JP2002168991A - Internal inspection device for nuclear reactor - Google Patents

Internal inspection device for nuclear reactor

Info

Publication number
JP2002168991A
JP2002168991A JP2000372913A JP2000372913A JP2002168991A JP 2002168991 A JP2002168991 A JP 2002168991A JP 2000372913 A JP2000372913 A JP 2000372913A JP 2000372913 A JP2000372913 A JP 2000372913A JP 2002168991 A JP2002168991 A JP 2002168991A
Authority
JP
Japan
Prior art keywords
underwater vehicle
inspection
pressure vessel
reactor
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000372913A
Other languages
Japanese (ja)
Other versions
JP3767376B2 (en
Inventor
Masahiro Fujima
正博 藤間
Makoto Senoo
誠 妹尾
Isato Mori
勇人 森
Naoyuki Kono
尚幸 河野
Masahiro Koike
正浩 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000372913A priority Critical patent/JP3767376B2/en
Publication of JP2002168991A publication Critical patent/JP2002168991A/en
Application granted granted Critical
Publication of JP3767376B2 publication Critical patent/JP3767376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To speedily conduct internal inspection to a nuclear reactor using a submersible vehicle, and correctly grasp replacement timing for the submersible vehicle. SOLUTION: The submersible vehicle 1 is put in a container 5 having a length longer than an interval between an upper and a lower grid plates, and it is suspended through the upper and the lower grid plates downward to reach a bottom part of a reactor pressure vessel. A rotary detachable arm 33 in the container 5 is driven by an air cylinder 16 to rotate from a position A to a position B, so that the submersible vehicle 1 is speedily positioned to a water range on the other side over a flow baffle 17, thereby the submersible vehicle is directed to a target inspection position for inspection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉圧力容器内
を水中ビークルを用いて検査する原子炉内検査装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-reactor inspection apparatus for inspecting the interior of a reactor pressure vessel using an underwater vehicle.

【0002】[0002]

【従来の技術】原子力発電所などに採用されている原子
炉は、原子炉圧力容器内に炉心が存在し、原子炉圧力容
器内は高放射線環境状態にある。その原子炉圧力容器内
をカメラで撮像して観察するなどの原子炉内検査は、シ
ュラウドサポートレグやそのレグに支持されたシュラウ
ドサポート及びシュラウドや、それらに装備された上部
格子板や下部格子板が原子炉圧力容器内に残した状態で
行うことが考えられている。
2. Description of the Related Art A nuclear reactor used in a nuclear power plant or the like has a reactor core in a reactor pressure vessel, and the reactor pressure vessel is in a high radiation environment. In-reactor inspections such as imaging and observing the inside of the reactor pressure vessel with a camera include shroud support legs, shroud supports and shrouds supported by the legs, and upper and lower grid plates mounted on them. It is conceived that this is carried out in a state where it is left in the reactor pressure vessel.

【0003】その考えに沿った検査作業内容が特開平7
−218681号公報にて開示されている。その開示内
容によると、原子力発電所の原子炉内検査ではカメラや
照明装置を搭載した水中ビークルが用いられている。そ
の水中ビークルの取扱い方式は、ランチャー方式とうい
一般的な方法が用いられている。
[0003] Inspection work based on this idea is disclosed in Japanese Unexamined Patent Publication No.
No. 218681. According to the disclosure, an underwater vehicle equipped with a camera and an illuminating device is used in an inspection inside a nuclear power plant. As a method of handling the underwater vehicle, a general method called a launcher method is used.

【0004】従来例では、その水中ビークルをケーシン
グ(容器)内に収納して水中ビークルが上部格子板や下
部格子板等の障害物に直接に衝突することを防止しなが
ら原子炉圧力容器内底部に水中ビークルを到達させてい
る。
In the prior art, the underwater vehicle is housed in a casing (container) to prevent the underwater vehicle from directly colliding with an obstacle such as an upper grid plate or a lower grid plate while preventing the underwater vehicle from directly colliding with the bottom of the reactor pressure vessel. To reach the underwater vehicle.

【0005】そのケーシングは原子炉圧力容器内底部に
おいて下部格子板とCRD(制御棒駆動機構)ハウジン
グに支持させて置く。そして、ケーシングの側面に設け
た開口から水中ビークルが自身の推進力でシュラウドの
内側から外側に向かってシュラウドの下側をくぐりぬけ
て推進し、検査目的の高さヘ向かって浮上方向に推進す
る。そして、目的検査部位に移動した水中ビークルは照
明装置で照らし出した検査部位をカメラで撮像して遠隔
地点の検査員に撮像した映像を供給することが可能とな
る。
The casing is supported by a lower lattice plate and a CRD (control rod drive mechanism) housing at the bottom of the reactor pressure vessel. Then, the underwater vehicle is propelled from the inside of the shroud to the outside through the lower side of the shroud by its own propulsive force from an opening provided in the side surface of the casing, and is propelled in a floating direction to a height for inspection. Then, the underwater vehicle that has moved to the target inspection site can image the inspection site illuminated by the illumination device with a camera and supply the imaged image to an inspector at a remote location.

【0006】検査作業後には、前述とは逆の手順でケー
シングに水中ビークルを収納してケーシングごと引き上
げる。
[0006] After the inspection operation, the underwater vehicle is stored in the casing in a procedure reverse to that described above, and the casing is lifted up.

【0007】[0007]

【発明が解決しようとする課題】原子炉内検査装置に用
いられる水中ビークルは自力で原子炉圧力容器内のシュ
ラウド下方をくぐりぬけてシュラウドと原子炉圧力容器
の内壁の間の空間下方にに到達し検査部位の高さに向か
う。その際に、水中ビークルは遠隔制御によって操縦さ
れて移動するが、シュラウドの下方をくぐりぬける際に
は、そのくぐりぬける隙間が狭いので、水中ビークルの
接触事故を起こし易い上、慎重に操縦しようとすれば、
水中ビークルが原子炉圧力容器内で放射線を受ける時間
が長くなって好ましくない。
The underwater vehicle used in the reactor inspection system passes under the shroud in the reactor pressure vessel by itself and reaches below the space between the shroud and the inner wall of the reactor pressure vessel. Head to the height of the inspection site. At that time, the underwater vehicle is controlled and moved by remote control. if,
It is not preferable that the underwater vehicle receives radiation in the reactor pressure vessel for a long time.

【0008】原子力発電所の原子炉内検査では水中ビー
クルが大量の放射線を浴びるため、水中ビークル内の制
御電子回路系や炉内観察のためのカメラ系等が放射線損
傷により破壊され故障する恐れがある。実際に、放射線
集積線量がある閾値を越えると電子回路やカメラ等は放
射線損傷により故障することを実験的に確認している。
In a nuclear power plant inspection in a nuclear reactor, an underwater vehicle is exposed to a large amount of radiation. Therefore, there is a risk that a control electronic circuit system in the underwater vehicle and a camera system for in-reactor observation are destroyed due to radiation damage and break down. is there. Actually, it has been experimentally confirmed that an electronic circuit, a camera, and the like break down due to radiation damage when the integrated radiation dose exceeds a certain threshold.

【0009】このように放射線損傷により故障した水中
ビークルは自走できなくなるため、原子炉圧力容器外へ
の撤収が困難となる恐れがある。水中ビークルが撤収で
きなくなった場合、水中ビークルを回収するのに原子炉
圧力容器内の構造物の追加撤去等が必要となり時間と多
額の追加費用がかかるという課題があった。
[0009] The underwater vehicle that has failed due to radiation damage cannot run on its own, and it may be difficult to withdraw the vehicle out of the reactor pressure vessel. If the underwater vehicle cannot be withdrawn, the removal of the underwater vehicle requires additional removal of the structure inside the reactor pressure vessel, which has been a problem in that time and a large amount of additional cost have been required.

【0010】また、水中ビークルが浴びる放射線集積線
量は水中ビークルの設置および撤収作業や検査作業に要
する時間と水中ビークルの滞在場所により大きく変化す
る。原子炉内の各場所における線量率は解析等により算
出され、各場所における滞在時間を考慮して集積線量が
評価される。
[0010] Further, the integrated radiation dose received by the underwater vehicle varies greatly depending on the time required for installation and withdrawal work and inspection work of the underwater vehicle and the place where the underwater vehicle stays. The dose rate at each location in the reactor is calculated by analysis or the like, and the integrated dose is evaluated in consideration of the stay time at each location.

【0011】しかし、各場所における推定線量率は評価
誤差が大きいと考えられるため、水中ビークルを使用す
る放射線集積線量の閾値は実験等で求めた実際の閾値よ
り約1桁程度小さくする必要がある。このため、まだ使
用可能な水中ビークルでも放射線集積線量が規定の閾値
に達したと推定された時点で作業を中止し水中ビークル
を新品と交換する必要がある。したがって、水中ビーク
ルの交換周期が短く、交換に要する時間がかかるととも
に、交換用の水中ビークルの台数が増加するため費用が
増加するという課題があった。
However, since the estimated dose rate at each location is considered to have a large evaluation error, the threshold value of the integrated radiation dose using the underwater vehicle needs to be about one digit smaller than the actual threshold value obtained through experiments or the like. . For this reason, it is necessary to stop the work and replace the underwater vehicle with a new one when it is estimated that the integrated radiation dose has reached the prescribed threshold even for the underwater vehicle that is still usable. Therefore, there is a problem that the replacement cycle of the underwater vehicle is short, it takes a long time to replace, and the number of underwater vehicles for replacement increases, so that the cost increases.

【0012】本発明の目的は、水中ビークルが浴びる放
射線集積線量を最小にするため、水中ビークルの設置お
よび撤収作業や検査作業に要する時間を短くすることに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the time required for installation, withdrawal, and inspection of an underwater vehicle so as to minimize the integrated radiation dose received by the underwater vehicle.

【0013】また、本発明の他の目的は、水中ビークル
の放射線集積線量を実測して、放射線集積線量の評価精
度を向上させて、使用可能な規定の閾値を実際の閾値に
近い値に設定することができ、交換に要する時間と、装
置コストを低減することにある。
Another object of the present invention is to measure the integrated radiation dose of an underwater vehicle, improve the accuracy of the evaluation of the integrated radiation dose, and set a prescribed threshold that can be used to a value close to the actual threshold. It is possible to reduce the time required for replacement and the cost of the apparatus.

【0014】[0014]

【課題を解決するための手段】前記目的を達成する発明
の第1の特徴は、水中ビークルの設置および撤収作業に
要する時間を短くするため、水中ビークルを収納する容
器の形状が上部格子板と下部格子板間の距離より長くす
ることで上部格子板と下部格子板への挿入に要する位置
合わせの時間が短くすることができる。また、水中ビー
クルを保持し、容器および障害となる構造物を回避する
ための回転着脱アーム構造を持たせることで、水中ビー
クルが容器外部に出るのに要する時間を短くすることが
できる。
A first feature of the present invention to achieve the above object is that, in order to shorten the time required for installation and withdrawal work of the underwater vehicle, the shape of the container for storing the underwater vehicle is the same as that of the upper lattice plate. By making the distance longer than the distance between the lower lattice plates, the time required for the alignment required for insertion into the upper lattice plate and the lower lattice plate can be shortened. Further, by providing a rotating detachable arm structure for holding the underwater vehicle and avoiding the container and obstacles, the time required for the underwater vehicle to exit the container can be shortened.

【0015】前記目的を達成する発明の第2の特徴は、
検査作業に要する時間を短くするため、水中ビークルの
位置評定をカメラとモニターを用いた画像による位置評
定機構と超音波送受信器による距離測定機構を用いて行
い、目的検査部位に最短時間で到達させるとともに、検
査部位の検査の重複を防止することで検査作業に要する
時間を短くすることができる。
A second feature of the present invention to achieve the above object is as follows.
In order to shorten the time required for inspection work, the position of the underwater vehicle is evaluated using a position evaluation mechanism based on images using cameras and monitors and a distance measurement mechanism using an ultrasonic transceiver so that the vehicle reaches the target inspection site in the shortest time. At the same time, the time required for the inspection operation can be shortened by preventing the inspection of the inspection site from being duplicated.

【0016】前記目的を達成する発明の第3の特徴は、
水中ビークルに放射線集積線量計を装着し、実際の放射
線集積線量を実測して、使用可能な閾値と比較しながら
水中ビークルを使用することで水中ビークルの交換に要
する時間と、装置コストを低減することができる。
A third feature of the present invention to achieve the above object is as follows.
Attach the integrated radiation dosimeter to the underwater vehicle, measure the actual integrated radiation dose, and use the underwater vehicle while comparing it with the usable threshold to reduce the time required for replacing the underwater vehicle and the equipment cost be able to.

【0017】本発明によって、水中ビークルの設置と撤
収作業および検査作業に要する時間が短くできる。また
水中ビークルの交換が適切に行えるため、水中ビークル
の交換頻度を低くできる。この結果、最終的に作業に要
する時間と装置コストを低減できる効果がある。
According to the present invention, the time required for installation, withdrawal work and inspection work of the underwater vehicle can be shortened. Further, since the exchange of the underwater vehicle can be appropriately performed, the exchange frequency of the underwater vehicle can be reduced. As a result, there is an effect that the time required for the work and the device cost can be reduced.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施例を図面に基
づき説明する。原子力発電所で採用されている沸騰水型
原子炉の原子炉圧力容器13内の構造物を検査する際に
は、原子炉圧力容器13内の蒸気乾燥器や気水分離器や
シュラウドヘッドや炉心燃料等炉心構成要素やジェット
ポンプ等の炉内構造物が原子炉圧力容器13外へ取出さ
れて必要に応じて検査され、検査後の再組み付けまで保
管される。
Embodiments of the present invention will be described below with reference to the drawings. When inspecting the structure inside the reactor pressure vessel 13 of a boiling water reactor employed in a nuclear power plant, a steam dryer, a steam separator, a shroud head, a reactor core and the like in the reactor pressure vessel 13 are required. Reactor core components such as fuel and internal structures such as jet pumps are taken out of the reactor pressure vessel 13 and inspected as necessary, and stored until reassembly after the inspection.

【0019】原子炉圧力容器13外へ取出して検査する
ことが困難なシュラウドサポート35やシュラウド36
やフローバッフル17、及びシュラウドサポート35や
シュラウド36に支えられた上部格子板12や下部格子
板11は、原子炉圧力容器13内の底部に据え付けられ
た状態のまま残されている。
The shroud support 35 and the shroud 36 which are difficult to take out of the reactor pressure vessel 13 for inspection.
The upper grid plate 12 and the lower grid plate 11 supported by the airflow baffle 17, the shroud support 35, and the shroud 36 are left installed on the bottom in the reactor pressure vessel 13.

【0020】そのシュラウドサポート35の検査に際し
ては原子炉圧力容器13内とウエルプール内に水を張っ
て原子炉圧力容器13内からオペレーションフロアー9
側空間への放射線の到来を水で遮蔽した状態で実施され
る。そのために、原子炉圧力容器13内の水中をカメラ
ら照明装置を搭載して推進する水中ビークル1が用いら
れる。
When the shroud support 35 is inspected, water is filled in the reactor pressure vessel 13 and the well pool, and the operation floor 9 is opened from the reactor pressure vessel 13.
It is performed in a state where the arrival of radiation to the side space is shielded by water. For this purpose, an underwater vehicle 1 is used, which mounts and illuminates underwater in a reactor pressure vessel 13 with a lighting device such as a camera.

【0021】原子炉圧力容器13内壁面とシュラウドサ
ポート35外周面との狭隘な部位に水中ビークルを到達
させてシュラウドサポート35(目的検査部位)を下側
から観察して検査する場合には、上方から水中ビークル
1を降下させて原子炉圧力容器13内壁面とフローバッ
フル17の外周面との狭隘な部位に到達させることは困
難であり、実行出来るとしても時間がかかりすぎて高放
射線環境下である原子炉圧力容器13内に水中ビークル
1が滞在する時間が長くなる。
When the underwater vehicle is allowed to reach a narrow portion between the inner wall surface of the reactor pressure vessel 13 and the outer peripheral surface of the shroud support 35 and the shroud support 35 (target inspection site) is observed from below, the inspection is performed in an upward direction. It is difficult to lower the underwater vehicle 1 from below to reach a narrow part between the inner wall surface of the reactor pressure vessel 13 and the outer peripheral surface of the flow baffle 17, and if it can be performed, it takes too much time, and in a high radiation environment. The time during which the underwater vehicle 1 stays in a certain reactor pressure vessel 13 becomes longer.

【0022】そのため、図2のように、水中ビークル1
は容器5内の下部領域に実線表示の状態で収納され、そ
の状態の容器5が上部格子板12と下部格子板11との
各格子を上方から下方へ通って、フローバッフル17や
シュラウドサポート35やシュラウド36の内側に通さ
れることで原子炉圧力容器13の底部に吊り降ろされ
る。吊り降ろされた容器5は下端が原子炉圧力容器13
底部から上方へ突き出た制御棒駆動機構ハウジング18
に支持されて下方向と水平方向への動きが拘束される。
また、容器5の上部は下部格子板11の格子内に嵌まっ
て水平方向の動きが拘束されている。これによって、容
器5は、容器5の下部に設けられた水中ビークル1の出
入口が図2の右方向、即ち原子炉圧力容器13の内壁面
に対向して開口する姿勢に保持される。
Therefore, as shown in FIG.
Is stored in the lower region in the container 5 in a state indicated by a solid line, and the container 5 in that state passes through the respective grids of the upper grid plate 12 and the lower grid plate 11 from above to below, and the flow baffle 17 and the shroud support 35 It is suspended at the bottom of the reactor pressure vessel 13 by being passed through the inside of the shroud 36. The lower end of the suspended vessel 5 is the reactor pressure vessel 13.
Control rod drive mechanism housing 18 projecting upward from the bottom
And the movement in the downward and horizontal directions is restrained.
The upper part of the container 5 is fitted in the lattice of the lower lattice plate 11 to restrict the horizontal movement. As a result, the container 5 is held in such a position that the entrance of the underwater vehicle 1 provided at the lower part of the container 5 opens rightward in FIG. 2, that is, faces the inner wall surface of the reactor pressure vessel 13.

【0023】目的検査部位の近傍で水中ビークル1は図
2の実線で示す状態から二点鎖線で示す状態に回転駆動
された回転着脱アーム33によりフローバッフル17の
下方を潜り抜けさせて原子炉圧力容器13内壁面とフロ
ーバッフル17外周面との狭隘な部位の下方に水中ビー
クルを到達させる。
In the vicinity of the target inspection site, the underwater vehicle 1 is pulled under the flow baffle 17 by the rotating detachable arm 33 which is driven to rotate from the state shown by the solid line in FIG. The underwater vehicle is caused to reach below a narrow portion between the inner wall surface of the container 13 and the outer peripheral surface of the flow baffle 17.

【0024】その狭隘な部位下方に回転着脱アーム33
の回転作用で送り出された水中ビークル1は回転着脱ア
ーム33から離脱して浮上方向に推進されてシュラウド
サポート35に接近するように制御される。その接近状
態で目的検査部位を水中ビークル1に搭載した照明23
で照らし出し、カメラで撮影して目視確認を実施する。
この目視確認により、シュラウドサポート35の亀裂等
の異常を発見し、検査点検を行う。
A rotating detachable arm 33 is provided below the narrow portion.
The underwater vehicle 1 sent out by the rotation action is separated from the rotary attachment / detachment arm 33, propelled in the floating direction, and controlled to approach the shroud support 35. The lighting 23 in which the target inspection part is mounted on the underwater vehicle 1 in the approach state
And illuminate it with a camera to check the visuals.
Through this visual check, an abnormality such as a crack in the shroud support 35 is found, and inspection and inspection are performed.

【0025】水中ビークル1には信号ケーブル2が接続
されており、水中ビークル制御装置(目的検査部監視モ
ニタをも含む)4からの制御信号を信号ケーブル2を通
して水中ビークル1に伝送する。水中ビークル1で得ら
れたカメラによる目的検査部位の映像信号は信号ケーブ
ル2を通して水中ビークル制御装置4内の目的検査部監
視モニタで画像にされて観測出来るようにする。
A signal cable 2 is connected to the underwater vehicle 1, and transmits a control signal from an underwater vehicle control device (including a target inspection unit monitoring monitor) 4 to the underwater vehicle 1 through the signal cable 2. The video signal of the target inspection site obtained by the camera obtained by the underwater vehicle 1 is converted into an image on the target inspection unit monitoring monitor in the underwater vehicle control device 4 through the signal cable 2 so that the image can be observed.

【0026】水中ビークル1が収納される容器5はワイ
ヤロープ6に接続してあり。上下移動機構7を用いて容
器5を上下させる。また容器5を前後左右に移動させる
時にはオペレーションフロアー9に設置してある燃料取
扱機8に上下移動機構7を搭載した状態で燃料取扱機8
を平面二次元方向へ移動させることで実施する。
A container 5 for storing the underwater vehicle 1 is connected to a wire rope 6. The container 5 is moved up and down using the up and down movement mechanism 7. When the container 5 is to be moved back and forth and left and right, the fuel handling machine 8 is mounted on the fuel handling machine 8 installed on the operation floor 9 with the vertical movement mechanism 7 mounted.
Is moved in a two-dimensional direction on a plane.

【0027】容器5を上部格子板12と下部格子板11
との格子を通過させるには、燃料取扱機8を平面二次元
方向へ移動させることで通過させようとする格子の上方
に容器5を合わせる。次にその容器5を上下移動機構7
で吊り降ろし方向に移動させて格子に通し、制御棒駆動
機構ハウジング18上に着地させる。その際には、信号
ケーブル2を、燃料取扱機8に装備されて上下移動機構
7と同様に平面二次元方向へ移動させる事の出来る信号
ケーブル巻き取り装置3から繰り出して、容器5の移動
に追従させる。このようにして、原子炉圧力容器13の
底部への容器5の吊り降ろしが達成される。
The container 5 is divided into an upper grid plate 12 and a lower grid plate 11.
In order to pass through the grid, the container 5 is positioned above the grid to be passed by moving the fuel handling machine 8 in a two-dimensional plane. Next, the container 5 is moved vertically.
To move in the hanging direction, pass through the grid, and land on the control rod drive mechanism housing 18. In this case, the signal cable 2 is unwound from the signal cable winding device 3 mounted on the fuel handling machine 8 and can be moved in a two-dimensional plane in the same manner as the vertical movement mechanism 7, and the container 5 is moved. Let them follow. In this way, hanging the vessel 5 to the bottom of the reactor pressure vessel 13 is achieved.

【0028】その容器5は、上部格子板12と下部格子
板11の間の距離より長いものを用いているので、容器
5を吊り降ろす際に上部格子板12の格子を通過させれ
ば、上部格子板12がガイドとなり下部格子板11の格
子に容器5を通しやすくなる。
Since the container 5 is longer than the distance between the upper lattice plate 12 and the lower lattice plate 11, if the container 5 is passed through the lattice of the upper lattice plate 12 when the container 5 is hung down, The grid plate 12 serves as a guide, so that the container 5 can be easily passed through the grid of the lower grid plate 11.

【0029】また、この実施例では、原子炉圧力容器1
3内壁面とフローバッフル17外周面との狭隘な部位の
下方に水中ビークル1を位置させることを、回転着脱ア
ーム33の回転作用で水中ビークル1をその位置に送り
出すことで迅速に出来る。そのため、水中ビークル1の
推進制御によって狭隘なフローバッフル17の下方を潜
り抜けさせるという難しい水中ビークル1の運転を省略
出来る。
In this embodiment, the reactor pressure vessel 1
The underwater vehicle 1 can be quickly positioned below the narrow portion between the inner wall surface 3 and the outer peripheral surface of the flow baffle 17 by sending the underwater vehicle 1 to that position by the rotating action of the rotating detachable arm 33. Therefore, it is possible to omit the operation of the underwater vehicle 1, which is difficult to go under the narrow flow baffle 17 by the propulsion control of the underwater vehicle 1.

【0030】回転着脱アーム33の回転作用で容器5の
外側へ水中ビークル1を送り出す機構は、図2及び図3
に示されている。それによれば、容器5が移動中には、
水中ビークル1は回転着脱アーム33に取り付けられた
永久磁石14に吸着されて位置Aに保持される。原子炉
圧力容器13内の底部に到着した後、水中ビークル1は
回転着脱アーム33の回転作用により障害物のない位置
Bに移動され、水中ビークル1を保持していた永久磁石
14の磁場を打ち消す電磁石15を励磁して水中ビーク
ル1を水中へ開放する。
The mechanism for sending out the underwater vehicle 1 to the outside of the container 5 by the rotating action of the rotating detachable arm 33 is shown in FIGS.
Is shown in According to that, while the container 5 is moving,
The underwater vehicle 1 is held at the position A by being attracted to the permanent magnet 14 attached to the rotary attachment / detachment arm 33. After arriving at the bottom in the reactor pressure vessel 13, the underwater vehicle 1 is moved to a position B without obstacles by the rotating action of the rotating detachable arm 33, and cancels the magnetic field of the permanent magnet 14 holding the underwater vehicle 1. The electromagnet 15 is excited to release the underwater vehicle 1 into the water.

【0031】その電磁石15も回転着脱アーム33に取
り付けられている。信号ケーブル2とは別に他のケーブ
ル(図示せず)をケーブル巻き取り装置に巻きかけ、そ
のケーブル巻き取り装置を燃料取扱機8に搭載して水平
二次元方向へケーブル巻き取り装置を移動自在とする。
そのケーブル巻き取り装置で繰り出したり巻き込んだり
して水中ビークル1の移動にケーブルを追従させる。他
のケーブルを通じて電磁石15に電力を与えて電磁石1
5を励磁したり、電力を遮断して非励磁にしたりしてい
る。その電磁石15の励磁と非励磁はオペレーションフ
ロア9におかれた専用の制御装置に備わるスイッチの切
替で切替えてもよいし、水中ビークル制御装置4に電磁
石15の励磁と非励磁を切替えるためのスイッチを設け
てそのスイッチによって切替えてもよい。
The electromagnet 15 is also mounted on the rotating arm 33. Aside from the signal cable 2, another cable (not shown) is wound around the cable winding device, and the cable winding device is mounted on the fuel handling machine 8 so that the cable winding device can be freely moved in the horizontal two-dimensional direction. I do.
The cable follows the movement of the underwater vehicle 1 by being unwound or wound by the cable winding device. Power is supplied to the electromagnet 15 through another cable to
5 is excited, or the power is cut off to de-energize. The excitation and non-excitation of the electromagnet 15 may be switched by switching a switch provided in a dedicated control device provided on the operation floor 9, or a switch for switching the excitation and non-excitation of the electromagnet 15 to the underwater vehicle control device 4. And switching may be performed by the switch.

【0032】図2のように、回転着脱アーム33は概ね
Lの字状に曲がった形状をしており、容器5の内壁面に
固定されたブランケット46へ一端が回転軸41で垂直
面で回転自在に取り付けられる。その回転着脱アーム3
3には、回転軸42でリンク43の一端が垂直面で回転
自在に連結され、リンク43の他端にはリンク44の一
端が回転軸45で垂直面で回転自在に連結される。その
リンク44の他端は回転軸48で垂直面で回転自在にブ
ランケット46へ取り付けられる。
As shown in FIG. 2, the rotating arm 33 has a substantially L-shaped curved shape, and one end of the rotating arm 33 is rotated by a rotating shaft 41 on a vertical plane to a blanket 46 fixed to the inner wall surface of the container 5. Can be attached freely. The rotating arm 3
3, one end of a link 43 is rotatably connected to a vertical plane by a rotary shaft 42, and one end of a link 44 is rotatably connected to the other end of the link 43 by a rotary shaft 45 in a vertical plane. The other end of the link 44 is attached to a blanket 46 so as to be rotatable on a vertical axis on a rotation shaft 48.

【0033】容器5の内壁面に固定された他のブランケ
ット47にはエアーシリンダ16のシリンダが回転軸4
9で垂直面で回転自在に連結され、そのエアーシリンダ
16のピストンロッドは回転軸45に垂直面で回転自在
に連結される。
On the other blanket 47 fixed to the inner wall surface of the container 5, the cylinder of the air cylinder 16 is
At 9, the piston rod of the air cylinder 16 is rotatably connected to the rotating shaft 45 in a vertical plane.

【0034】このようなリンク機構とエアーシリンダ1
6の組み合わせで、回転着脱アーム33はエアーシリン
ダ16のピストンロッドをそのシリンダにたいして出入
りする方向に空気圧で駆動することで、図2の実線表示
状態の位置Aと二点鎖線表示状態の位置Bとの状態間で
往復回転駆動される。これにより、水中ビークル1を運
転制御する必要無く、フローバッフル17を潜り抜けて
位置Aと位置Bの間を往来出来る。その際、水中ビーク
ル1を運転制御する必要が無いので、運転ミスなどによ
る衝突事故を起こすことなく安全にしかも迅速に容器5
内の位置Aから位置Bにて示す原子炉圧力容器13内壁
面とフローバッフル17外周面との狭隘な部位の下方に
水中ビークル1を移動させることが出来る。
Such a link mechanism and the air cylinder 1
In the combination of 6, the rotary attachment / detachment arm 33 drives the piston rod of the air cylinder 16 by air pressure in the direction of going in and out of the cylinder, so that the position A in the solid line display state and the position B in the two-dot chain line display state in FIG. Is reciprocally rotated between the states. Thereby, it is possible to move back and forth between the position A and the position B through the flow baffle 17 without having to control the operation of the underwater vehicle 1. At this time, since there is no need to control the operation of the underwater vehicle 1, the container 5 can be safely and quickly operated without causing a collision accident due to an operation error or the like.
The underwater vehicle 1 can be moved below a narrow portion between the inner wall surface of the reactor pressure vessel 13 and the outer peripheral surface of the flow baffle 17 shown from the position A to the position B in the inside.

【0035】エアーシリンダ16を駆動するための空気
圧の制御はエアーシリンダ16に接続された空気圧の供
給ホースと排気ホースとを通じて行われ、それら各ホー
スはホース巻き取り装置に巻き取り繰り出し自在に装備
される。そのホース巻き取り装置は燃料取扱機8に搭載
されて水平二次元方向に移動出来る。その移動とホース
巻き取り装置による供給ホースと排気ホースの巻き取り
繰り出し作用によって容器5の移動に供給ホースと排気
ホースを追従させる。エアーシリンダー16への空気圧
の供給と逆の排気とは、それらの給気と排気を制御する
弁を操作して供給ホースと排気ホースを通じて行われ
る。それらの弁はコンプレッサ等の空気圧発生装置とと
もにオペレーションフロア9に置かれても良く、燃料取
扱機8に搭載されていても良い。
The control of the air pressure for driving the air cylinder 16 is performed through an air pressure supply hose and an exhaust hose connected to the air cylinder 16, and each of the hoses is equipped with a hose winding device so as to be able to be wound and fed out. You. The hose winding device is mounted on the fuel handling machine 8 and can move in a horizontal two-dimensional direction. The supply hose and the exhaust hose follow the movement of the container 5 by the movement and the winding-out operation of the supply hose and the exhaust hose by the hose winding device. The supply of air pressure to the air cylinder 16 and the reverse exhaust are performed through supply hoses and exhaust hoses by operating valves for controlling the air supply and exhaust. These valves may be placed on the operation floor 9 together with an air pressure generator such as a compressor, or may be mounted on the fuel handling machine 8.

【0036】図3のように、回転着脱アーム33は水中
ビークル1の位置を評定するためのカメラ19が2台、
回転着脱アーム33と水中ビークル1の距離を測定する
ための超音波測距装置の超音波送信器20、および照明
21が2台設置してある。
As shown in FIG. 3, the rotating detachable arm 33 has two cameras 19 for evaluating the position of the underwater vehicle 1.
An ultrasonic transmitter 20 of an ultrasonic distance measuring device for measuring the distance between the rotary attachment / detachment arm 33 and the underwater vehicle 1 and two illuminations 21 are provided.

【0037】図4のように、水中ビークル1には目的検
査部位監視用カメラ22と照明23が装備されており、
目的検査部位監視用カメラ22は監視方向を変化出来る
可動式である。水中ビークル1は上下用スラスタ24と
前後進旋回用スラスタ25を回転させて目的検査部位の
近傍まで上下及び前進後進並びに左右旋回自在で、その
動きは水中ビークル制御装置4の制御盤上での操作で制
御出来る。
As shown in FIG. 4, the underwater vehicle 1 is equipped with a camera 22 for monitoring the target inspection site and a light 23,
The target inspection site monitoring camera 22 is movable so that the monitoring direction can be changed. The underwater vehicle 1 can rotate up and down and forward and backward and turn left and right to the vicinity of the target inspection site by rotating the thruster 24 for up and down movement and the thruster 25 for forward and backward movement, and its movement is controlled on the control panel of the underwater vehicle control device 4. Can be controlled by

【0038】水中ビークル1の特徴は、水中ビークル1
本体に水中ビークル1の位置を評定しやすくするため、
周囲が暗くても水中ビークル1の位置が目視で確認出来
るように位置評定用電灯26と超音波測距装置の超音波
受信器27を設置した。その上、放射線集積線量を正確
に評価するために水中ビークル1に放射線集積線量計2
8を装着した。但し、放射線集積線量計は水中ビークル
を収納する容器に装着してあっても良い。
The underwater vehicle 1 is characterized by the underwater vehicle 1.
To make it easier to assess the position of the underwater vehicle 1 on the body,
An electric lamp 26 for position evaluation and an ultrasonic receiver 27 of an ultrasonic distance measuring device were installed so that the position of the underwater vehicle 1 could be visually checked even when the surroundings were dark. In addition, in order to accurately evaluate the integrated radiation dose, the integrated radiation dosimeter 2
8 was attached. However, the integrated radiation dosimeter may be mounted on a container for storing the underwater vehicle.

【0039】水中ビークル1の位置評定を行うと目的検
査部位へ到着するのに要する時間を最短にできるととも
に、検査部位の検査の重複を防止することができるため
検査作業に要する時間を最短にすることができる。即
ち、放射線集積線量を最小にすることが可能となる。
When the position of the underwater vehicle 1 is evaluated, the time required for arriving at the target inspection site can be minimized, and the inspection work can be prevented from being duplicated, thereby minimizing the time required for the inspection operation. be able to. That is, the integrated radiation dose can be minimized.

【0040】水中ビークル1の位置評定は回転着脱アー
ム33に設置されたカメラ19を2台用いて三角測定法
を用いることで達成できる。この三角測定法に加えて、
回転着脱アーム33に設置された超音波送信器20と水
中ビークル1本体に設置した超音波受信器27を用いて
回転着脱アーム33と水中ビークル1の間の距離を超音
波の伝搬時間より高精度に求めてこの距離を位置評定演
算に用いることで三角測定法のみの時に比べて位置評定
精度を向上させることができる。さらに、カメラ19が
1台故障した場合、または障害物によりカメラ19の映
像が1台しか得られない場合でも、カメラ19の1台と
超音波による距離測定を組み合わせることで水中ビーク
ル1の位置評定をおこなうことができる。カメラ19の
映像信号や超音波受信に係る信号は信号ケーブル2を通
じて水中ビークル制御装置4に送られて信号処理された
上でモニタに表示される。
The evaluation of the position of the underwater vehicle 1 can be achieved by using two cameras 19 installed on the rotary attachment / detachment arm 33 and using a triangulation method. In addition to this triangulation,
Using the ultrasonic transmitter 20 installed on the rotating detachable arm 33 and the ultrasonic receiver 27 installed on the underwater vehicle 1 main body, the distance between the rotating detachable arm 33 and the underwater vehicle 1 is more accurate than the propagation time of the ultrasonic wave. By using this distance for the position evaluation calculation, the position evaluation accuracy can be improved as compared with the case where only the triangulation method is used. Furthermore, even when one camera 19 breaks down or when only one camera 19 image is obtained due to an obstacle, the position of the underwater vehicle 1 is evaluated by combining the distance measurement with one of the cameras 19 and the ultrasonic wave. Can be performed. The video signal of the camera 19 and the signal related to the reception of the ultrasonic wave are sent to the underwater vehicle control device 4 through the signal cable 2, subjected to signal processing, and displayed on a monitor.

【0041】以上のこと、およびカメラに比べて超音波
送受信器の耐放射線性能が高いことから、カメラ19が
2台と超音波送受信器を組み合わせた本実施例はカメラ
を2台のみ使用する場合に比べて、位置評定精度が高
く、耐放射線性能にも優れている。
Because of the above and the high radiation resistance of the ultrasonic transmitter / receiver as compared with the camera, the present embodiment in which two cameras 19 and the ultrasonic transmitter / receiver are combined uses only two cameras. As compared to, the position evaluation accuracy is high and the radiation resistance is also excellent.

【0042】水中ビークル1が自力で推進し移動する際
に必要となる、信号ケーブル2の容器5から水中ビーク
ル1への送り出し機構は、エアーシリンダ16よりも上
方の容器5内空間に装備されている。即ち、図5のよう
にワイヤケーブル6で保持された容器5内に引き込まれ
た信号ケーブル2は容器5内を上下に移動自在な移動プ
レート30を貫通して水中ビークル1に接続されてい
る。
A mechanism for sending out the signal cable 2 from the container 5 to the underwater vehicle 1, which is required when the underwater vehicle 1 is propelled and moved by itself, is provided in the space inside the container 5 above the air cylinder 16. I have. That is, the signal cable 2 drawn into the container 5 held by the wire cable 6 as shown in FIG. 5 penetrates a movable plate 30 that can move up and down in the container 5 and is connected to the underwater vehicle 1.

【0043】その移動プレート30は容器5に固定され
たモータ31で回転駆動されるネジ軸32に螺合してい
る。そのため、モータ31でネジ軸32を回転駆動する
と、その回転の方向に応じて移動プレート30が上下に
移動出来る。その移動を確実に行うために、移動プレー
ト30と容器内壁面との間には移動プレート30のネジ
軸32との共回りを防止する回り止めが装備されてい
る。
The moving plate 30 is screwed to a screw shaft 32 driven by a motor 31 fixed to the container 5. Therefore, when the screw shaft 32 is rotationally driven by the motor 31, the moving plate 30 can move up and down in accordance with the direction of the rotation. In order to ensure the movement, a detent is provided between the movable plate 30 and the inner wall surface of the container to prevent co-rotation of the movable plate 30 with the screw shaft 32.

【0044】ネジ軸32の周囲に存在する信号ケーブル
2はコイルバネ状にされ、そのコイル状のコイルバネ部
29は移動プレート30の上下動に応じて伸縮して、信
号ケーブル2が損傷することを防止している。そのモー
タ31が電動の場合には電力ケーブルで電力をモータ3
1に供給する。またその電力ケーブル及びモータ31の
制御信号を伝えるケーブルもケーブル巻き取り装置で巻
き取り繰り出し自在とし、その巻き取り装置を燃料取扱
機8で水平二次元方向へ移動自在に支持する。そのこと
によって、容器5の移動に電力ケーブル及びモータ31
の制御信号を伝えるケーブルを追従させる。モータ31
の制御信号を伝えるケーブルに接続されるモータ31の
制御装置や電力ケーブルに接続される電源は燃料取扱機
8に搭載しても、オペレーションフロア9に設置しても
良い。
The signal cable 2 existing around the screw shaft 32 is formed in a coil spring shape, and the coiled coil spring portion 29 expands and contracts in accordance with the vertical movement of the moving plate 30 to prevent the signal cable 2 from being damaged. are doing. When the motor 31 is electric, the electric power is supplied to the motor 3 by a power cable.
Feed to 1. The power cable and the cable for transmitting the control signal of the motor 31 can also be freely wound and unwound by a cable winding device, and the winding device is supported by a fuel handling machine 8 so as to be movable in a two-dimensional horizontal direction. Thereby, the power cable and the motor 31
Follow the cable that transmits the control signal. Motor 31
The control device of the motor 31 connected to the cable transmitting the control signal and the power supply connected to the power cable may be mounted on the fuel handling machine 8 or on the operation floor 9.

【0045】水中ビークル1が移動して信号ケーブル2
を引く場合にはモータ31を駆動させ、ネジ軸32を回
転させて移動プレート30を下方向に移動させる。これ
により移動プレート30とともに信号ケーブル2が下方
向に移動するため水中ビークル1が上方に移動できる。
The underwater vehicle 1 moves and the signal cable 2
Is pulled, the motor 31 is driven and the screw shaft 32 is rotated to move the moving plate 30 downward. Accordingly, the signal cable 2 moves downward together with the moving plate 30, so that the underwater vehicle 1 can move upward.

【0046】検査後に水中ビークル1を回収する場合に
は、水中ビークル1を下方に推進移動するとともに、モ
ータ31でネジ軸32を逆方向に回転駆動して移動プレ
ート30を上昇させて信号ケーブル2を容器内に引き込
む。水中ビークル1が検査位置から下降して回転着脱ア
ーム33に極めて接近したことをカメラ19や超音波測
距装置で検知したら、電磁石15を非励磁状態に切替え
て永久磁石14に水中ビークル1を磁力により吸着す
る。
When the underwater vehicle 1 is to be recovered after the inspection, the underwater vehicle 1 is propelled and moved downward, and the screw shaft 32 is rotated in the reverse direction by the motor 31 to raise the movable plate 30 to raise the signal cable 2. Into the container. When it is detected by the camera 19 or the ultrasonic ranging device that the underwater vehicle 1 has descended from the inspection position and approached the rotating detachable arm 33, the electromagnet 15 is switched to the non-excited state, and the underwater vehicle 1 is magnetized by the permanent magnet 14. Is adsorbed.

【0047】次に、エアーシリンダ16のピストンロッ
ドを縮めて回転着脱アーム33を図2の二点鎖線表示の
状態から実線表示の状態に回転軸41を中心にして回転
させ、容器5内に水中ビークル1をフローバッフル17
の下を潜らせて移動させる。
Next, the piston rod of the air cylinder 16 is contracted, and the rotary attachment / detachment arm 33 is rotated about the rotary shaft 41 from the state shown by the two-dot chain line to the state shown by the solid line in FIG. Flow baffle 17 for vehicle 1
And move underneath.

【0048】このようにして水中ビークル1が容器5内
に収まったなら、ワイヤケーブル巻き取り装置7にワイ
ヤケーブル6を巻とることで容器5を下部格子板11と
上部格子板12の各格子を通過させて引き上げる。その
際には、他のケーブルやホースも巻き上げて容器5の移
動に追従させる。
When the underwater vehicle 1 is thus contained in the container 5, the wire cable 6 is wound around the wire cable take-up device 7 to divide the container 5 into the lower grid plate 11 and the upper grid plate 12. Pass through and pull up. At that time, other cables and hoses are also wound up to follow the movement of the container 5.

【0049】放射線集積線量計28からの計測信号を信
号ケーブル2を通じて水中ビークル制御装置4に受信し
て水中ビークル1が受けた放射線の集積線量を確認し、
まだ水中ビークル1の交換が必要とされる放射線の集積
線量に到達していない場合には、次の検査部位に近い位
置へ向けて容器5の位置を、燃料取扱機8の移動で、変
位させ、検査を繰り返す。水中ビークル1の交換が必要
とされる放射線の集積線量に到達していた場合には、水
中ビークル1の全交換又はカメラ22等を交換対象とす
る部分交換を実施して検査を続行する。これらの交換時
期には、カメラ19についても交換の要否を検討する。
The underwater vehicle control device 4 receives the measurement signal from the integrated radiation dosimeter 28 through the signal cable 2 to confirm the integrated radiation dose received by the underwater vehicle 1.
If the accumulated dose of radiation that requires replacement of the underwater vehicle 1 has not yet been reached, the position of the container 5 is displaced by moving the fuel handling machine 8 toward a position close to the next inspection site. , Repeat inspection. If the integrated dose of radiation that requires replacement of the underwater vehicle 1 has been reached, the replacement of the underwater vehicle 1 or the partial replacement of the camera 22 or the like is performed, and the inspection is continued. At these replacement times, the necessity of replacement of the camera 19 is also examined.

【0050】[0050]

【発明の効果】本発明によれば、水中ビークルの設置と
撤収作業および検査作業に要する時間が短くできる。
According to the present invention, the time required for installation, withdrawal work and inspection work of an underwater vehicle can be shortened.

【0051】また水中ビークルまたは、水中ビークルを
収納する容器に放射線集積線量計を装着してある本発明
の原子炉内検査装置にあっては、実際の放射線集積線量
に基づき水中ビークルの交換を適切に行えるため、水中
ビークルの交換頻度を低くできる。この結果、最終的に
作業に要する時間と装置コストを低減できる効果があ
る。
Further, in the inspection apparatus in a nuclear reactor according to the present invention in which the integrated radiation dosimeter is mounted on the underwater vehicle or the container storing the underwater vehicle, the underwater vehicle can be appropriately replaced based on the actual integrated radiation dose. The frequency of replacement of underwater vehicles can be reduced. As a result, there is an effect that the time required for the work and the device cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による原子炉内検査装置の原子
炉圧力容器内への適用を示した原子炉圧力容器内の縦断
面図。
FIG. 1 is a longitudinal sectional view of a reactor pressure vessel showing an application of the in-reactor inspection apparatus according to an embodiment of the present invention to a reactor pressure vessel.

【図2】本発明の実施例における水中ビークルの送り出
し機構(回転着脱アーム近傍の構造)の立面図である。
FIG. 2 is an elevational view of an underwater vehicle delivery mechanism (structure near a rotating detachable arm) according to an embodiment of the present invention.

【図3】図2のA−A矢視断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】本発明の実施例による水中ビークルを示す図で
あって、(a)図は水中ビークルの側面図であり、
(b)図は水中ビークルの底面図である。
FIG. 4 is a diagram showing an underwater vehicle according to an embodiment of the present invention, wherein FIG. 4 (a) is a side view of the underwater vehicle,
(B) is a bottom view of the underwater vehicle.

【図5】本発明の実施例における水中ビークルへの信号
ケーブルの送り出し機構の概要図である。
FIG. 5 is a schematic view of a mechanism for sending out a signal cable to an underwater vehicle according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…水中ビークル、2…信号ケーブル、3…信号ケーブ
ル巻き取り装置、4…水中ビークル制御装置、5…容
器、6…ワイヤケーブル、7…ワイヤケーブル巻き取り
装置、8…燃料取扱機、9…オペレーションフロアー、
10…CRDハウジング、11…下部格子板、12…上
部格子板、13…原子炉圧力容器、14…永久磁石、1
5…電磁石、16…エアーシリンダ、17…フローバッ
フル、18…制御棒駆動機構ハウジング、19…カメ
ラ、20…超音波送信器、21…照明、22…目的検査
部位監視用カメラ、23…照明、24…上下用スラス
タ、25…前後進旋回用スラスタ、26…位置評定用電
灯、27…超音波受信器、28…放射線集積線量計、2
9…コイルバネ部、30…移動プレート、31…モー
タ、32…ネジ軸、35…シュラウドサポート、36…
シュラウド。
DESCRIPTION OF SYMBOLS 1 ... Underwater vehicle, 2 ... Signal cable, 3 ... Signal cable take-up device, 4 ... Underwater vehicle control device, 5 ... Container, 6 ... Wire cable, 7 ... Wire cable take-up device, 8 ... Fuel handling machine, 9 ... Operation floor,
Reference Signs List 10 CRD housing, 11 Lower grid plate, 12 Upper grid plate, 13 Reactor pressure vessel, 14 Permanent magnet, 1
5: Electromagnet, 16: Air cylinder, 17: Flow baffle, 18: Control rod drive mechanism housing, 19: Camera, 20: Ultrasonic transmitter, 21: Illumination, 22: Camera for monitoring target inspection site, 23: Illumination, Reference numeral 24: Up / down thruster, 25: forward / backward turning thruster, 26: position evaluation lamp, 27: ultrasonic receiver, 28: integrated radiation dosimeter, 2
9 ... Coil spring part, 30 ... Movement plate, 31 ... Motor, 32 ... Screw shaft, 35 ... Shroud support, 36 ...
Shroud.

フロントページの続き (72)発明者 森 勇人 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 河野 尚幸 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 小池 正浩 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 2G075 CA04 CA08 DA08 DA15 EA02 FA05 FA13 FA14 FA15 FA16 FA18 FA20 FC03 GA09 Continued on the front page (72) Inventor Hayato Mori 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Electric Power and Electric Development Laboratory, Hitachi, Ltd. (72) Inventor Naoyuki Kawano 7-2 Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi, Ltd. Power and Electricity Development Laboratory (72) Inventor Masahiro Koike 7-2, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Electric Power and Electricity Development Laboratory F-term (reference) CA04 CA08 DA08 DA15 EA02 FA05 FA13 FA14 FA15 FA16 FA18 FA20 FC03 GA09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】原子炉圧力容器内の検査に用いる水中ビー
クルを収納する容器の形状が原子炉圧力容器内の上部格
子板と下部格子板間の上下間距離より長い原子炉内検査
装置。
1. An in-reactor inspection apparatus according to claim 1, wherein the shape of a container for storing the underwater vehicle used for inspection in the reactor pressure vessel is longer than a vertical distance between an upper lattice plate and a lower lattice plate in the reactor pressure vessel.
【請求項2】原子炉圧力容器内の検査に用いる水中ビー
クルを着脱自在に装備したアームと、前記アームと前記
水中ビークルを収納する容器と、前記アームを前記容器
の横方向内外へ向かって駆動する前記アームの駆動機構
とを備えた原子炉内検査装置。
2. An arm equipped with a detachable underwater vehicle used for inspection in a reactor pressure vessel, a vessel for storing the arm and the underwater vehicle, and driving the arm in and out of the vessel in a lateral direction. And a drive mechanism for the arm.
【請求項3】請求項2において、前記容器の形状が原子
炉圧力容器内の上部格子板と下部格子板間の上下間距離
より長いことを特徴とする原子炉内検査装置。
3. The inspection apparatus according to claim 2, wherein the shape of the vessel is longer than a vertical distance between an upper lattice plate and a lower lattice plate in the reactor pressure vessel.
【請求項4】請求項2又は請求項3において、前記アー
ムと水中ビークルとの間に前記水中ビークルの位置確認
手段が装備されていることを特徴とする原子炉内検査装
置。
4. An inspection system in a nuclear reactor according to claim 2, further comprising a means for confirming the position of the underwater vehicle between the arm and the underwater vehicle.
【請求項5】請求項4において、前記位置確認手段は、
前記アームに装備されたカメラと照明および超音波発振
器と、前記水中ビークルには発光する機器又は反射鏡と
超音波受信器を備え、前記発行する機器又は反射鏡から
の光を前記カメラに捕えて画像による位置評定を行う位
置評定機構と、前記超音波発振器からの音波を前記超音
波受信器で受信して超音波送受信による距離測定機構で
あることを特徴とする原子炉内検査装置。
5. The apparatus according to claim 4, wherein said position confirmation means comprises:
A camera and lighting and ultrasonic oscillator mounted on the arm, the underwater vehicle includes a light emitting device or a reflector and an ultrasonic receiver, and the camera captures light from the issuing device or the reflector. An in-reactor inspection apparatus comprising: a position estimating mechanism that performs position estimating based on an image; and a distance measuring mechanism that receives a sound wave from the ultrasonic oscillator with the ultrasonic receiver and transmits and receives an ultrasonic wave.
【請求項6】請求項1から請求項5までのいずれか一項
において、前記水中ビークルまたは、水中ビークルを収
納する容器に放射線集積線量計を装着したことを特徴と
する原子炉内検査装置。
6. An in-reactor inspection apparatus according to claim 1, wherein a radiation integrated dosimeter is mounted on the underwater vehicle or a container for storing the underwater vehicle.
【請求項7】原子炉圧力容器内の検査に用いられる水中
ビークルに放射線集積線量計を装着してある原子炉内検
査装置。
7. An in-reactor inspection apparatus in which a radiation integrated dosimeter is mounted on an underwater vehicle used for inspection in a reactor pressure vessel.
JP2000372913A 2000-12-04 2000-12-04 In-reactor inspection equipment Expired - Lifetime JP3767376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372913A JP3767376B2 (en) 2000-12-04 2000-12-04 In-reactor inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372913A JP3767376B2 (en) 2000-12-04 2000-12-04 In-reactor inspection equipment

Publications (2)

Publication Number Publication Date
JP2002168991A true JP2002168991A (en) 2002-06-14
JP3767376B2 JP3767376B2 (en) 2006-04-19

Family

ID=18842380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372913A Expired - Lifetime JP3767376B2 (en) 2000-12-04 2000-12-04 In-reactor inspection equipment

Country Status (1)

Country Link
JP (1) JP3767376B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053002A (en) * 2004-08-11 2006-02-23 Hitachi Ltd In-reactor inspection device, and in-reactor inspection method
JP2009069120A (en) * 2007-09-18 2009-04-02 Hitachi-Ge Nuclear Energy Ltd Underwater cruising device, and inspecting method of nuclear reactor
CN111915718A (en) * 2020-06-22 2020-11-10 中国船舶重工集团公司第七一六研究所 Automatic butt joint system suitable for ship bank LNG loading and unloading arm

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053002A (en) * 2004-08-11 2006-02-23 Hitachi Ltd In-reactor inspection device, and in-reactor inspection method
JP4653982B2 (en) * 2004-08-11 2011-03-16 日立Geニュークリア・エナジー株式会社 In-reactor inspection apparatus and in-reactor inspection method
JP2009069120A (en) * 2007-09-18 2009-04-02 Hitachi-Ge Nuclear Energy Ltd Underwater cruising device, and inspecting method of nuclear reactor
CN111915718A (en) * 2020-06-22 2020-11-10 中国船舶重工集团公司第七一六研究所 Automatic butt joint system suitable for ship bank LNG loading and unloading arm
CN111915718B (en) * 2020-06-22 2024-01-09 中国船舶集团有限公司第七一六研究所 Automatic docking system suitable for ship shore LNG loading and unloading arm

Also Published As

Publication number Publication date
JP3767376B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP5997761B2 (en) Underwater robotic vent and inspection system
EP2177887A2 (en) Non-destructive test apparatus
US6058153A (en) Preventive maintenance apparatus for structural members in a nuclear pressure vessel
JP7389196B2 (en) Reciprocating device
JP3075952B2 (en) Shroud inspection device
CN216646494U (en) Water quality monitoring device
JPS6122274B2 (en)
JP2002168991A (en) Internal inspection device for nuclear reactor
CN102598151B (en) Device for assisting in the underwater extraction or insertion of an elongate element disposed in a pipe, and method for assisting in the extraction or insertion of one such element
CN211308972U (en) Distribution lines inspection device
JP2619020B2 (en) Reactor pressure vessel inspection equipment
JP2000075080A (en) Jet pump inspection device and treatment device
JP3146101B2 (en) Reactor inspection equipment
JPH08146186A (en) Nuclear reactor internal structure inspection device and inspection method
JPH07311292A (en) In-vessel inspection device and its inspection method
EP2973597A1 (en) Apparatus and method to inspect nuclear reactor components in the core annulus, core spray and feedwater sparger regions in a nuclear reactor
JP5295546B2 (en) In-reactor inspection and repair device and control method thereof
JP4546746B2 (en) Inspection device, inspection device input device, and inspection method
JP2007333601A (en) Fuel inspection system
JP2005337884A (en) Inspection device
JP4869102B2 (en) Control rod drive
JP4080377B2 (en) Nondestructive inspection method and nondestructive inspection device
US6665364B2 (en) Inspection method and apparatus for piping
CN115402493B (en) Fishing equipment and fishing method for overhauling submarine cable
JPH1123785A (en) In-reactor pipe nozzle work device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R151 Written notification of patent or utility model registration

Ref document number: 3767376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

EXPY Cancellation because of completion of term