回路との電気的接続を高い信頼性を持
って確保できる。
According to the semiconductor device housing substrate of the present invention, the thermal stress generated due to the difference in thermal expansion coefficient between the lid and the insulating substrate is large inside the joint between the lid and the insulating substrate, and is larger than that at the joint. , The thermal stress hardly occurs when it is also outside, but since the insulating groove is formed outside the joint between the lid and the insulating substrate, the thermal stress acting on the insulating groove is small. Damage can be suppressed. Thereby, even in an environment where the semiconductor element housing substrate is used, high reliability can be ensured without destruction of the insulating substrate. For this reason, electrical connection with an external electronic circuit can be secured with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体素子収納基板を示す平面図であ
る。
FIG. 1 is a plan view showing a semiconductor element housing substrate of the present invention.

【図2】図1の断面図である。FIG. 2 is a sectional view of FIG.

【図3】本発明の半導体素子収納基板に作用する熱応力
を示す説明図である。
FIG. 3 is an explanatory diagram showing thermal stress acting on a semiconductor element housing substrate of the present invention.

【図4】ジグザグ状の絶縁溝を形成した状態を示す平面
図である。
FIG. 4 is a plan view showing a state in which zigzag insulating grooves are formed.

【図5】従来の半導体素子収納基板を示す断面図であ
る。
FIG. 5 is a sectional view showing a conventional semiconductor element housing substrate.

【図6】図5の半導体素子収納基板に作用する熱応力を
示す説明図である。
FIG. 6 is an explanatory view showing thermal stress acting on the semiconductor element housing substrate of FIG. 5;

【符号の説明】[Explanation of symbols]

2・・・絶縁基板 5・・・キャビティ 7・・・半導体素子 11・・・蓋体 13・・・端子電極 15、35・・・絶縁溝 21・・・接合部 2 ... insulating substrate 5 ... cavity 7 ... semiconductor element 11 ... lid 13 ... terminal electrode 15, 35 ... insulating groove 21 ... joining part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板と、該絶縁基板のキャビティに収
納された半導体素子と、前記絶縁基板に接合され前記半
導体素子を密封する蓋体と、前記絶縁基板における前記
半導体素子の搭載面と反対側の面に形成されるととも
に、絶縁溝により電気的導通が解除された複数の端子電
極とを具備する半導体素子収納基板であって、前記絶縁
溝を、前記蓋体と前記絶縁基板との接合部よりも外側に
形成してなることを特徴とする半導体素子収納基板。
1. An insulating substrate, a semiconductor element housed in a cavity of the insulating substrate, a lid joined to the insulating substrate to seal the semiconductor element, and a surface opposite to the mounting surface of the semiconductor element on the insulating substrate. And a plurality of terminal electrodes formed on the side surface and electrically disconnected from each other by the insulating groove, wherein the insulating groove is formed by bonding the lid and the insulating substrate. A semiconductor element housing substrate formed outside a portion.
【請求項2】絶縁溝はジグザグ状に形成されていること
を特徴とする請求項1記載の半導体素子収納基板。
2. The semiconductor element housing substrate according to claim 1, wherein the insulating groove is formed in a zigzag shape.
【請求項3】蓋体が金属からなり、絶縁基板がセラミッ
クスからなることを特徴とする請求項1または2記載の
半導体素子収納基板。
3. The semiconductor element housing substrate according to claim 1, wherein the lid is made of a metal, and the insulating substrate is made of a ceramic.
JP2000363699A 2000-11-29 2000-11-29 Semiconductor element storage board Expired - Fee Related JP4514318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363699A JP4514318B2 (en) 2000-11-29 2000-11-29 Semiconductor element storage board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363699A JP4514318B2 (en) 2000-11-29 2000-11-29 Semiconductor element storage board

Publications (2)

Publication Number Publication Date
JP2002170908A true JP2002170908A (en) 2002-06-14
JP4514318B2 JP4514318B2 (en) 2010-07-28

Family

ID=18834766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363699A Expired - Fee Related JP4514318B2 (en) 2000-11-29 2000-11-29 Semiconductor element storage board

Country Status (1)

Country Link
JP (1) JP4514318B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231846A (en) * 2001-01-30 2002-08-16 Kyocera Corp Semiconductor device storing board
US11935806B2 (en) 2020-07-10 2024-03-19 Nichia Corporation Semiconductor device and method for manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479257A (en) * 1990-07-20 1992-03-12 Shinko Electric Ind Co Ltd Production of ceramic package

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479257A (en) * 1990-07-20 1992-03-12 Shinko Electric Ind Co Ltd Production of ceramic package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231846A (en) * 2001-01-30 2002-08-16 Kyocera Corp Semiconductor device storing board
JP4593802B2 (en) * 2001-01-30 2010-12-08 京セラ株式会社 Semiconductor element storage board
US11935806B2 (en) 2020-07-10 2024-03-19 Nichia Corporation Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4514318B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JPWO2015060387A1 (en) Wiring board and electronic device
JP3873145B2 (en) Package for storing semiconductor elements
JP4514318B2 (en) Semiconductor element storage board
JPH11214608A (en) Package for accommodating semiconductor element
JP3984107B2 (en) Manufacturing method of high-frequency semiconductor element storage package
JP4593802B2 (en) Semiconductor element storage board
JP3838940B2 (en) Wiring board
JPH03196664A (en) Package for semiconductor device
JP4034912B2 (en) Manufacturing method of semiconductor device storage package
JP2000340716A (en) Wiring substrate
JP3623179B2 (en) Semiconductor element storage package and semiconductor device
JP3850341B2 (en) Wiring board
JP2003179175A (en) Wiring board
JP2002043701A (en) Multiple ceramic wiring board and ceramic wiring board
JP4070181B2 (en) Semiconductor element storage package and semiconductor device
JP2685158B2 (en) Manufacturing method of semiconductor device storage package
JP3250941B2 (en) Wiring board
JP3297603B2 (en) Package for storing semiconductor elements
JP3210838B2 (en) Manufacturing method of semiconductor device storage package
JP2784129B2 (en) Package for storing semiconductor elements
JP2717727B2 (en) Package for storing semiconductor elements
JP2746841B2 (en) Wiring board
JP2003158220A (en) Circuit board
JP3420362B2 (en) Semiconductor device mounting structure
JP2002026189A (en) Method of manufacturing wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees